Newton Raphson Method

Notice: this material must not be used as a substitute for attending the lectures

0.1 Newton Raphson Method

The Newton Raphson method is for solving equations of the form $f(x)=0$. We make an initial guess for the root we are trying to find, and we call this initial guess x_{0}.
The sequence $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ generated in the manner described below should converge to the exact root.
To implement it analytically we need a formula for each approximation in terms of the previous one, i.e. we need x_{n+1} in terms of x_{n}.
The equation of the tangent line to the graph $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

The tangent line intersects the x-axis when $y=0$ and $x=x_{1}$, so

$$
-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)
$$

Solving this for x_{1} gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

and, more generally,

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

You should memorize the above formula. Its application to solving equations of the form $f(x)=0$, as we now demonstrate, is called the Newton Raphson method. It is guaranteed to converge if the initial guess x_{0} is close enough, but it is hard to make a clear statement about what we mean by 'close enough' because this is highly problem specific. A sketch of the graph of $f(x)$ can help us decide on an appropriate initial guess x_{0} for a particular problem.

0.2 Example

Let us solve $x^{3}-x-1=0$ for x.
In this case $f(x)=x^{3}-x-1$, so $f^{\prime}(x)=3 x^{2}-1$. So the recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}^{3}-x_{n}-1\right)}{3 x_{n}^{2}-1}
$$

Need to decide on an appropriate initial guess x_{0} for this problem. A rough graph can help. Note that $f(1)=-1<0$ and $f(2)=5>0$. Therefore, a root of $f(x)=0$ must exist between 1 and 2 . Let us take $x_{0}=1$ as our initial guess. Then

$$
x_{1}=x_{0}-\frac{\left(x_{0}^{3}-x_{0}-1\right)}{3 x_{0}^{2}-1}
$$

and with $x_{0}=1$ we get $x_{1}=1.5$.
Now

$$
x_{2}=x_{1}-\frac{\left(x_{1}^{3}-x_{1}-1\right)}{3 x_{1}^{2}-1}
$$

and with $x_{1}=1.5$ we get $x_{2}=1.34783$. For the next stage,

$$
x_{3}=x_{2}-\frac{\left(x_{2}^{3}-x_{2}-1\right)}{3 x_{2}^{2}-1}
$$

and with the value just found for x_{2}, we find $x_{3}=1.32520$.
Carrying on, we find that $x_{4}=1.32472, x_{5}=1.32472$, etc. We can stop when the digits stop changing to the required degree of accuracy. We conclude that the root is 1.32472 to 5 decimal places.

0.3 Example

Let us solve $\cos x=2 x$ to 5 decimal places.
This is equivalent to solving $f(x)=0$ where $f(x)=\cos x-2 x$. [NB: make sure your calculator is in radian mode]. The recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(\cos x_{n}-2 x_{n}\right)}{\left(-\sin x_{n}-2\right)}
$$

With an initial guess of $x_{0}=0.5$, we obtain:

$$
\begin{aligned}
& x_{0}=0.5 \\
& x_{1}=0.45063 \\
& x_{2}=0.45018 \\
& x_{3}=0.45018
\end{aligned}
$$

with no further changes in the digits, to five decimal places. Therefore, to this degree of accuracy, the root is $x=0.45018$.

0.4 Possible problems with the method

The Newton-Raphson method works most of the time if your initial guess is good enough. Occasionally it fails but sometimes you can make it work by changing the initial guess. Let's try to solve $x=\tan x$ for x. In other words, we solve $f(x)=0$ where $f(x)=x-\tan x$. The recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-\tan x_{n}\right)}{1-\sec ^{2} x_{n}}
$$

Let's try an initial guess of $x_{0}=4$. With this initial guess we find that $x_{1}=6.12016$, $x_{2}=238.40428, x_{3}=1957.26490$, etc. Clearly these numbers are not converging. We need a new initial guess. Let's try $x_{0}=4.6$. Then we find $x_{1}=4.54573$, $x_{2}=4.50615, x_{3}=4.49417, x_{4}=4.49341, x_{5}=4.49341$, etc. A couple of further iterations will confirm that the digits are no longer changing to 5 decimal places. As a result, we conclude that a root of $x=\tan x$ is $x=4.49341$ to 5 decimal places.

Solutions to Problems on the Newton-Raphson Method

These solutions are not as brief as they should be: it takes work to be brief. There will, almost inevitably, be some numerical errors. Please inform me of them at adler@math.ubc.ca. We will be excessively casual in our notation. For example, $x_{3}=3.141592654$ will mean that the calculator gave this result. It does not imply that x_{3} is exactly equal to 3.141592654 .

We should always treat at least the final digit of a calculator answer with some skepticism. Indeed different calculators can give (mildly) different answers. In applied work, we need to pay heed to the fact that the standard tools, such as calculators and computer programs, work only to limited precision. In a complex calculation, minor inaccuracies may result in a significant error.

1. Use the Newton-Raphson method, with 3 as starting point, to find a fraction that is within 10^{-8} of $\sqrt{10}$. Show (without using the square root button) that your answer is indeed within 10^{-8} of the truth.

Solution: The number $\sqrt{10}$ is the unique positive solution of the equation $f(x)=0$ where $f(x)=x^{2}-10$. We use the Newton Method to approximate a solution of this equation.
Let x_{0} be our initial estimate of the root, and let x_{n} be the n-th improved estimate. Note that $f^{\prime}(x)=2 x$. The Newton Method recurrence is therefore

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-10}{2 x_{n}}
$$

To make the expression on the right more beautiful, and calculations easier, it is useful to manipulate it a bit. We get

$$
x_{n+1}=x_{n}-\frac{x_{n}}{2}+\frac{10}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{10}{x_{n}}\right) .
$$

Compute, starting with $x_{0}=3$. Then $x_{1}=(1 / 2)\left(x_{0}+10 / x_{0}\right)=$ $(1 / 2)(3+10 / 3)=19 / 6$. And $x_{2}=(1 / 2)(19 / 6+60 / 19)=721 / 228$. We could go on calculating with fractions - and there is interesting mathematics involved-but from here on we switch to the calculator.
If we allow the $=$ sign to be used sloppily, we get $x_{1}=3.166666667$. Then $x_{2}=(1 / 2)\left(x_{1}+10 / x_{1}\right)=3.162280702$, and $x_{3}=3.16227766$, and $x_{4}=3.16227766$.
The calculator says that $x_{3}=x_{4}$ to 8 decimal places. We can therefore dare hope that 3.16227766 is close enough. One way of checking is to let $a=3.16227765$ and $b=3.16227767$. A quick calculation shows-if the squaring button can be trusted, and it is one of the ones that can be-that $f(a)<0$ while $f(b)>0$.
Thus the function $f(x)$ changes sign as x goes from a to b. It follows by the Intermediate Value Theorem that $f(x)=0$ has a solution (namely $\sqrt{10})$ between a and b. Since $\sqrt{10}$ lies in the interval (a, b), and the distance from 3.16227766 to either a or b is 10^{-8}, it follows that the distance from 3.16227766 to $\sqrt{10}$ is less than 10^{-8}.
2. Let $f(x)=x^{2}-a$. Show that the Newton Method leads to the recurrence

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

Heron of Alexandria (60 CE ?) used a pre-algebra version of the above recurrence. It is still at the heart of computer algorithms for finding square roots.

Solution: We have $f(x)=2 x$. The Newton Method therefore leads to the recurrence

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}} .
$$

Bring the expression on the right hand side to the common denominator $2 x_{n}$. We get

$$
x_{n+1}=\frac{2 x_{n}^{2}-\left(x_{n}^{2}-a\right)}{2 x_{n}}=\frac{x_{n}^{2}+a}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

3. Newton's equation $y^{3}-2 y-5=0$ has a root near $y=2$. Starting with $y_{0}=2$, compute y_{1}, y_{2}, and y_{3}, the next three Newton-Raphson estimates for the root.

Solution: Let $f(y)=y^{3}-2 y-5$. Then $f^{\prime}(y)=3 y^{2}-2$, and the Newton Method produces the recurrence

$$
y_{n+1}=y_{n}-\frac{y_{n}^{3}-2 y_{n}-5}{3 y_{n}^{2}-2}=\frac{2 y_{n}^{3}+5}{3 y_{n}^{2}-2}
$$

(there was no good case for simplification here). Start with the estimate $y_{0}=2$. Then $y_{1}=21 / 10=2.1$. It follows that (to calculator accuracy) $y_{2}=2.094568121$ and $y_{3}=2.094551482$. These are almost the numbers that Newton obtained (see the notes). But Newton in effect used a rounded version of y_{2}, namely 2.0946 .
4. Find all solutions of $e^{2 x}=x+6$, correct to 4 decimal places; use the Newton Method.

Solution: Let $f(x)=e^{2 x}-x-6$. We want to find where $f(x)=0$. Note that $f^{\prime}(x)=2 e^{2 x}-1$, so the Newton Method iteration is

$$
x_{n+1}=x_{n}-\frac{e^{2 x_{n}}-x_{n}-6}{2 e^{2 x_{n}}-1}=\frac{\left(2 x_{n}-1\right) e^{2 x_{n}}+6}{2 e^{2 x_{n}}-1} .
$$

We need to choose an initial estimate x_{0}. This can be done in various ways. We can (if we are rich) use a graphing calculator or a graphing program to graph $y=f(x)$ and eyeball where the graph crosses the x-axis. Or else, if (like the writer) we are poor, we can play around with a cheap calculator, a slide rule, an abacus, or scrap paper and a dull pencil.
It is easy to verify that $f(1)$ is about 0.389 , and that $f(0.95)$ is about -0.2641 , so by the Intermediate Value Theorem there is a root between 0.95 and 1 . And since $f(0.95)$ is closer to 0 than is $f(1)$, maybe the root is closer to 0.95 than to 1 . Let's make the initial estimate $x_{0}=0.97$.

The calculator then gives $x_{1}=0.970870836$, and then $x_{2}=0.97087002$. Since these two agree to 5 decimal places, we can perhaps conclude with some (but not complete) assurance that the root, to 4 decimal places, is 0.9709 . If we want greater assurance, we can compute $f(0.97085)$ and $f(0.97095)$ and hope for a sign change, which shows that there is a root between 0.97085 and 0.97095 . There is indeed such a sign change: $f(0.97085)$ is about -2.6×10^{-4} while $f(0.97095)$ is about 10^{-3}.

But the problem asked for all the solutions. Are there any others?

0.1 Newton Raphson Method

The Newton Raphson method is for solving equations of the form $f(x)=0$. We make an initial guess for the root we are trying to find, and we call this initial guess x_{0}. The sequence $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ generated in the manner described below should converge to the exact root.
To implement it analytically we need a formula for each approximation in terms of the previous one, i.e. we need x_{n+1} in terms of x_{n}.
The equation of the tangent line to the graph $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

The tangent line intersects the x-axis when $y=0$ and $x=x_{1}$, so

$$
-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)
$$

Solving this for x_{1} gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

and, more generally,

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

You should memorize the above formula. Its application to solving equations of the form $f(x)=0$, as we now demonstrate, is called the Newton Raphson method. It is guaranteed to converge if the initial guess x_{0} is close enough, but it is hard to make a clear statement about what we mean by 'close enough' because this is highly problem specific. A sketch of the graph of $f(x)$ can help us decide on an appropriate initial guess x_{0} for a particular problem.

0.2 Example

Let us solve $x^{3}-x-1=0$ for x.
In this case $f(x)=x^{3}-x-1$, so $f^{\prime}(x)=3 x^{2}-1$. So the recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}^{3}-x_{n}-1\right)}{3 x_{n}^{2}-1}
$$

Need to decide on an appropriate initial guess x_{0} for this problem. A rough graph can help. Note that $f(1)=-1<0$ and $f(2)=5>0$. Therefore, a root of $f(x)=0$ must exist between 1 and 2 . Let us take $x_{0}=1$ as our initial guess. Then

$$
x_{1}=x_{0}-\frac{\left(x_{0}^{3}-x_{0}-1\right)}{3 x_{0}^{2}-1}
$$

and with $x_{0}=1$ we get $x_{1}=1.5$.
Now

$$
x_{2}=x_{1}-\frac{\left(x_{1}^{3}-x_{1}-1\right)}{3 x_{1}^{2}-1}
$$

and with $x_{1}=1.5$ we get $x_{2}=1.34783$. For the next stage,

$$
x_{3}=x_{2}-\frac{\left(x_{2}^{3}-x_{2}-1\right)}{3 x_{2}^{2}-1}
$$

and with the value just found for x_{2}, we find $x_{3}=1.32520$.
Carrying on, we find that $x_{4}=1.32472, x_{5}=1.32472$, etc. We can stop when the digits stop changing to the required degree of accuracy. We conclude that the root is 1.32472 to 5 decimal places.

0.3 Example

Let us solve $\cos x=2 x$ to 5 decimal places.
This is equivalent to solving $f(x)=0$ where $f(x)=\cos x-2 x$. [NB: make sure your calculator is in radian mode]. The recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(\cos x_{n}-2 x_{n}\right)}{\left(-\sin x_{n}-2\right)}
$$

With an initial guess of $x_{0}=0.5$, we obtain:

$$
\begin{aligned}
x_{0} & =0.5 \\
x_{1} & =0.45063 \\
x_{2} & =0.45018 \\
x_{3} & =0.45018 \\
& \vdots
\end{aligned}
$$

with no further changes in the digits, to five decimal places. Therefore, to this degree of accuracy, the root is $x=0.45018$.

0.4 Possible problems with the method

The Newton-Raphson method works most of the time if your initial guess is good enough. Occasionally it fails but sometimes you can make it work by changing the initial guess. Let's try to solve $x=\tan x$ for x. In other words, we solve $f(x)=0$ where $f(x)=x-\tan x$. The recursion formula (1) becomes

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-\tan x_{n}\right)}{1-\sec ^{2} x_{n}}
$$

Let's try an initial guess of $x_{0}=4$. With this initial guess we find that $x_{1}=6.12016$, $x_{2}=238.40428, x_{3}=1957.26490$, etc. Clearly these numbers are not converging. We need a new initial guess. Let's try $x_{0}=4.6$. Then we find $x_{1}=4.54573$, $x_{2}=4.50615, x_{3}=4.49417, x_{4}=4.49341, x_{5}=4.49341$, etc. A couple of further iterations will confirm that the digits are no longer changing to 5 decimal places. As a result, we conclude that a root of $x=\tan x$ is $x=4.49341$ to 5 decimal places.

Look for people, keywords, and in Google:

Douglas Wilhelm Harder

Topic 10.1: Bisection Method (Examples)

長 141 Introduction Notes Theory HOWTO Examples Engineering Error Questions Matlab Maple 1 II

Example 1

Consider finding the root of $\mathrm{f}(x)=x^{2}-3$. Let $\varepsilon_{\text {step }}=0.01, \varepsilon_{\mathrm{abs}}=0.01$ and start with the interval $[1,2]$.
Table 1. Bisection method applied to $\mathrm{f}(x)=x^{2}-3$.

\boldsymbol{a}	\boldsymbol{b}	$\mathbf{f}(\boldsymbol{a})$	$\mathbf{f}(\boldsymbol{b})$	$\boldsymbol{c}=\mathbf{(a + b}) / \mathbf{2}$	$\mathbf{f}(\boldsymbol{c})$	Update	new b - a
1.0	2.0	-2.0	1.0	1.5	-0.75	$\mathrm{a}=\mathrm{c}$	0.5
1.5	2.0	-0.75	1.0	1.75	0.062	$\mathrm{~b}=\mathrm{c}$	0.25
1.5	1.75	-0.75	0.0625	1.625	-0.359	$\mathrm{a}=\mathrm{c}$	0.125
1.625	1.75	-0.3594	0.0625	1.6875	-0.1523	$\mathrm{a}=\mathrm{c}$	0.0625
1.6875	1.75	-0.1523	0.0625	1.7188	-0.0457	$\mathrm{a}=\mathrm{c}$	0.0313
1.7188	1.75	-0.0457	0.0625	1.7344	0.0081	$\mathrm{~b}=\mathrm{c}$	0.0156
$1.71988 / \mathrm{td}>$	1.7344	-0.0457	0.0081	1.7266	-0.0189	$\mathrm{a}=\mathrm{c}$	0.0078

Thus, with the seventh iteration, we note that the final interval, [1.7266, 1.7344], has a width less than 0.01 and $|\mathrm{f}(1.7344)|<0.01$, and therefore we chose $\mathrm{b}=1.7344$ to be our approximation of the root.

Example 2

Consider finding the root of $\mathrm{f}(x)=\mathrm{e}^{-x}(3.2 \sin (x)-0.5 \cos (x))$ on the interval [3, 4], this time with $\varepsilon_{\text {step }}=$ $0.001, \varepsilon_{\text {abs }}=0.001$.

Table 1. Bisection method applied to $\mathrm{f}(x)=\mathrm{e}^{-x}(3.2 \sin (x)-0.5 \cos (x))$.

\boldsymbol{a}	\boldsymbol{b}	$\mathbf{f}(\boldsymbol{a})$	$\mathbf{f}(\boldsymbol{b})$	$\boldsymbol{c}=(\mathbf{a + b}) \mathbf{2}$	$\mathbf{f}(\boldsymbol{c})$	Update	new b-a
3.0	4.0	0.047127	-0.038372	3.5	-0.019757	$\mathrm{~b}=\mathrm{c}$	0.5
3.0	3.5	0.047127	-0.019757	3.25	0.0058479	$\mathrm{a}=\mathrm{c}$	0.25
3.25	3.5	0.0058479	-0.019757	3.375	-0.0086808	$\mathrm{~b}=\mathrm{c}$	0.125
3.25	3.375	0.0058479	-0.0086808	3.3125	-0.0018773	$\mathrm{~b}=\mathrm{c}$	0.0625

12/24/2020 Topic 10.1: Bisection Method (Examples)

3.25	3.3125	0.0058479	-0.0018773	3.2812	0.0018739	$\mathrm{a}=\mathrm{c}$	0.0313
3.2812	3.3125	0.0018739	-0.0018773	3.2968	-0.000024791	$\mathrm{~b}=\mathrm{c}$	0.0156
3.2812	3.2968	0.0018739	-0.000024791	3.289	0.00091736	$\mathrm{a}=\mathrm{c}$	0.0078
3.289	3.2968	0.00091736	-0.000024791	3.2929	0.00044352	$\mathrm{a}=\mathrm{c}$	0.0039
3.2929	3.2968	0.00044352	-0.000024791	3.2948	0.00021466	$\mathrm{a}=\mathrm{c}$	0.002
3.2948	3.2968	0.00021466	-0.000024791	3.2958	0.000094077	$\mathrm{a}=\mathrm{c}$	0.001
3.2958	3.2968	0.000094077	-0.000024791	3.2963	0.000034799	$\mathrm{a}=\mathrm{c}$	0.0005

Thus, after the 11th iteration, we note that the final interval, [3.2958, 3.2968] has a width less than 0.001 and $|f(3.2968)|<0.001$ and therefore we chose $\mathrm{b}=3.2968$ to be our approximation of the root.

Example 3

Apply the bisection method to $\mathrm{f}(x)=\sin (x)$ starting with $[1,99], \varepsilon_{\text {step }}=\varepsilon_{\text {abs }}=0.00001$, and comment.
After 24 iterations, we have the interval [40.84070158, 40.84070742] and $\sin (40.84070158) \approx$ 0.0000028967 . Note however that $\sin (x)$ has 31 roots on the interval [1, 99], however the bisection method neither suggests that more roots exist nor gives any suggestion as to where they may be.

Copyright © 2005 by Douglas Wilhelm Harder. All rights reserved.
MAKING THE FUTURE

Department of Electrical and Computer Engineering
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
+15198884567
$\underline{\mathrm{http}}: / /$ www.ece.uwaterloo.ca/~ece104/

Question: Determine the root of the given equation $x^{2}-3=0$ for $x \in[1,2]$

Solution:

Given: $x^{2}-3=0$
Let $f(x)=x^{2}-3$
Now, find the value of $f(x)$ at $a=1$ and $b=2$.
$f(x=1)=1^{2}-3=1-3=-2<0$
$f(x=2)=2^{2}-3=4-3=1>0$
The given function is continuous, and the root lies in the interval [1, 2].
Let " t " be the midpoint of the interval.
I.e., $t=(1+2) / 2$
$t=3 / 2$
$t=1.5$
Therefore, the value of the function at " t " is
$f(t)=f(1.5)=(1.5)^{2}-3=2.25-3=-0.75<0$
$f(t)$ is negative, so b is replaced with $t=1.5$ for the next iterations.
The iterations for the given functions are:

Iterations	\mathbf{a}	\mathbf{b}	\mathbf{t}	$\mathbf{f (a)}$	$\mathbf{f (b)}$	$\mathbf{f (t)}$
$\mathbf{1}$	1	2	1.5	-2	1	-0.75
$\mathbf{2}$	1.5	2	1.75	-0.75	1	0.062
$\mathbf{3}$	1.5	1.75	1.625	-0.75	0.0625	-0.359
$\mathbf{4}$	1.625	1.75	1.6875	-0.3594	0.0625	-0.1523
$\mathbf{5}$	1.6875	1.75	1.7188	-01523	0.0625	-0.0457
$\mathbf{6}$	1.7188	1.75	1.7344	-0.0457	0.0625	0.0081
$\mathbf{7}$	1.7188	1.7344	1.7266	-0.0457	0.0081	-0.0189

So, at the seventh iteration, we get the final interval [1.7266, 1.7344]
Hence, 1.7344 is the approximated solution.
Download BYJU'S - The Learning App for more Maths-related concepts and personalized videos.

Related Links	
Calculus (https://byjus.com/maths/calculus/)	Limits and Derivatives (https://byjus.com/maths/limits-and- derivatives/)
Nature of Roots Quadratic (https://byjus.com/maths/nature-of- roots-quadratic/)	Domain Codomain Range Functions (https://byjus.com/maths/domain-codomain- range-functions/)

| MATHS Related Links | |
| :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}Permutation And Combination Worksheet

(https://byjus.com/maths/permutation-and-

combination-worksheet/)\end{array}\right.\right]\)
5. Find the root of $x-\sin (x)-(1 / 2)=0$

The graph of this equation is given in the figure.
Let $\mathrm{a}=1$ and $\mathrm{b}=2$

Iteration No.	a	b	c	$\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{c})$
1	1	2	1.5	$-8.554 * 10^{-4}(-\mathrm{ve})$
2	1	1.5	1.25	$0.068(+\mathrm{ve})$
3	1.25	1.5	1.375	$0.021(+\mathrm{ve})$
4	1.375	1.5	1.437	$5.679 * 10^{-3}(+\mathrm{ve})$
5	1.437	1.5	1.469	$1.42 * 10^{-3}(+\mathrm{ve})$
6	1.469	1.5	1.485	$3.042^{*} 10^{-4}(+\mathrm{ve})$
7	1.485	1.5	1.493	$5.023^{*} 10^{-5}(+\mathrm{ve})$
8	1.493	1.5	1.497	$2.947 * 10^{-6}(+\mathrm{ve})$

So one of the roots of $\mathrm{x}-\sin (\mathrm{x})-(1 / 2)=0$ is approximately 1.497.

6. Find the root of $\exp (-x)=3 \log (\mathbf{x})$

The graph of this equation is given in the figure.
Let $\mathrm{a}=0.5$ and $\mathrm{b}=1.5$

Iteration No.	a	b	c	$\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{c})$
1	0.5	1.5	1	$0.555(+\mathrm{ve})$
2	1.00	1.5	1.25	$-1.554^{*} 10^{-3}(-\mathrm{ve})$
3	1.00	1.25	1.125	$0.063(+\mathrm{ve})$
4	1.125	1.25	$\mathbf{1 . 1 8 7}$	$0.014(+\mathrm{ve})$

BACK

Problems to Work-Out:

7. Find the root of $x * \cos [(x) /(x-2)]=0$
8.

[Graph]

[Graph]

Find the root of $x^{2}=(\exp (-2 x)-1) / x$
9. Find the root of $\exp \left(\mathbf{x}^{2}-1\right)+10 \sin 2 x-5=0$ [Graph]
10. Find the root of $\exp (x)-3 x^{2}=0$
[Graph]
11. Find the root of $\tan (x)-x-1=0$
12. Find the root of $\sin (2 x)-\exp (x-1)=0$
[Graph]
[Graph]

FIXED POINT ITERATION METHOD

Fixed point : A point, say, \mathbf{s} is called a fixed point if it satisfies the equation $\mathbf{x}=\mathbf{g}(\mathbf{x})$.
Fixed point Iteration : The transcendental equation $\mathbf{f}(\mathbf{x})=\mathbf{0}$ can be converted algebraically into the form $\mathbf{x}=\mathbf{g}(\mathbf{x})$ and then using the iterative scheme with the recursive relation

$$
\mathbf{x}_{\mathbf{i}+1}=\mathbf{g}\left(\mathbf{x}_{\mathbf{i}}\right), \quad \mathbf{i}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots
$$

with some initial guess $\mathbf{x}_{\mathbf{0}}$ is called the fixed point iterative scheme.

Algorithm - Fixed Point Iteration Scheme

Given an equation $\mathrm{f}(\mathrm{x})=0$
Convert $f(x)=0$ into the form $x=g(x)$
Let the initial guess be x_{0}
Do

$$
x_{i+1}=g\left(x_{i}\right)
$$

while (none of the convergence criterion C 1 or C 2 is met)

- C1. Fixing apriori the total number of iterations \mathbf{N}.
- C2. By testing the condition $\left|\mathbf{x}_{\mathbf{i}+\mathbf{1}}-\mathbf{g}\left(\mathbf{x}_{\mathbf{i}}\right)\right|$ (where \mathbf{i} is the iteration number) less than some tolerance limit, say epsilon, fixed apriori.

Numerical Example:

Find a root of $\mathbf{x}^{4}-\mathbf{x}-\mathbf{1 0}=\mathbf{0}$

[Graph]

Consider $\mathbf{g 1}(\mathrm{x})=\mathbf{1 0} /\left(\mathbf{x}^{\mathbf{3}} \mathbf{- 1}\right)$ and the fixed point iterative scheme $\mathrm{x}_{\mathrm{i}+1}=\mathbf{1 0} /\left(\mathrm{x}_{\mathbf{i}}{ }^{\mathbf{3}} \mathbf{- 1}\right), \quad \mathbf{i}=\mathbf{0}, \mathbf{1}, \mathbf{2}$, \ldots. let the initial guess $\mathbf{x}_{\mathbf{0}}$ be $\mathbf{2 . 0}$

i	0	1	2	3	4	5	6	7	8
x_{i}	2	1.429	5.214	0.071	-10.004	$-9.978 \mathrm{E}-3$	-10	$-9.99 \mathrm{E}-3$	-10

So the iterative process with $\mathbf{g 1}$ gone into an infinite loop without converging.
Consider another function $\mathbf{g} 2(\mathbf{x})=(\mathbf{x}+\mathbf{1 0})^{1 / 4}$ and the fixed point iterative scheme $x_{i+1}=\left(x_{i}+10\right)^{1 / 4}, \quad i=0,1,2, \ldots$
let the initial guess $\mathbf{x}_{\mathbf{0}}$ be $\mathbf{1 . 0}, \mathbf{2 . 0}$ and 4.0

\|	0	1	2	3	4	5	6

x_{i}	1.0	1.82116	1.85424	1.85553	1.85558	$\mathbf{1 . 8 5 5 5 8}$	
x_{i}	2.0	1.861	1.8558	1.85559	1.85558	$\mathbf{1 . 8 5 5 5 8}$	
x_{i}	4.0	1.93434	1.85866	1.8557	1.85559	1.85558	$\mathbf{1 . 8 5 5 5 8}$

That is for $\mathbf{g} 2$ the iterative process is converging to $\mathbf{1 . 8 5 5 5 8}$ with any initial guess.
Consider $\mathbf{g 3}(\mathbf{x})=(\mathbf{x}+\mathbf{1 0})^{1 / 2} / \mathbf{x}$ and the fixed point iterative scheme
$x_{i+1}=\left(x_{i}+10\right)^{1 / 2} / x_{i}, \quad i=0,1,2, \ldots$
let the initial guess $\mathbf{x}_{\mathbf{0}}$ be $\mathbf{1 . 8}$,

i	0	1	2	3	4	5	6	\ldots	98
x_{i}	1.8	1.9084	1.80825	1.90035	1.81529	1,89355	1.82129	\ldots	$\mathbf{1 . 8 5 5 5}$

That is for g 3 with any initial guess the iterative process is converging but very slowly to
Geometric interpretation of convergence with $\mathrm{g} 1, \mathrm{~g} 2$ and g 3

Fig g1

Fig g2

Fig g3

The graphs Figures Fig g1, Fig g2 and Fig g3 demonstrates the Fixed point Iterative Scheme with $\mathrm{g} 1, \mathrm{~g} 2$ and g 3 respectively for some initial approximations. It's clear from the

- Fig g1, the iterative process does not converge for any initial approximation.
- Fig g2, the iterative process converges very quickly to the root which is the intersection point of $y=x$ and $y=g 2(x)$ as shown in the figure.
- Fig g3, the iterative process converges but very slowly.

Example 2 :The equation $\mathbf{x}^{4}+\mathbf{x}=\epsilon$, where \in is a small number, has a root which is close to ϵ. Computation of this root is done by the expression $\xi=\epsilon-\epsilon^{4}+\mathbf{4} \epsilon^{7}$ Then find an iterative formula of the form $\mathbf{x}_{\mathbf{n}+\mathbf{1}}=\mathbf{g}\left(\mathbf{x}_{\mathbf{n}}\right)$, if we start with $\mathrm{x}_{\mathbf{0}}=\mathbf{0}$ for the computation then show that we get the expression given above as a solution. Also find the error in the approximation in the interval [0, 0.2].

Proof

Given $\mathbf{x}^{4}+\mathbf{x}=\epsilon$
$\mathbf{x}\left(\mathbf{x}^{3}+1\right)=\epsilon$

$$
\mathbf{x}=\epsilon /\left(\mathbf{1}+\mathbf{x}^{\mathbf{3}}\right) \quad \text { or } \quad \mathbf{x}_{\mathbf{i}}=\in /\left(\mathbf{1}+\mathbf{x}_{\mathbf{i}}^{\mathbf{3}}\right) \quad \mathbf{i}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots
$$

$$
\mathbf{x}_{0}=\mathbf{0}
$$

$$
\mathbf{x}_{1}=\epsilon
$$

$$
\mathbf{x}_{\mathbf{2}}=\epsilon /\left(\mathbf{1}+\epsilon_{\mathbf{i}}^{\mathbf{3}}\right)=\in\left(\mathbf{1}+\epsilon_{\mathbf{i}}^{\mathbf{3}}\right)^{-1}
$$

$$
=\epsilon\left(1-\epsilon^{3}+\epsilon^{6}+\ldots\right)
$$

$$
=\epsilon-\epsilon^{4}+\epsilon^{7}+\ldots
$$

$$
\mathbf{x}_{\mathbf{3}}=\epsilon /\left(\mathbf{1}+\left(\epsilon-\epsilon^{4}+\epsilon^{7}\right)^{\mathbf{3}}\right)=\in\left[1+\left(\epsilon-\epsilon^{\mathbf{4}}+\epsilon^{7}\right)^{-\mathbf{3}}\right]=\epsilon-\epsilon^{\mathbf{4}}+\mathbf{4} \epsilon^{7}
$$

Now taking $\xi=\epsilon-\epsilon^{\mathbf{4}}+\mathbf{4} \epsilon^{7}$

$$
\begin{aligned}
\text { error } & =\xi^{4}+\xi-\epsilon \\
& =\left(\epsilon-\epsilon^{4}+\mathbf{4} \in^{7}\right)^{4}+\left(\in-\epsilon^{4}+\mathbf{4} \epsilon^{7}\right)-\epsilon \\
& =\mathbf{2 2} \epsilon^{10}+\text { higher order power of } \in
\end{aligned}
$$

Condition for Convergence :

If $\mathbf{g}(\mathbf{x})$ and $\mathbf{g}^{\prime}(\mathbf{x})$ are continuous on an interval \mathbf{J} about their root \mathbf{s} of the equation $\mathbf{x}=\mathbf{g}(\mathbf{x})$, and if $\left|\mathbf{g}^{\prime}(\mathbf{x})\right|<\mathbf{1}$ for all \mathbf{x} in the interval \mathbf{J} then the fixed point iterative process $\mathbf{x}_{\mathbf{i}+\mathbf{1}}=\mathbf{g}\left(\mathbf{x}_{\mathbf{i}}\right), \mathbf{i}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$., will converge to the root $\mathbf{x}=\mathbf{s}$ for any initial approximation $\mathbf{x}_{\mathbf{0}}$ belongs to the interval \mathbf{J}.

Worked out problems

Exapmple 1	Find a root of $\cos (\mathrm{x})-\mathrm{x}^{*} \exp (\mathrm{x})=0$	Solution		
Exapmple 2	Find a root of $\mathrm{x}^{4}-\mathrm{x}-10=0$	Solution		
Exapmple 3	Find a root of $\mathrm{x}-\exp (-\mathrm{x})=0$	Solution		
Exapmple 4	Find a root of $\exp (-\mathrm{x}) *\left(\mathrm{x}^{2}-5 \mathrm{x}+2\right)+1=0$	Solution		
Exapmple 5	Find a root of $\mathrm{x}-\sin (\mathrm{x})-(1 / 2)=0$	Solution		
Exapmple 6	Find a root of $\exp (-\mathrm{x})=3 \log (\mathrm{x})$	Solution		
Problems to workout				

Work out with the Fixed Point Iteration method here

Note :Few examples of how to enter equations are given below . . (i) $\exp [-x]^{*}\left(x^{\wedge} 2+5 x+2\right)+1$ (ii) $x^{\wedge} 4-x-10$ (iii) $x-\sin [x]-(1 / 2)$ (iv) $\exp [(-\mathrm{x}+2-1-2+1)]^{*}\left(\mathrm{x}^{\wedge} 2+5 \mathrm{x}+2\right)+1$ (v) $(\mathrm{x}+10)^{\wedge}(1 / 4)$

Solution of Transcendental Equations \mid Solution of Linear System of Algebraic Equations \mid Interpolation \& Curve Fitting Numerical Differentiation \& Integration | Numerical Solution of Ordinary Differential Equations

Numerical Solution of Partial Differential Equations
search
(19)

System of nonlinear equation - Newton - Raphson method

Example: Solve the following nonlinear equations using Newton method.
start at $x=1$ and $y=1$

$$
\begin{aligned}
& 4 x^{2}-y^{3}+28=0 \\
& 3 x^{3}+4 y^{2}-145=0
\end{aligned}
$$

Solution
: The formula of the solution is

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]-\left[J\left(x_{0}, y_{0}\right)\right]^{-1}\left[\begin{array}{l}
f_{1}\left(x_{0}, y_{0}\right) \\
f_{2}\left(x_{0}, y_{0}\right)
\end{array}\right]
$$

Let $f_{1}(x, y)=4 x^{2}-y^{3}+28=0$

$$
f_{2}(x, y)=3 x^{3}+4 y^{2}-145=0
$$

Now to comput the Jacobian determinent as follows:
(20)

$$
\begin{aligned}
& J(x, y)=\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right] \\
& f_{1}=4 x^{2}-y^{3}+28 \\
& \frac{\partial f_{1}}{\partial x}=8 x \text { and } \frac{\partial f_{1}}{\partial y}=-3 y^{2} \\
& f_{2}=3 x^{3}+4 y^{2}-145 \\
& \frac{\partial f_{2}}{\partial x}=9 x^{2} \text { and } \frac{\partial f_{2}}{\partial y}=8 y \\
& J(x, y)=\left[8 x^{2}-3 y^{2}\right] \\
& 9 x^{2} \\
& {[J(x, y)]^{-1}=\frac{8 y}{3}=\frac{1}{\partial 4 x y+27 y^{2} x^{2}}\left[\begin{array}{l}
-b x^{2} \\
\hline
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
{\left[J\left(x_{0}, y_{0}\right)\right]^{-1} } & =\frac{1}{91}\left[\begin{array}{cc}
8 & 3 \\
-9 & 8
\end{array}\right]=\left[\begin{array}{ll}
0.08791 & 0.0329 \\
-0.0989 & 0.08791
\end{array}\right] \\
f_{1}\left(x_{0}, y_{0}\right) & =4(1)^{2}-(1)^{3}+28=31 \\
f_{2}\left(x_{0}, y_{0}\right) & =3(1)^{3}+4(1)^{2}-145=-138 \\
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] } & =\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]-[J(x, y)]^{-1}\left[\begin{array}{l}
f_{1}\left(x_{0}, y_{0}\right) \\
f_{2}\left(x_{0}, y_{0}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
0.08791 & 0.03296 \\
-0.0989 & 0.0879
\end{array}\right]\left[\begin{array}{c}
31 \\
-138
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
2.7252 & -4.549 \\
-3.065 & -12.1315
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
-1.8238 \\
-15.1975
\end{array}\right]=\left[\begin{array}{l}
2.8238 \\
16.1975
\end{array}\right]
\end{aligned}
$$

re
: Solve the following non linear system using Newton method?

$$
\begin{aligned}
& \sin (3 x)+\cos y=0 \\
& \cos 5 x+\sin y=0
\end{aligned}
$$

where $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Solution

$$
\begin{gathered}
\text { Let } f_{1}=\sin 3 x+\cos y \\
f_{2}=\cos 5 x+\sin y \\
J(x, y)=\left[\begin{array}{cc}
3 \cos 3 x & -\sin y \\
-5 \sin 5 x & \cos y
\end{array}\right] \\
{[J(x, y)]^{-1}=\frac{1}{3 \cos y \cos 3 x-5 \sin 5 x \sin y}\left[\begin{array}{cc}
\cos y & \sin y \\
5 \sin 5 x & 3 \cos 3 x
\end{array}\right]} \\
=\frac{1}{0.4298}\left[\begin{array}{cc}
0.5403 & -2.7946
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
0.2223 & 0.3462 \\
-1.9732 & -1.22228
\end{array}\right] \\
& f_{1}\left(x_{0}, y_{0}\right)=0.6814 \text { and } f_{2}\left(x, y y_{0}\right)=1.1251 \\
& {\left[\begin{array}{cc}
0.2223 & 0.3462 \\
-1.9732 & -1.22228
\end{array}\right]\left[\begin{array}{c}
0.6814 \\
1.125
\end{array}\right]=} \\
& {\left[\begin{array}{c}
0.5409 \\
-2.7196
\end{array}\right]} \\
& \therefore\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
0.5409 \\
-2.7196
\end{array}\right] \\
& 0.4591 \\
& =3.7196
\end{aligned}
$$

Solve the following non linear equations using Newton method.

$$
\left[\begin{array}{c}
6.6763 \\
10.735
\end{array}\right]
$$

$$
\begin{aligned}
& x^{2}-x y+20=0 \\
& y^{2}-2 x y+10=0
\end{aligned}
$$

start at $x=6$ and $y=10$
(25) $6 x$

Gaussin Elimination method
The aim of this method is to convert the coefficients matrix into an upper triangular matrix using forward commination and the using back substitution to find X_{i}, as in the following examples.

Example, find the solution for the fula example, wing Gaussin elimination method

$$
\begin{gathered}
x+y+z=6 \\
2 x+y-z=1 \\
-x+2 y+2 z=9
\end{gathered}
$$

dIlution
step 1
Write the system in matrix form \rightarrow

$$
\left[\begin{array}{rrr:r}
1 & 1 & 1 & 6 \\
2 & 1 & -1 & 1 \\
-1 & 2 & 2 & 9
\end{array}\right]
$$

Step 2. We notice that the element a_{21} is The largest element in the first column of A, so we will re arrange our matrix so that the largest element of the first alan will be our $a_{11} \Rightarrow$

$$
\left[\begin{array}{ccc:c}
2 & 1 & -1 & 1 \\
1 & 1 & 1 & 6 \\
-1 & 2 & 2 & 9
\end{array}\right] \quad \text { - Wis process called }
$$

step 3
we must have $a_{i 1}=0 \quad(i=2,3)$ using

$$
R_{i}=R_{i}-\left(\frac{a_{i 1}}{a_{11}}\right) R_{1}
$$

(1) \int,
as follows

$$
\begin{aligned}
R_{2} & =1-\left(\frac{1}{2}\right)(2)=0 \\
& =1-\left(\frac{1}{2}\right)(1)=\frac{1}{2} \\
& =1-\left(\frac{1}{2}\right)(-1)=\frac{3}{2} \\
& =6-\left(\frac{1}{2}\right)(1)=\frac{11}{2}
\end{aligned}
$$

$$
\begin{aligned}
R_{3} & =-1-\left(\frac{-1}{2}\right)(2) \\
& =2-\left(\frac{-1}{2}\right)(1)=\frac{5}{2} \\
& =2-\left(\frac{-1}{2}\right)(-1)=\frac{3}{2} \\
& =9-\left(\frac{-1}{2}\right)(1)=\frac{19}{2}
\end{aligned}
$$

and we put the privious results in matrix form \Longrightarrow

$$
\left[\begin{array}{ccc:c}
2 & 1 & -1 & 1 \\
0 & 1 / 2 & 3 / 2 & 11 / 2 \\
0 & 5 / 2 & 3 / 2 & 19 / 2
\end{array}\right]
$$

step 4 element after noticing that a_{22} is \uparrow the largest pivoting again to get

$$
\left[\begin{array}{ccc|c}
2 & 1 & -1 & 1 \\
0 & 512 & 312 & 1912 \\
0 & 1 / 2 & 312 & 11 / 2
\end{array}\right]
$$

and then we use the formula:

$$
R_{i}=R_{i}-\left(\frac{a i 2}{a+2}\right) R_{2} \quad, i=3 \Rightarrow
$$

$$
\begin{aligned}
R_{3} & =\frac{1}{2}-\left(\frac{1}{2} \frac{2}{5}\right) \frac{5}{2}=0 \\
& =\frac{3}{2}-\left(\frac{1}{5}\right) \cdot \frac{3}{2}=\frac{3}{2}-\frac{3}{10}=\frac{6}{5} \\
& =\frac{11}{2}-\left(\frac{1}{5}\right) \frac{19}{2}=\frac{11}{2}-\frac{19}{10}=\frac{56-19}{10}=\frac{18}{5}
\end{aligned}
$$

and put the results in matrix form \rightarrow

$$
\left[\begin{array}{cccc}
2 & 1 & -1 & 11 \\
0 & 5 / 2 & 3 / 2 & 19 / 2 \\
0 & 0 & 6 / 5 & 1815
\end{array}\right]
$$

Step 5: As we get an upper tringular matrix, we will now use the back substitution to find the values of $x, y \& z g$ as follows

$$
\begin{aligned}
z^{x} & =\frac{18}{5} \cdot \frac{5}{6}=[3] \\
y_{2} & =\left[\frac{19}{2}-\frac{3}{2} x_{3}\right] \frac{2}{5}=\left[\frac{19}{2}-\frac{3}{2}(3)\right] \cdot \frac{2}{5}=[2 \\
x_{x} & =\left[1-x_{2}+x_{3}\right] \frac{1}{2} \\
& =[1-2+3] \frac{1}{2}=11
\end{aligned}
$$

Example 29
Using Gausin elimination, find the value of $x, y, z=$ of the following system:

$$
\begin{aligned}
& 2 x+y-z=2 \\
& x-y+z=7 \\
& 2 x=4-2 y-z
\end{aligned}
$$

solution
Step 1
: writ the system in matrix form

$$
\left[\begin{array}{ccc|c}
2 & 1 & -1 & 2 \\
1 & -1 & 1 & 7 \\
2 & 2 & 1 & 4
\end{array}\right]
$$

Step 2
: no need for partial pivoting \Rightarrow

$$
\begin{aligned}
n_{2} & =1-\left(\frac{1}{2}\right)(2)=0 \\
& =-1-\left(\frac{1}{2}\right)(1)=\frac{-3}{2} \\
& =1-\left(\frac{1}{2}\right)(-1)=\frac{3}{2} \\
& =7-\left(\frac{1}{2}\right)(2)=6
\end{aligned}
$$

$$
\begin{aligned}
R_{3} & =2-\left(\frac{2}{2}\right) 2=0 \\
& =2-(1)(1)=1 \\
& =1-(1)(-1)=2 \\
& =4-(1)(2)=2
\end{aligned}
$$

put the results in matrix form

$$
\left[\begin{array}{cccc}
2 & 1 & -1 & 2 \\
0 & -3 / 2 & 3 / 2 & 6 \\
0 & 1 & 2 & 2
\end{array}\right]
$$

step 3

$$
\begin{aligned}
R_{3} & =1-\frac{1}{(-3 / 2)}(-3 / 2)=0 \\
& =2+\left(\frac{2}{3}\right)\left(\frac{3}{2}\right)=3 \\
& =2+\left(\frac{2}{3}\right) \times 6=6=
\end{aligned}
$$

put the results in matrix form

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & -312 & 312 \\
0 & 0 & 3
\end{array}\right.
$$

Step 4
(31) 78 values of $x, y+z$ as follows

$$
\begin{aligned}
3 x_{3} & =6 \Rightarrow x_{3}=2 \\
x_{2} & =\left[6-\frac{3}{2} x_{3}\right] \frac{-2}{3} \\
& =\left[6-\frac{3}{2} \cdot 2\right] \frac{-2}{3}=-2 \\
x_{1} & =\left[2-x_{2}+x_{3}\right] \frac{1}{2} \\
& =[2+2+2] \frac{1}{2}=3
\end{aligned}
$$

H. Use Gaussian Elimination to Solve the following coyrtem :

$$
\begin{aligned}
& x+2 y+z=8 \\
& 3 x+4 y+2 z=17 \\
& 6 y-20=-5 x-z
\end{aligned}
$$

Answer

$$
\begin{aligned}
& x=1 \\
& y=2 \\
& z=3
\end{aligned}
$$

(five) N32
Numerical Methods for solving Differential Equation
An intial value problem cosists of a diff evential equation and a condition, the solution must satisfy that condition The intial problem considered here is the form

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

(1) Euler Method

This method is the easiest method to solve the differential Equation. Its formlu reads

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

where $x_{n+1}=x_{n}+h$ and h is the step size.

Example. Use Euler's method to obtain an proximate solution of the following diff nation

$$
y^{\prime}=x^{2}+4 x-\frac{1}{2} y
$$

at $x=.25, y(0)=4$ and $h=.05$

Solution

$$
\begin{aligned}
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right) \\
& =4+(.05)\left[(0)+4(0)-\frac{1}{2}(4)\right]=\text { 3-9 } \\
x_{n+1} & =x_{n}+h \rightarrow x_{1}=x_{0}+\cdots 5=. .05 \\
y_{2} & =y_{1}+h\left[x_{1}^{2}+4 x_{1}-\frac{1}{2} y_{1}\right] \\
& =3-9+(.05)\left[(.05)^{2}+4(.05)-\frac{1}{2}(3)\right. \\
& =3.8126 \\
x_{2} & =x_{1}+h=.05+.05=.1 \\
y_{3} & =3.812+(.05)\left[(.1)^{2}+4(.1)-\frac{1}{2}(3 .\right. \\
& =3.7377 \\
x_{3} & =x_{2}+h=.1+.05=.15 \\
y_{4} & =3.6753 \\
x_{4} & =x_{3}+h=.15+.05=.2 \\
y & =3-62
\end{aligned}
$$

Example

- Use Euler method for the I.V.P $y^{\prime}=x y$ with $y(0)=1, h=-2$ (compute y,

Solution.

$$
\begin{aligned}
& y^{\prime}=f(x, y)=x, y \\
& y_{0}=1, x_{0}=0, h=.2 \\
& y_{n+1}=y_{n}+h\left(x_{n}, y_{n}\right) \\
& y_{1}=y_{0}+h\left(x_{0} y_{0}\right) \\
& =1+.2(0 \times 1) \Rightarrow y_{1}=1 \\
& x_{1}=x_{0}+h=0+.2=.2 \\
& y_{2}=y_{1}+h\left(x_{1} y_{1}\right)=1+.2(.2)(1)=1.04 \\
& x_{2}=x_{1}+h=.2+.2=.4 \\
& y_{3}=1.04+.2(.4 \times 1.04)=1.123 \\
& x_{3}=.4+.2=.6 \\
& y_{4}=1.1232+.2(.6)(1.123) \\
& =1.2580
\end{aligned}
$$

Example
\qquad A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 k . Assuming heat is lost only due 6 radiation, the differential equation for the temperature of the ball is given by

$$
\begin{gathered}
\frac{d v}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right) \\
\theta(0)=1200 \mathrm{k}
\end{gathered}
$$

Where θ is in K and t in seconds. Find the temperature at $t=480$ seconds using
Euler method. Assume a step size of $h=240$ seconds.

Solution

$$
\begin{aligned}
& \text { dion } \frac{d \theta}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10\right) \\
& f(t, \theta)=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10\right)
\end{aligned}
$$

by Euler methad

$$
\theta_{i+1}=\theta_{i}+f\left(t_{i}, \theta_{i}\right) h
$$

For $i=0, t_{0}=0, \theta_{0}=1200$

$$
\begin{aligned}
& \theta_{1}=\theta_{1}+h f\left(t_{0}, \theta_{0}\right) \\
&=1200+240 f(0,1200) \\
&=1200+240\left(-2.2067 \times 10^{-12}\left(1200^{4}-81 \times 10\right)\right) \\
&=1200-(4.5579) \times 240=106.09 \mathrm{k} \\
& t_{1}=t_{0}+h=240+0=240 \\
& \theta_{1}=\theta(240) \simeq 106.09 \mathrm{k} \\
& L_{\text {et }} \quad i=1, t_{1}=240, \theta_{1}=106.09 \mathrm{k} \\
& \theta_{2}=\theta_{1}+f\left(t_{1}, \theta_{1}\right) \mathrm{h} \\
&=106.09+f(240,106.09) \times 240 \\
&=106.09+\left(-2.2067 \times 10^{-12}(106.09-81 \times 101) \times\right. \\
&=106.09+10.017595) \times 240=110.32 \mathrm{k}
\end{aligned}
$$

$$
t_{2}=t_{1}+h=240+240=480
$$

$\theta_{2}=\theta(480) \sim 110.32 \mathrm{~K}$

Fig. Comparing the exad solution and Euler method.
H.W: Use Euler method to solve the I-v.

$$
y^{\prime}=1+y, y(0)=1, h=0.1 \text { at } x=0.5
$$

Solution: $y_{1}=1.2, y_{2}=1.42, y_{3}=1.662$

$$
y_{4}=1.9282
$$

Interpolation
The formula of Lagrange Inter polation is:

$$
\begin{aligned}
y & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+1 \\
& \frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}^{+}+2^{\prime} \\
& +\frac{\left(x-x_{1}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{0}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)}
\end{aligned}
$$

Example
: Find the value of y at $x=0$ given some set of values $(-2, j), 5),(i, 7),(3,11)$,

$$
(7,34) ?
$$

Solution
: The known values are:

$$
x=0, x_{0}=-2, x_{2}=3, x_{3}=7, y_{0}=5, y_{1}=7, y_{2}=11, y_{3}=3 .
$$

Using the interpolation formula.

$$
\begin{aligned}
y & =\frac{(0-1)(0-3)(0-7)}{(-2-1)(-2-3)(-2-7)} \times 5+\frac{(0+2)(0-3)(0-7)}{(1+2)(1-3)(1-7)} \times 7+ \\
& =\frac{77}{27} \times \frac{(0+2)(0-1)(0-7)}{(3+2)(3-1)(3-7} \times 11+\frac{(0+2)(0-1)(0-3)}{(7+2)(7-1)(7-3)} \times 34 \\
& +\frac{21}{27}+\frac{49}{6}+\frac{-77}{20}+\frac{51}{54}=\frac{1087}{180}
\end{aligned}
$$

Example
Find the value of y at $x=0$ given some set of values $(-2,6),(1,10),(3,12),(7,35)$?

Solution
The known values are

$$
\begin{aligned}
& x=0, x_{0}=-2, x_{1}=1, x_{2}=3, x_{3}=7, y_{0}=6 \\
& y_{1}=10, y_{2}=12, y_{3}=35 \\
& y=\frac{(0-1)(0-3)(2-7)}{(-2-1)(-2-3)(-2-7)} \times 6+\frac{(0+2)(0-3)(0-7)}{(1+2)(1-3)(1-7)} \times 10 \\
& +\frac{(0+2)(0-1)(0-7)}{(3+2)(3-1)(3-7)} \times 12+\frac{(0+2)(0-1)(0-3)}{(7+2)(7-1)(7-3)} \times 35 \\
& y=\frac{14}{15}+\frac{35}{3}+\frac{-21}{5}+\frac{35}{36}
\end{aligned}
$$

-xample
Find the value of y at $x=0$ fiver some set of values $(-2,6),(1,10),(3,12),(7,35)$?

Solution
The known values are

$$
\begin{aligned}
& x=0, x_{0}=-2, x_{1}=1, x_{2}=3, x_{3}=7, y_{0}=6 \\
& y_{1}=10, y_{2}=12, y_{3}=35 \\
& y=\frac{(0-1)(0-3)(2-7)}{(-2-1)(-2-3)(-2-7)} \times 6+\frac{(0+2)(0-3)(0-7)}{(1+2)(1-3)(1-7)} \times 10 \\
& +\frac{(0+2)(0-1)(0-7)}{(3+2)(3-1)(3-7)} \times 12+\frac{(0+2)(0-1)(0-3)}{(7+2)(7-1)(7-3)} \times 35 \\
& y=\frac{14}{15}+\frac{35}{3}+\frac{-2}{5}+\frac{35}{36}
\end{aligned}
$$

Least Square Method
The method of least square gives a wa: to find the best estimate, Using the following formula:

1) $\hat{Y}=a+b x$
2) $b=\frac{n \sum X Y-\sum X \sum Y}{n \sum x^{2}-\left(\sum X\right)^{2}}$
3) $a=\bar{Y}-b \bar{x}$

$$
a j e l
$$

$$
(\varepsilon+i)^{2} \ll
$$

$$
\begin{aligned}
& 2 x_{i}^{y} \\
& x_{0} y_{0} x_{i} x_{1} x^{\prime \prime} \\
& \sum x_{i}=x_{0}+x_{1} x_{2} \\
& 2+x^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \sum x_{i}=x_{0}^{2} \\
& \sum x_{i}^{2}, \cdot x_{p}^{2}+x_{i}^{+\cdots}
\end{aligned}
$$

example data using Least square method
$\begin{array}{llllllll}\times 1985 & 1986 \quad 1987 \quad 1988 & 1989 & 1990 & 1991 & 1992\end{array}$ $\begin{array}{llllllll}40 & 33 & 29 & 25 & 21 & 32 & 40 & 45\end{array}$ 1994 40
$n \div 10$

Solution

Now,

$$
\begin{aligned}
& \bar{x}=\frac{55}{10}=5.5 \\
& \bar{Y}=\frac{346}{10}=34.6 \\
& \Sigma x y=1999 \\
& \Sigma x^{2}=385
\end{aligned}
$$

$u \sin g$

$$
\begin{aligned}
b & =\frac{n\left(\sum X Y\right)-\sum X \sum Y}{n \sum x^{2}-\left(\sum X\right)^{2}} \\
& =\frac{10(1999)-55 \times 346}{10(385)-155)^{2}} \\
& =\frac{19990-19030}{3850-3025}=\frac{960}{825} \\
& =1.16
\end{aligned}
$$

and

$$
\begin{aligned}
a & =\bar{Y}-b \bar{X} \\
& =34.6-1.16(5.5) \\
& =28.22 \\
\therefore & \hat{Y}=28.22+1.16 X
\end{aligned}
$$

$$
=7-\left(\frac{1}{2}\right)(2)-0
$$

Example
Find Yे using LSM,

$\frac{x}{1}$	$\frac{y}{1}$	$\frac{x^{2}}{1}$	$\frac{x y}{1}$
3	2	9	6
4	4	16	16
6	4	36	24
8	5	64	40
9	7	81	63
11	8	121	88
$\frac{14}{7}$	$\frac{9}{85}$	$\frac{196}{2}$	$\frac{126}{2 x y}=$
Now,			

$$
\begin{aligned}
& \sum X=56, \sum Y=40, \sum X^{2}=524, \sum X Y=364 \\
& b=\frac{8(364)-(56)(40)}{8(524)-(56)^{2}}=\frac{7}{11} \simeq 0.636 \\
& \bar{X}=\frac{56}{8}=7, \bar{Y}=\frac{40}{8}=5 \\
& a=\bar{Y}-b \bar{X}=5-\frac{7}{11}(7)=0.545 \\
& \hat{Y}=0.545+0.636 x \\
& =t-\left(\frac{1}{2}\right)
\end{aligned}
$$

HeW
Find an equation of least square line fittir the following data?

1945	98.2
1946	92.3
1947	80.0
1948	89.1
1949	83.5
1950	68.9
1951	69.2
1952	67.1
1953	58.3
1954	61.2

Interpolation

- Newton forward difference

Consider the function value $\left(x_{i}, f_{i}\right), i=0,-, 5$, then the forward Difference Table is
set of ordered paives

$$
\begin{aligned}
& x_{i} f_{i} \Delta f_{i} \quad \Delta^{2} f_{i} \quad \Delta^{3} f_{i} \quad \Delta^{4} f_{i} \\
& x_{0}^{x_{0}} f_{0} \Delta f_{0}=f_{1}-f_{0} \\
& \text { a) } x_{2} f_{2} \Delta f_{1}=f_{2}-f_{1} \\
& \Delta^{2} f_{0}=\Delta f_{1}-\Delta f_{0} \\
& \Delta^{3} f_{0}=\Delta^{2} f_{1}-\Delta^{2} f_{0} \\
& \Delta f_{0}^{4}=\Delta^{3} f_{1}^{3}-\Delta f \\
& \Delta f_{1}^{2}=\Delta f_{2}-\Delta f_{1} \\
& \Delta^{3} f_{1}=\Delta^{2} f_{2}-\Delta^{2} f_{1} \\
& \Delta S_{1}^{4}=\Delta_{2}^{f}-\Delta^{3} \\
& \Delta^{3} f_{2}=\Delta^{2} f_{3}-\Delta^{2} f_{1} \\
& \text { of } \begin{array}{ll}
x_{4} f_{4} \quad \Delta f_{3}=f_{4}-f_{3} \quad \Delta f_{2}=\Delta f_{3} \Delta f_{2} \\
\Delta f & =f_{4}-f_{4}
\end{array} \quad \Delta f_{3}=\Delta f_{4}-\Delta f_{3}
\end{aligned}
$$

forward i; L^{\prime}

$$
\Delta^{5} f_{0}=\Delta^{4} f_{1}-\Delta^{4} f_{0}
$$

Then, the $n^{\text {th }}$ degree poly nominal approximat For $f(x)$ is $f(x) \approx f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\cdots \frac{r(r-1)-(r-n}{n!}$ $+\frac{r(r-1)(r-2)}{3!} \Delta^{3} \rho+\frac{r(r-1)(r-3) r i}{4!} n^{n} f$

Example
: If $f(x)$ is known at the following data points:

$$
\left.\begin{array}{cccccc}
x_{i} & 0 & 1 & 2 & 3 & 4 \\
f_{i} & 1 & 7 & 23 & 55 & 109
\end{array}\right\}
$$

Then find f(05) using Newton's forward difference formula:

Solution

- Forward Difference Table:

$$
\frac{x_{i} \quad f_{i} \quad \Delta f_{i} \Delta^{2} t_{i} \Delta^{3} f_{i} \Delta^{4} f_{i}}{0}
$$

$$
\begin{array}{cccc}
23 & 32 & 22 & 64 \\
109 & 5 a^{2}
\end{array}
$$

Then, By Newton's for ward difference

$$
f(x)=f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\frac{r(r-1)(r-2)}{3!} \Delta^{3} f_{c}
$$

at $\left.x=05, r=\frac{x-x_{0}}{h}\right\} D 6$

$$
\begin{aligned}
& =\frac{0.5-0}{1}=0.5=\gamma \\
f(0.5) & =1+(0.5)(6)+\frac{(0.5)(0.5-1) \times 10}{2}+ \\
& \frac{0.5(0.5-1)(0.5-2) \times 6}{6} \\
& =11-3+2.5(-0.5)+(-0.25)(-1.5)=3.125
\end{aligned}
$$

HeW Estimate $f(1.5)$ for the data in the last example?

- Newton - Gregory backward difference formula :

The following polynomial is called th Newton -Gregory backward difference form

$$
\begin{aligned}
& f(x) \simeq f_{n}+s \triangleleft f_{n}+\frac{s(s+1)}{2!} \Delta^{2} f_{n}+\cdots+ \\
& \frac{s(s+1)(s+2) \cdots(s+n-1)}{n!} \nabla^{n} f_{n} \Delta \text { back } \Delta \text {-mari) } \\
& \text { forward }
\end{aligned}
$$

where $s=\frac{x-x_{n}}{h}$

$$
e^{g^{1 s^{\prime}}} p^{\left.d x^{c}\right\rangle}
$$

(61)

$$
\begin{aligned}
& =0.97943+(-3.5)(0.09)+\frac{(-3.5)(-3-5+1)}{2!}(-0.0039) \\
& +\frac{(-3.5)(-35+1)(-35+2)}{3!}(-0.00035) t \\
& \frac{(-35)(-35+1)(-3.5+2)+(-3.5+3)}{4!}(0.001211) \\
& =0.97943-0315-0.01706+0.000765625 \\
& +0.0003986=0.14847
\end{aligned}
$$

HF
Example $f(4.12)$ using Newton-Gregory backward deference interpolation polynomial

$$
\left.\begin{array}{llllllllllll}
i & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 1 & 1 & x_{i} & f_{i} \\
f_{i} & \sigma^{2} f \\
x_{i} & 0 & 1 & 2 & 3 & 4 & 5 & 1 & 2 & 1 & 1
\end{array}\right)
$$

solution

$$
\begin{aligned}
& \therefore \quad x_{n}=5, \quad x=4.12, h=1 \\
& \therefore \quad \frac{x-x_{n}}{h}=\frac{4.12-5}{1}=-0.88
\end{aligned}
$$

Newton Backward Difference polynomia $P_{5}(x)$ is given by:

$$
\begin{aligned}
& (x) \approx f_{5}+s \nabla f_{5}+\frac{s(s+1)}{2!} \nabla^{2} f_{5}+\frac{s(s+1)(s+2}{3!} \\
& +\frac{s(s+1)(s+2)(s+2)}{4!} \sqrt{4}^{4} f_{5}+\frac{s(s+1)(s+2)(s+}{s!} \\
& \text { spf of } \frac{5(5-1) \nabla^{2} f}{2!} \nabla^{5} f_{5} \\
& =32+(-0.88) 16+\frac{(-0.88)(-0.88+1)}{5-2} 2+ \\
& \frac{\begin{array}{c}
5-1 \\
(-0.88)(-0.88+1)(-0.88+2) \\
5-2 \\
\hline
\end{array}(4)+\nabla^{3} \rho}{6} \\
& \frac{(-0.88)(-0.88+1)(-0.88+2)(-0.88+3)}{2434!}+ \\
& \frac{(-0.88)(-0.88+1)(-0.88+2)(-0.88+3)+(-0)}{120}
\end{aligned}
$$

$$
\begin{aligned}
& =32-14.08-0.4224-0.07885-0.0209-0.2 \\
& =17.39135
\end{aligned}
$$

1. Formula \& Examples

Formula
Newton's Forward Difference formula

$$
p=\frac{\rho^{2} x-x_{0}}{h}
$$

Examples

1. Find Solution using Newton's Forward Difference formula

x	$f(x)$
1891	46
1901	66
1911	81
1921	93
1931	101

$$
x=1895
$$

Solution:
The value of table for x and y

\mathbf{x}	1891	1901	1911	1921	1931
\mathbf{y}	46	66	81	93	101

Newton's forward difference interpolation formula is

$$
\begin{aligned}
& y(x)=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \cdot \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \cdot \Delta^{3} y_{0}+\frac{p(p-1)(p-2)(p-3)}{4!} \cdot \Delta^{4} y_{0} \\
& y(1895)=46+0.4 \times 20+\frac{0.4(0.4-1)}{2} \times-5+\frac{0.4(0.4-1)(0.4-2)}{6} \times 2+\frac{0.4(0.4-1)(0.4-2)(0.4-3)}{24} \times-3 \\
& y(1895)=46+8+0.6+0.128+0.1248 \\
& y(1895)=54.8528
\end{aligned}
$$

2. Find Solution using Newton's Forward Difference formula

x	$f(x)$
0	1
1	0
2	1
3	10

$x=-1$
Solution:
The value of table for x and y

\mathbf{x}	0	1	2	3
\mathbf{y}	1	0	1	10

Newton's forward difference interpolation method to find solution
Newton's forward difference table is

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$
0	1			
		-1		
1	0		2	
		1		6
2	1		8	
		9		
3	10			

The value of x at you want to find the $f(x): x=-1$
$h=x_{1}-x_{0}=1-0=1$
$p=\frac{x-x}{h}=\frac{-1-0}{1}=-1$

$$
3!=3 \times 2 \times 1
$$

Newton's forward difference interpolation formula is

$$
\begin{aligned}
& y(x)=y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \cdot \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \cdot \Delta^{3} y_{0} \\
& y(-1)=1+(-1) \times-1+\frac{-1(-1-1)}{2} \times 2+\frac{-1(-1-1)(-1-2)}{6} \times 6 \\
& y(-1)=1+1+2-6 \\
& y(-1)=-2\}
\end{aligned}
$$

Solution of newton's forward interpolation method $y(-1)=-2$

Formula

Newton's Backward Difference formula

Examples

1. Find Solution using Newton's Backward Difference formula

x	$f(x)$
1891	46
1901	66
1911	81
1921	93
1931	101

$x=1925$
Solution:
The value of table for x and y

\mathbf{x}	1891	1901	1911	1921	1931
\mathbf{y}	46	66	81	93	101

The value of x at you want to find the $f(x): x=1925$

$$
\begin{aligned}
& h=x_{1}-x_{0}=1901-1891=10 \\
& p=\frac{x-x_{n}}{h}=\frac{1925-1931}{10}=-0.6
\end{aligned}
$$

$$
h=a n y \operatorname{sncuec} u e
$$

$$
d d t a
$$

Newton's backward difference interpolation formula is

$$
\begin{aligned}
& y(x)=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \cdot \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \cdot \nabla^{3} y_{n}+\frac{p(p+1)(p+2)(p+3)}{4!} \cdot \nabla^{4} y_{n} \\
& y(1925)=101+(-0.6) \times 8+\frac{-0.6(-0.6+1)}{2} \times-4+\frac{-0.6(-0.6+1)(-0.6+2)}{6} \times-1+\frac{-0.6(-0.6+1)(-0.6+2)(-0.6+3)}{24} \times-3 \\
& y(1925)=101-4.8+0.48+0.056+0.1008=46 \times 3 \times 2 \times 4 \times 4
\end{aligned}
$$

2. Find Solution using Newton's Backward Difference formula

x	$f(x)$
0	1
1	0
2	1
3	10

$x=4$

Solution:

The value of table for x and y

\mathbf{x}	0	1	2	3
\mathbf{y}	1	0	1	10

Newton's backward difference interpolation method to find solution
Newton's backward difference table is

\mathbf{x}	\mathbf{y}	$\boldsymbol{\nabla} \boldsymbol{y}$	$\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{y}$	$\boldsymbol{\nabla}^{\mathbf{3}} \boldsymbol{y}$
0	1			
		-1		
$\mathbf{1}$	0		2	
		1		$\mathbf{6}$
2	1		$\mathbf{8}$	
		$\mathbf{9}$		
$\mathbf{3}$	$\mathbf{1 0}$			

The value of x at you want to find the $f(x): x=4$
$h=x_{1}-x_{0}=1-0=1$
$p=\frac{x-x_{n}}{h}=\frac{4-3}{1}=1$

Newton's backward difference interpolation formula is
$y(x)=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \cdot \nabla^{2} y_{n}+\frac{p(p+1)(p+2)}{3!} \cdot \nabla^{3} y_{n}$
$y(4)=10+1 \times 9+\frac{1(1+1)}{2} \times 8+\frac{1(1+1)(1+2)}{6} \times 6$
$y(4)=10+9+8+6$
$y(4)=33$

Solution of newton's backward interpolation method $y(4)=33$

Tylor's Method series method
Consider the one-dimensional I.V.P $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$, wher \}giveh
f is a function of two variables x and y, and $\left(x_{0}, y_{0}\right)$ is a known point the solution curve.
Then we may define: L_{D} 自:

$$
\frac{y\left(x_{0}+h\right)}{\eta_{0}}=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+
$$

where $y^{\prime}=f(x, y) \quad 2!!^{2} 3!=3 \times 2 x$!

$$
\text { where } y^{\prime}=f(x, y)
$$

and so on ther we mely write

$$
\begin{aligned}
& \left.y\left(x_{0}+h\right)=y\left(x_{0}\right)+h f_{+}+\frac{h^{2}}{2!}\left(f_{x}+f_{y}\right)^{\prime}\right)+\frac{h^{3}}{3!} \\
& \left.f_{x x}+2 f_{x y}+f_{y_{y}} y^{\prime 2}+f_{y} y^{\prime \prime}\right)+0\left(h^{4}\right)
\end{aligned}
$$

order if

Example
-: Solve the intial value problem

$$
f(x, y) \equiv y^{\prime}=-2 x y^{2}, y(0)=1 \text { for } y \text { at } x=1
$$ with step length $\stackrel{0.2}{ }$ using Taylor method of order 4 .

Solution: Given $y^{\prime}=f(x, y)=-2 x y_{x y}^{2} \Rightarrow$

$$
\begin{aligned}
& \left.y^{\prime \prime}=-2^{2}\right)^{2} \\
& y^{\prime \prime}=-2\left[x, y, y+y^{2}\right] \\
& -4 x y\left(-2 x^{2} y y^{\prime \prime}=-2 y^{2}-4 \cdot x y y^{\prime}\right. \\
& y^{\prime \prime}=-4\left[x y^{\prime \prime}+y^{\prime}\left(x y^{\prime}+y\right)\right] \\
& =-2 y^{2}+8 x y^{2} y^{\prime \prime \prime}=-8 y y^{\prime}-4 x y^{\prime 2}-4 x y y^{\prime \prime} \\
& \left(y^{2}\right)^{2} \not y^{\prime \prime} \\
& y^{\prime 2}=-12 y^{\prime 2}-12 y y^{\prime \prime}-12 x y^{\prime} y^{\prime \prime}-4 x y^{\prime \prime \prime} \\
& y^{\prime \prime}=-48 y^{\prime} y^{\prime \prime}-16 y y^{\prime \prime \prime}-12 x\left(y^{\prime \prime}\right)^{2}-16 x y^{\prime} y^{\prime \prime \prime} \\
& -4 x y y^{2}
\end{aligned}
$$

The forth order Taylor's formula is

$$
\begin{aligned}
& y\left(x_{i}+h\right)=y\left(x_{i}\right)+h y^{\prime}\left(x_{i}, y_{i}\right)+h^{2} \frac{y^{\prime \prime}\left(x_{i} y_{i}\right) \mid 2}{2}+ \\
& \frac{h^{3}}{3!} y^{\prime \prime \prime}\left(x_{i}, y_{i}\right)+\frac{h^{4}}{4!} y^{\prime v}\left(x_{i}, y_{i}\right)+\cdots
\end{aligned}
$$

given $x_{0}=0, y=1, h=.2 \Rightarrow$

$$
\begin{aligned}
y^{\prime} & =-2(0)(1)^{2}=0 \\
y^{\prime \prime} & =-2(1)^{2}-4(0)(1)(0)=-2 \\
y^{\prime \prime \prime} & \Rightarrow-8(1)(0)-4(0)(0)^{2}-4(0)(1)(-2)=0 \\
y^{\prime v} & =-12(0)^{2}-12(1)(-2)-12(0)(0)(-2)-4(0)(1)(0) \\
& =24
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}(0.2) & =1+.2(0)+(-2)^{2}(-2) / 2!+0+2^{4}(24)(4! \\
& =0.9615
\end{aligned}
$$

now at $x=0.2$, we have $y=0.9615$

$$
y^{\prime}=-0.3699, y^{\prime \prime}=-1.5648, y^{\prime \prime \prime}=3.9397
$$

and $y^{I V}=11.9953$

$$
\begin{aligned}
& \Rightarrow y(0.4)=1+.2(-.3699)+(-2)^{2}(-1.5648) / 21 \\
& +(.2)^{3}(3.9397) / 3!+(0.2)^{4}(11.9953) / 4!=0.862
\end{aligned}
$$

$$
\begin{aligned}
& y(0.6)-1+0.2(-0.5950)+0.2(-0.6665) / 21 \\
& \quad+0.2^{3}(4.4579) / 31+0.2^{2}(-5.4051) / 41 \\
& =0.7356 \\
& y(0.8)=0.6100 \\
& y(1)=0.5001
\end{aligned}
$$

\therefore at $x=1$ we have $y=0.5001$

Example
Lu : Use Taylor series method to Sind $y(0.1)$ for $y^{\prime}=x-y^{2}, y(0)=1$ correct up to 4 decimal places?
Solution Given $y^{\prime}=x-y^{2}$

$$
\begin{aligned}
& \Rightarrow y^{\prime \prime}=1-2 y y^{\prime} \Rightarrow=102 y\left(x-y^{2}\right) \\
& \Rightarrow y^{\prime \prime \prime}=-2 y y^{\prime \prime}-2 y^{\prime \prime} \quad=1-2 x y+2 y^{3} \\
& y^{v}=-2 y y^{\prime \prime \prime}-6 y^{\prime} y^{\prime \prime}, y^{v}=-186 \\
& \text { at } x=0, y=1 \Rightarrow \\
& y=-2(x y+y) \\
& \begin{array}{l}
+6 y^{2} \cdot y^{\prime}
\end{array}
\end{aligned}
$$

$$
y^{\prime}=-1, \quad y^{\prime \prime}=3, y^{\prime \prime \prime}=-8, y^{\prime 2}=34
$$

The $4^{\text {th }}$ order Taylor's formula is

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+(\overbrace{\left(x-x_{0}\right)}^{h} y^{\prime}\left(x, y y_{0}\right)+\left(x-x_{0}\right)^{2} y^{\prime \prime}\left(x_{0}, y_{0}\right) \mid 2! \\
& +\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}, y_{0}\right)+\frac{\left(x-x_{0}\right)^{4}}{4!} y^{\prime v}\left(x_{0}, y_{0}\right)+\cdots
\end{aligned}
$$

Now

$$
\begin{aligned}
y(.1) & =1-(0.1)+3(0.1)^{2} / 2-4(0.1)^{3} / 3+17(0.1)^{4} / 12 \\
& -31(0.1)^{5} / 20 \\
& =0.9+3(0.1)^{2} 12-4(0.1)^{3} / 3+17(0.1)^{4} / 12-31(0.1)^{5} / 2 \\
& =0.9137+17(0.1)^{4} / 12-31(0.1)^{5} / 20 \\
& =0.9138-31(0.1)^{5} / 20 \\
& =0.9138
\end{aligned}
$$

H.W

Using Taylor series method of order 41 . Solve the I.V.R. $y^{\prime}=\frac{x-y}{2}$ on $[0,3]$ with $y(0)=1$. Compare solutions for

$$
\text { with } y(0)=1 \text {. Compare solutions row } 1 / 4, \frac{1}{2}=f(x, y)=\frac{1}{2}(x-y)
$$

Note The final answers are: $y^{1 \prime}=\frac{1}{2}\left(1-\frac{1}{2}+\frac{-7}{2}\right)$

(2) Simpson SRule:
(46) $\quad y_{1} y_{1} \rightarrow y_{1}$

Here our formula would be

$$
\begin{aligned}
& \text { Area }=\int_{0}^{a} f(x) d x=\frac{h}{3}\left[y_{1}+4 \sum_{i=2,4,6}^{i=n} y_{i}+2 \sum_{i=3,5,7}^{n-1} y_{i}\right. \\
& \left.+y_{n+1}\right]_{i}
\end{aligned}
$$

Example rule with $n=4$?

$$
\text { , } \begin{aligned}
& n=4
\end{aligned} ?
$$

$$
h=\frac{\pi}{2}-0
$$

$$
\begin{aligned}
& \text { Solution } \\
& \pi \frac{\pi}{8} \quad \sin \left(\frac{\pi}{8}\right)=0.38268 \\
& \frac{\pi 1}{8}=^{\prime \prime} \frac{1}{8} \\
& \frac{\pi}{4} \\
& \leftrightarrow y_{2} \\
& a ; s \\
& x \quad \frac{f(x)}{\sin (0)}=y_{i} \\
& \frac{3 \pi}{8} \\
& \sin \left(\frac{3 \pi}{8}\right)=0.92388 \\
& \sin \left(\frac{\pi}{2}\right)=1.0 \\
& \left.\sin y^{h}\right)^{2}-h=\frac{b-a}{n} \Rightarrow \\
& h=\frac{\pi}{8} t \\
& \leftarrow \\
& \sin \left(\frac{\pi}{4}\right)=0.70711 \\
& \frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area }= & \frac{\pi / 8}{3}\left[y_{1}+4\left(y_{2}+y_{4}\right)+2\left(y_{3}\right)+y_{5}\right] \\
= & \frac{\pi}{24}[0+4(0.38268+0.92388) \\
& +2(0.70711)+1] \\
= & 1.001
\end{aligned}
$$

HeW
Evaluate the following integrals using -simp rule
$1-\int_{1}^{3} e^{\cos (x)} d x$, with $n=4$
Answer 1.5826
A. 6

Area :

$$
h_{3}^{4}
$$

Example, Use simpsons rule with $n=6$ to estimate $\int_{a}^{\text {is }} \sqrt{1+x^{3}} d x \cdot$ Compute $\left(y, \ldots, y_{6}\right)$

Solution

$$
n=6 \Rightarrow h=\frac{4-1}{6}=\frac{1}{2}
$$

x

$$
\begin{aligned}
& y^{2} \\
& \sqrt{2} \Rightarrow \sqrt{1+1^{3}}=\sqrt{2} \Rightarrow
\end{aligned}
$$

1.5

$$
\sqrt{1.375} \Rightarrow \sqrt{1+(1.5)^{3}}
$$

(2)

2
2-5
$3 \quad y_{3}$

3
3.5

$$
\overbrace{\sqrt{16.625}}^{\longleftrightarrow} \longleftrightarrow 4
$$

4

$$
\sqrt{65}
$$

Therefore

Therefore

$$
\begin{aligned}
& \int_{1}^{4} \sqrt{1+x^{3}} \simeq \frac{0.5}{3}(\sqrt{2}+4 \sqrt{4.375}+2(3)+4 \sqrt{16.625} \\
& \\
& \quad+2 \sqrt{28}+4 \sqrt{43.875}+\sqrt{65}) \\
& \simeq 12.871
\end{aligned}
$$

