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Syllabus of Electricity and Magnetism

1. Fundamentals of Classical Electromagnetism.
2. Electrostatics:

a) Charges.

b) Electrostatic Force.

¢) Electric Field.

d) Electric Flux.

e) Gausses Law.

f) Electric Potential.

g) Electrostatic Energy.

h) Properties of conductors.
3. Magnetostatics:

a) Magnetic Field.

b) Magnetic Flux.

¢) Electric current and Amperes Low.

d) Faradays Low of Electromagnetic induction.
4. Maxwell equations:

a) Electromagnetic waves and the nature of light.
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Fundamentals of classical electromagnetism

Electromagnetism is a branch of Physics that deals with the electromagnetic force
that occurs between electrically charged particles. The electromagnetic force is one of
the four fundamental forces and exhibits electromagnetic fields such as magnetic fields,
electric fields, and light. It is the basic reason electrons bound to the nucleus and
responsible for the complete structure of the nucleus.

The electromagnetic force is a type of physical interaction that occurs between
electrically charged particles. It acts between charged particles and is the combination
of all magnetic and electrical forces. The electromagnetic force can be attractive or
repulsive.

Before the invention of electromagnetism, people or scientists used to think
electricity and magnetism are two different topics. The view has changed after James
Clerk Maxwell published A Treatise on Electricity and Magnetism in the year 1873.
The publication states that the interaction of positive and negative charges are mediated
by one force. This observation laid a foundation for Electromagnetism.

Electrostatics is the study of electromagnetic phenomena that occur when there
are no moving charges (at rest) —i.e., after a static equilibrium has been established.
Charges reach their equilibrium positions rapidly, because the electric force is extremely

strong.

Electric Charges
Experiments
1- After running a comb through your hair on a dry day you will find that the comb
attracts bits of paper.
2- Certain materials are rubbed together, such as glass rubbed with silk or rubber
with fur, same effect will appear.
3- Another simple experiment is to rub an inflated balloon with wool. The balloon

then adheres to a wall, often for hours.
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Results
When materials behave in this way, they are said to be electrified, or to have
become electrically charged.
¢+ There are two kinds of electric charges: positive and negative.
e Negative charges are the type possessed by electrons.
e Positive charges are the type possessed by protons.
¢+ Charges of the same sign repel one another.

+ Charges with opposite signs attract one another.
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(a) The rubber rod is negatively charged and the glass rod is positively charged. The

two rods will attract.
(b) The rubber rod is negatively charged and the second rubber rod is also negatively
charged. The two rods will repel.
¢+ Electric charge is always conserved in an isolated system.
e For example, charge is not created in the process of rubbing two objects
together.
e The electrification is due to a transfer of charge from one object to

another.
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Conservation of Electric Charges e

1 ron adds nega arge
to the silk and an equal positive
charge is left on the glass rod.

A glass rod is rubbed with silk.

Electrons are transferred from the glass to the silk.

Each electron adds a negative charge to the silk.

An equal positive charge is left on the rod.

The law of conservation of charge states that electric charge can neither be created
nor destroyed. In a closed system, the amount of charge remains the same. When
something changes its charge it doesn't create charge but transfers it.

Quantization of Electric Charges
Quantization of charge means that when we say something has a given charge,
we mean that that is how many times the charge of a single electron it has. Because all
charges are associated with a whole electron, this is possible.
The electric charge is said to be quantized.
= (is the standard symbol used for charge as a variable.
= Electric charge exists as discrete packets.
g=x=Ne Nisaninteger
e is the fundamental unit of charge
= le[=16x10"C
= Electron: q=-e

= Proton: q = +e

The Electrons are Found at
Large Distances from the

The Nucleus of the Nucleus.
Atom contains
Protons and Neutrons

Protons
Relative Charge: +1
Relative Mass: 1

@
e3¢

Neutrons
Relative Charge: 0

Relative Mass: 1 Electrons

Relative Charge: -1
Relative Mass: 1 /1836
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Conductors, Insulators and Semiconductors

Can be classifying materials in terms of the ability of electrons to move through

the material:

Conductors: Electrical conductors are materials in which most of the electrons are free

electrons.

Free electrons are not bound to the atoms.

These electrons can move relatively freely through the material.

Examples of good conductors include copper, aluminum and silver.

When a good conductor is charged in a small region, the charge readily

distributes itself over the entire surface of the material.

Insulators: Electrical insulators are materials in which all of the electrons are bound to

atoms.

These electrons cannot move relatively freely through the material.
Examples of good insulators include glass, rubber and wood.
When a good insulator is charged in a small region, the charge is unable to move

to other regions of the material.

Semiconductors: The electrical properties of semiconductors are somewhere between

those of insulators and conductors.

Examples of semiconductor materials include silicon and germanium.
Semiconductors made from these materials are commonly used in making
electronic chips.

The electrical properties of semiconductors can be changed by the addition of

controlled amounts of certain atoms to the material.
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Charging by Induction
Charging by induction requires no contact with the object inducing the charge.
Assume we start with a neutral metallic sphere.
(a) The sphere has the same number of positive and negative charges.
(b) A charged rubber rod is placed near the sphere.
e [t does not touch the sphere.
e The electrons in the neutral sphere are redistributed.
(c) The sphere is grounded. Some electrons can leave the sphere through the

ground wire.
The neutral sphere has Electrons redistribute when a Some electrons leave the
equal numbers of positive charged rod is brought close. grounded sphere through

the ground wire.

and negative charges.
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(d) The ground wire is removed.
e There will now be more positive charges.
e The charges are not uniformly distributed.
e The positive charge has been induced in the sphere.
(e) The rod is removed.
e The electrons remaining on the sphere redistribute themselves.
e There is still a net positive charge on the sphere.
e The charge is now uniformly distributed.

¢ Note the rod lost none of its negative charge during this process.

The remaining electrons

The excess positive charge is
redistribute uniformly, and there

nonuniformly distributed. . . R .
- is a net uniform distribution of
positive charge on the sphere.
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Coulomb’s Law

Charles Coulomb (1736-1806) measured the magnitudes of the electric forces

between charged objects using the torsion balance, which he invented. Consider a

system of two point charges, g; and g, separated by a distance r in vacuum.

He found the force depended on the charges and the distance
between them. The electric force between two stationary charged
particles:

e |s inversely proportional to the square of the separation r

between the particles and directed along the line joining
them.
Feoc1/r?
e |s proportional to the product of the charges g; and g, on the
two particles.
Fe Q1 Qp
e |s attractive if the charges are of opposite sign and
repulsive if the charges have the same sign.

e |saconservative force.

Coulomb’s Law, Equation

|

Where k. is the Coulomb constant
= k.= 1/(4re,) =9 x 10° N.m%/C?
Where &, is the permittivity of free space
= ¢ =8.8542 x 10" C*/ N.m’

——— Suspension
. head

. —Fiber

Sl
L J

e

Coulomb’s torsion balance,
used to establish the inverse-
square law for the electric
force between two charges.

= The smallest unit of charge known in nature is the charge on an electron or

proton, which has an absolute value of
= e=1.602x10"C
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= 1 C of charge is approximately equal to the charge of 6.24 x 10 electrons or
protons.
= The force is a vector quantity.

Charge and Mass of Electron, Proton and Neutron

Particle Charge (C) Mass (kg)

Electron (e) -1.602 176 5 X 107 9.109 4 X 10731
Proton (p) +1.602 176 5 X 10719 1.672 62 X 10727
Neutron (n) 0 1.674 93 X 10727

= The electron and proton are identical in the magnitude of their charge, but
very different in mass.
= The proton and the neutron are similar in mass, but very different in charge.

Example 1: The Hydrogen Atom

The electron and proton of a hydrogen atom are separated by a distance of
approximately 5.3 x 10™ m. Find the magnitudes of the electric force and the
gravitational force between the two particles.

Solution: From Coulomb’s law, we find that the attractive electric force has the

magnitude:
q=-16x10"°C and q=+1.6x10"C
e/ o N-m?\ (1.60 x 1071 C)? _ 8
Fo= ke = (899 10025 ) GasToTmyr = 82X10°N

Using Newton’s law of gravitation, we find that the gravitational force has the
magnitude

m My,
2

F. .= G
£ r

= (6_7 X 1{)—11N'_mg-) . (9.11 x 10731 kg) (1.67 x 10-27 kg)
kg“ J (5.3 % 101! m)2

= 36X 107N

Theratio F./Fy=~2x10%.
Thus, the gravitational force between charged atomic particles is negligible when

compared with the electric force.
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Vector Nature of Electric Forces
When dealing with Coulomb’s law, you must remember that force is a vector
quantity. Thus, the law expressed in vector form for the electric force exerted by a

charge g, on a second charge q, , written Fy, , is

F]:,_} = .-lipiq]qg f'

2
7

Where " is a unit vector directed from g, to g, ,-/\ /Eﬂ
e Electrical forces obey Newton’s Third Law: the force on ( i ;J
g, is equal in magnitude and opposite in direction to the + {
force on g, / n
B B Fa (a)
F,, = -F; _)
e The like charges produce a repulsive force between them . ) / 72
e With like signs for the charges, the product q.0, is positive /"/ ‘iz
and the force is repulsive. 4 .
o (b)

Two point charges are separated by a distance r.

e The unlike charges produce an attractive force between
them.
e With unlike signs for the charges, the product q.qg, is

negative and the force is attractive.

e When more than two charges are present, the force between any pair of them is
given by Equation 2. Therefore, the resultant force on any one of them equals the
vector sum of the forces exerted by the various individual charges. For example,
if four charges are present, then the resultant force exerted by particles 2, 3, and 4

on particle 1 is
F,=Fg + Fgz + Fyy
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Example 2: Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in
Figure, where q; = g3 = 5uC, g, = -2uC, and a = 0.10 m. Find the resultant force exerted
on Qs.
Solution: The force exerted by q; on gz is Fy3. The force exerted by g, on gz is Fys. The

resultant force F; exerted on Qs is the vector sum Fy=Fy3 + Fy3.

The magnitude of Fy3 is y
— g | q3 e Fog
Fog = k,—=120 (D a B f
23 ¥ a-‘l l]l‘:g 1\‘_/). \ 5
/ o N-m?\ (2.0 X 107°C) (5.0 x 107°C) B
= (8.99 x 10— ) . y
C (0.10 m) //
=9.0N a /;
/N 2a
Note that because gs; and g, have opposite signs,
Fos 1S tO the left. n G }

The magnitude of the force exerted by g, on g3 is

71l g5/

F 5 = kr’- iy C
13 (V2a)2

[ .m2 Y (5.0 X 10°5C) (5.0 x 10~
=[8.99><10(-’ N 1:‘[ ) (5.0 10 C}(DOE 107" C)
C 2(0.10 m)

= 11N
The repulsive force F13 makes an angle of 45° with the x axis. Therefore, the x and y
components of Fy3 are equal, with magnitude given by F;3 cos 45° = 7.9 N.

Fi3 = F13 €05 45° =7.9 N.

Fisy = F135in 45° = 7.9 N.

Foy=Fyax+ Fasy =7.9N+(9.0N)=-1.1 N

Fsy=Fy3y + Fpsy =7.9N+0=7.9 N

We can also express the resultant force acting on g3 in unit-vector form as

Fs= (—11i+79)N

The angle that the force makes with the positive x-axis is
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¢ =tan” (’%) = 98°

Example 3:

Three point charges are in a straight line. Their charges are Q,=+2x107°C,
Q,=+1x10"° C and Q;=—3x10° C. The distance between Q; and Q, is 2x107% m and the
distance between Q,and Q3 is 4x1072 m. What is the net electrostatic force on Q. due to

the other two charges?

+2 = 10°% C +1 = 10 % C —3 =< 107 C
(Ql fgz c;’.‘i
L L] -
2= 102 m 4 = 1072 m

Solution:
Force on Q, due to Q:
Q:1Q

2

=k

(2 x 1079)(1 x 107?)
(2 x 1072)2

(2 x 1079)(1 x 107?)
(4 x 107%)

= (9,0 x 10%)

— (9,0 x 10%)

=45x10°N
Force on Q, due to Qs:
B — sz?a
T

(1x107%)(3 x 107?)
(4 x 1072)2

(1 x107%)(3x 1079
(16 x 1074)

= (9,0 x 107)

= (9,0 x 10%)

=1,69 x 10°° N

** \Vector addition of forces
The force between Q; and Q, is repulsive (like charges). This means that it pushes Q, to
the right, or in the positive direction.

The force between Q, and Qs is attractive (unlike charges) and pulls Q; to the right.
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1 Q2 1 . (3
® —— ®
£

Therefore both forces are acting in the positive direction. Therefore,

Fr=45x10°"N+1,69 x 10°° N
—6,19x10° N
The resultant force acting on Q, is 6,19x10™ N to the right.
Example 4:
Three point charges form a right-angled triangle. Their charges are Q.= 4 nC, Q,=
6 nC and Q;= —3 nC. The distance between Q; and Q, is 5x10 2 m and the distance
between Q; and Q; is 3x10% m. What is the net electrostatic force on Q, due to the

other two charges if they are arranged as shown?

® . _ 3nC

3 <102 m

Q, = +4 nC Q@2 = +6 nC
L o

5 x 102 m

Solution:

The magnitude of the force exerted by Q, on Qq, which we will call F, is:

Q1Q2

2

=k

(4 x 1079)(6 x 1079)
(5 x 1072)2

(4 x 1072)(6 x 1079)
(25 x 10~%)

— (9,0 x 107)

— (9,0 x 10%)

— 8,630 x 10° N

The magnitude of the force exerted by Q3 on Q, which we will call F3, is:
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Py — le?s

™

(4 x 1079)(3 x 1079)
(3 x 102)2

(4 x 1079)(3 x 1079)
(9 x 107%)

= (9,0 x 107)

= (9,0 x 107)

=1,199 x 100* N

** \/ector addition of forces

s = -3 nC

QQ = +6 nC

** Resultant force
The magnitude of the resultant force acting on Q; can be calculated from the forces

using Pythagoras' theorem because there are only two forces and they act in the x- and
y-directions:

F2 = F} + F?by Pythagoras’ theorem

Fr = /(8,630 x 107°)2 + (1,199 x 10~)?
Fpr=148 x107* N

and the angle, 8z made with the x-axis can be found using trigonometry.

y-component

ta.n(HR) =
X-component
1,199 x 104
tan(fp) = —
(Or) 8,630 x 10>
1,199 x 10—*
fr — tan (=2
B (8,630 <105

fr = 54,25" to 2 decimal places

The final resultant force acting on Q; is 1,48x10~* N acting at an angle of 54,25° to

the negative x-axis or 125,75°to the positive x-axis.
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Problem 1: For the charge configuration shown, calculate the resultant force on Q; if:

¢ Q1=23x1077C

¢ Q=4 x107°C r ra
¢ Q3=33x107C o o o
¢ 11=25x 10" ' m

e 19=37x 102 m

Problem 2: Calculate the resultant force on Q; given this charge configuration:

Qs = +3 nC
L ]
b
0,04 m
Q2 = +1 nC
I )1 = +2 nC
[ ] ! [ ]

0,07 m

Problem 3: Calculate the resultant force on Q, given this charge configuration:

¢ = +8 nC 005 m Qs = +3 nC
. - ®

0,03 m

s =-2nC @

Problem 4: For the charge configuration shown, calculate the charge on Qs if the
resultant force on Q, is 6,3x10 ™" N to the right and:

e Q1=436 x 10°° C

. Q2=—? x 1077 C T ro

e 71=1,85 x 10 ' m S, 3, 3.
o 719=4,7 x 102 m
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Problem 1: For the charge configuration shown, calculate the resultant force on Q, if:

¢ Q1=23x107C

¢ Qo=4x107°C r1 r

¢ Q3=33x107C o o o
e r=25x10"1m

e 19=37x102m

Solution:

We first calculate the force of Q; on Q.. Note that for this force we must add r, and

k1@
-—
(9,0 x 10%)(2,3 x 1077)(4 x 1079)

 (3,7x 102 +25 x 1071)2
—1,00x10°'N

And then we calculate the force on Q, from Qs:

Fy— kQ:ﬂQz
(9,0 x 10%)(4 x 1079)(3,3 x 1077)
(3,7 x1072)2
— 8,67TN

Next we note that the force of Qs on Q, is repulsive and the force of Q; on Q; is
also repulsive. So these two forces act in the same direction (towards the right). The

resultant force is:

Fop=Faq + Feo
—867N+0,1N
= 8,77 N to the right.
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Problem 2: Calculate the resultant force on Q; given this charge configuration:

)3 = +3 nC
[ ]

d

0,04 m

Q2=+1 nC
f )1 = +2 nC
p4 1

0,07 m

Solution:

We first calculate the force on Q, from Q:

kQ1 Qo
r2
(9,0 x 10%)(1 x 107°)(2 x 1079)
(0,07)2
=37x10°N

F, =

And then we calculate the force of Q; on Qq:
P erlin
(9,0 x 10%)(3 x 107?)(2 x 1079)
(0,04)2
=34x10°N

The magnitude of the resultant force acting on Q; can be calculated from the forces
using Pythagoras' theorem because there are only two forces and they act in the x- and

y-directions:
F2—F2+F}

Fp = /(3,7 x 107°) + (3,4 x 10~5)2
—342x10° N
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We can find the angle using trigonometry:

tanfp — y-component

r-component
_ 342x107°
~ 37x10°°
=9,2432. ..
fr = 83,8°

The final resultant force acting on Q; is 3,42x107> N acting at an angle of 83,8° to

the negative x-axis.

Problem 3: Calculate the resultant force exerted on Q, given this charge configuration:

@1 :."’B nC 0,05 m

Q:-; = -2 nC L

Solution:

We first calculate the force on Q, from Q:

F - kﬁf:fz
(9,0 x 10%)(8 x 107?)(3 x 1077)
B (0,05)2
—8,63x10°N

And then we calculate the force of Q; on Qy:

k
F— Q22Q3
' 5

_ (9,0 x 10%)(3 x 107?)(2 x 1079)

(0,03)2
=599 x 10°° N

Qg == +3 I'IC

0,03 m
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The magnitude of the resultant force acting on Q, can be calculated from the forces
using Pythagoras' theorem because there are only two forces and they act in the x- and

y-directions:
F2=F2+F}
Fr = /(8,63 x 10°)% + (5,99 x 10°)’
—=1,06 x 10°*N

We can find the angle using trigonometry:

y-component

tan I‘:';'R =
T-component

~ 599x107°
8,63 x 107°
—0,604...
Op — 34,76°

The final resultant force acting on Q; is 1,05x10~* N acting at an angle of 34,76° to

the positive x-axis.

Problem 4: For the charge configuration shown, calculate the charge on Qs if the

resultant force on Q, is 6,3x10 1 N to the right and:

e Q=436 x 107° C

e Qy=—Tx10°7C r 2

e r1=1,85 x 101 m o Qs Q2
e 79=47 x 102 m

Solution:

We are told that the resultant force is 6,3x10° N to the right. Since the force of Q;
on Q, is attractive, the force of Q; on Q, must be repulsive to cause a resultant force to
the right (if it was also attractive, the resultant force would be to the left). So we know

that Q3 must be negative.
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We first calculate the force on Q, from Q:

(9,0 x10)(4,36 x 10°°)(7 x 1077)
(1,85 x 107! +4,7 x 1072)2
— 051N

Next we use this and the resultant force to find the force on Q, from Q;

Fop=F, +Fyp
Fs=63x10'N—-051N
—0,12N

And then we calculate the charge on Qx:

Fo— kQa0Q3
r2
019 — (9,0 x 10%)(7 x 1077)(Q3)
’ (4,7 x 1072)2

2,6 x 107* = (6,293 x 10*)(Qs)
Qs =42x10°C
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The Electric Field

e  The electric force is a field force.

e Field forces can act through space producing effect even with no physical
contact between interacting objects.

e An electric field is said to exist in the region of space around a charged object.
This charged object is the source charge.

e When another charged object, the test charge, enters this electric field, an
electric force acts on it.

e The electric field is defined as the electric force on the test charge per unit

charge.

The electric field vector E at a point in space is defined as the electric force F

acting on a positive test charge o placed at that point divided by the test charge:

E —

The SI units of E are N/C.

Note that E is the field produced by some charge or charge distribution separate

from the test charge; it is not the field produced by the test charge itself.

Also, note that the existence of an electric field is a property of the source charge;

the presence of the test charge is not necessary for the field to exist.

e The test charge serves as a detector of the field.
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90 |'.-’
@?
P E

Test charge

Source charge

e The direction of E is that of the force on a positive test charge.
e We can also say that an electric field exists at a point if a test charge at that point

experiences an electric force.
Relationship between F and E

Equation 1 can be rearranged as
F =gk )

This equation gives us the force on a charged particle placed in an electric field.
e This is valid for a point charge only.
e  For larger objects, the field may vary over the size of the object.

e |f source charge, q, is positive, the force and the field are in the same direction.

e |f source charge, q, is negative, the force and the field are in opposite directions.

Electric Field Direction

a) If g is positive, then the force on the test charge is directed away from q.

) . 90 —
If ¢1is positive, p F,
the force on ’_,/ -
7

the test charge -
qo 1s directed g t.77

away from ¢. y
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b) The direction of the electric field at P points is also away from the positive

source charge.

For a positive
P

o
source charge, ‘;.,.////;’:

the electric . 7
field at P points g -7
radially outward J

from gq.

c) If gis negative, then the force on the test charge is directed toward g.

q0

If g is negative,
' the force on
P the test charge

q -~ F qo is directed

> 4 ‘ toward gq.

& ,/—d For a negative
%’ source charge,
the electric

q / i field at P points
7 r radially inward
toward gq.

Electric Field, Vector Form

According to Coulomb’s law, the force exerted by source charge g on the test

charge q,, can be expressed as:

F=K4 ?0 7

7

where »"is a unit vector directed from q toward q,.

The electric field at P, the position of the test charge is defined by (E = F. / qo):

E’=Kg—2f~‘ .................... (3)
I



Electricity and Magnetism
Dr. Shurooq Saad Mahmood

Lecturer (2)

Superposition with Electric Fields

At any point P, the total electric field due to a
group of source charges equals the vector sum of the

electric fields of all the charges, can be expressed

2

q T P T

= (2Rt e e )
dre, W "y 1y

Or

Where r; is the distance from the ith source charge g; to the point P (the location of
the test charge) and 7 is a unit vector directed from g; toward point P.
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Example 1:

A charge q; = 7.0 uC is located at the origin, and a second charge g, = -5.0 uC is
located on the x axis, 0.30 m from the origin. Find the electric field at the point P, which
has coordinates (0, 0.40) m.

Solution:

The total electric field E at P equals the vector sum l
E

E.+E,, where E; is the field due to the positive charge q; . E
i
and E, is the field due to the negative charge q,. i
f ;-m2\ (7.0 x 107%C) \
N-m* Y} (7. 'C !
E, = rr,—'f-‘r..—|= (H.H.Li < 100 — ] & ) "
n- 5 - (040 m )~ S
) 0.40 m 5 0L50 m
= 3.9 % 10°N/C
E— gz | (:-; 99 x 109 N-m2 (5.0 % 10-5C) o
e = K 7 — | &.99 X ' - A F 7 .
LN gt . o (0.50 m)* P
- 5 ga
= 1.8 x 10°N/C
The vector E; has only a y component. The vector E,
Es
has an x component given by E, cos & = 3/5 E; and a \E
negative y component given by —E, sin 6 =—4/5 E,. Hence, \oi E,
P——— =3
we can express the vectors as E F?‘*;
2y | WE
= - 0.40 m + 0.50 m
E, = 3.9 X 105 N/C
E, = (1.1 X 1071 — 1.4 X 10°j) N/C P
8/
- 0.30 m d—.\'
0 G2

The resultant field E at P is the superposition of E; and E;:

E=E + E;= (1.1 x10% + 25 X 10°j) N/C

2.5
=tan '(—=)= 66°
@ =tan 1'1) 66
makes with the positive x axis and it has a magnitude

|E|=/(1L1x10°)* +(2.5x10°)* = 2.7 x10°N/C
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Electric Field of a Continuous Charge Distribution
The electric field at P due to one charge element carrying
charge Aq is

&
AE = k,—4 §

¥

The total electric field AE at P due to all elements in the

charge distribution is approximately

E~r3 A

~
Because the charge distribution is modeled as continuous,

the total field at P in the limit Ag; —> 0 is

A " d
E=Fk lim 3 %h=h4 7 ¢

Ag—0 T 1;° re

We illustrate this type of calculation with several examples, in which we assume

the charge is uniformly distributed on a line, on a surface, or throughout a volume.

e |f acharge Q is uniformly distributed throughout a volume V, the volume charge

density p is defined by

&
£ == (Cm’
- (C/m)
e |f a charge Q is uniformly distributed on a surface of area A, the surface charge
density o is defined by

)

o = < (C/m°)
A

e Ifa charge Q is uniformly distributed along a line of length £ , the linear charge

density A is defined by

= — (C/m)
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e |f the charge is non-uniformly distributed over a volume, surface, or line, the

amounts of charge dg in a small volume, surface, or length element are

dg=pdV dg=cdd dg=)dl

Electric Field Lines
They are an imaginary line drawn through a region of space so that, at every point,
it is tangent to the direction of the electric field vector at that point.

The number of lines per unit area through a surface perpendicular to the lines is

proportional to the magnitude of the electric field in that region.
Thus, the field lines are close together where the electric field is strong and far

apart where the field is weak.

The magnitude of the
field is greater on surface

e The density of lines through surface A is greater D suec B
than the density of lines through surface B. /
e The magnitude of the electric field is larger on _= <l
surface A than on surface B. —— -
e The lines at different locations point in different E h BB
directions. A B
e This indicates the field is nonuniform.
The electric field lines for a point charge
a) The electric field lines for a Positive Point Charge
e The field lines radiate outward in all directions. “\\ /f
¢ |n three dimensions, the distribution is spherical. N \ F A
e W \\ //‘" P
e The lines are directed away from the source . \1}3/ 1
charge. /«/’/ f ‘ \ "“‘\_\
» / \‘\\ N\
e A positive test charge would be repelled away // %
from the positive source charge. ! )

(a)
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b) The electric field lines for a Negative Point Charge

The field lines radiate inward in all directions.

In three dimensions, the distribution is spherical.

The lines are directed toward the source charge.

A positive test charge would be attracted toward

the negative source charge.
(b)
The electric field lines for two point charges (an electric dipole)
a) Unlike charges
e The charges are equal and opposite.

e The number of field lines leaving the positive charge equals the number of lines

terminating on the negative charge.
b) Like charges
e The charges are equal and positive.
e The same number of lines leaves each charge since they are equal in magnitude.

e Ata great distance, the field is approximately equal to that of a single charge of 2q.

o
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¢) Unequal Charges

e The positive charge is twice the magnitude of the negative charge.

e Two lines leave the positive charge for each line that terminates on the negative
charge.

e At a great distance, the field would be approximately the same as that due to a

single charge of +q

Motion of Charged Particles in a Uniform Electric Field

When a particle of charge g and mass m is placed in an electric field E, the electric

force exerted on the charge is
F = Q’E = ﬁ?a — g = ﬂ
7

If E is uniform (that is, constant in magnitude and direction), then the acceleration
IS constant.

If the particle has a positive charge, its acceleration is in the direction of the
electric field.

If the particle has a negative charge, its acceleration is in the direction opposite the

electric field.
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Electric Flux

The field lines penetrate a surface of area A, whose plane is oriented perpendicular
to the field; the number of lines per unit area (line density) is proportional to the
magnitude of the electric field, as shown in (Figure 1 a). Therefore, the total number of
lines penetrating the surface is proportional to the product EA is called the electric flux
D

O, =FA (N.m*/C)
If the electric field is uniform and makes an angle 6 with the normal to a surface of

area A, as shown in (Figure 1 b), then the electric flux through the surface is
DO, =FA =FAcos 6

The equations land 2 are showing the flux through a surface of fixed area (A) has

a maximum value EA when the surface is perpendicular to the field, (when the normal

to the surface is parallel to the field, that is, 6= 0°); the flux is zero when the surface is

parallel to the field (when the normal to the surface is perpendicular to the field, that is,

Area =A Normal
A s
\\\ / f; /{
N 4>
§ \§ . 3 ,/ \\‘-
= A3
\
| \ A=Acosd \
%

(@) (b)
Fig 1: The uniform electric field penetrating a plane of area A

a) perpendicular to the field. b) at an angle 0 to the field.
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Consider a general surface divided up into a large number of small elements, each
of area AA (Figure 2 a). The electric field E; at the location of this element makes an

angle 0; with the vector AA;. The electric flux Ade through this element is

O, =FEAAd cos@=E, . A4
From the definition of the scalar product of two vectors

:fiﬁ = AB cos 6

In general, the electric flux through a surface is

The (Figure 2 b) shows that a net flux through the surface is proportional to the net
number of lines leaving the surface, where the net number means the number leaving
the surface minus the number entering the surface. If more lines are leaving than

entering, the net flux is positive. If more lines are entering than leaving, the net flux is

negative; we can write the net flux ¢g through a closed surface as

©, =§F, dd, ={E,dA

(@) (b)
Fig 2: @) The electric field makes an angle 0; with a small element of surface area AA;.
b) The flux through an area element can be positive (element 1), zero (element 2) and

negative (element 3).
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Example 1: Flux Through a Sphere

What is the electric flux through a sphere that has a radius of 1.00 m and carries a
charge of +1.00 uC at its center ?
Solution:

The magnitude of the electric field 1.00 m from this charge is given by Equation

E=h-L = (899 x 10°N-m2/c?) L X 10 C
r (1.00 m)
= 8.99 X 10° N/C

The field points radially outward and is therefore everywhere perpendicular to the
surface of the sphere. The flux through the sphere (whose surface area A = 4xnr® = 12.6

m?) is thus
dp = EA = (8.99 X 10° N/C)(12.6 m?)
= 1.13 X 10°N-m2/C

Example 2: Flux Through a Cube

Consider a uniform electric field E oriented in the x direction. Find the net electric
flux through the surface of a cube of edges ¢, oriented as shown in Figure
Solution:

The net flux is the sum of the fluxes through all faces of the cube.

The net flux through faces 1 and 2 is

)

{I]E:j E-d.A+j E-dA ]dAﬂ/@
1 9

For Face 1 — iy, ¥
ko S —
E is constant and directed inward but dA; "'-;-
. . ¢ /// \
is directed outward (6=180°); thus, the flux ®/ dA,
through this face is g . \ R

j E-dA = j E(cos 1807)dA
1

1
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= —Ej dA = — FA = — E¢?
1

because the area of each face is A = (2.
For Face 2

E is constant and outward and in the same direction as dA, (6=0°); hence, the flux
through this face is

j E-dA = j E(cos 0°)dA = Ej dA = + EA = E{€*
2 2 2

For Faces (3, 4, and the unnumbered ones):
@ = 0 because E is perpendicular to dA on these faces.

Therefore, the net flux over all six faces is
Op=—F2+E2+0+0+0+0= 0

Gauss’s Law

It describes a general relationship between the net electric flux through a closed
surface (often called a Gaussian surface) and the charge enclosed by the surface.

Let us consider a positive point charge g located at the center of a sphere of radius

r, as shown in (Figure 3 a). The net flux through the gaussian surface is

D, =$ E.dd = § Ed4 = E{ dA4

gz . K —
I Ame

where FE =K and 4 =Ajg _rz

0

o, =KL (ax:+?)

2

F

©, = 9 4x; @, =D
Ame, ¥ Ep
— {'_

®, =fEdd=""

&

where qi, represents the net charge inside the surface and E represents the electric
field at any point on the surface.
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Gauss’s law says that the net electric flux through any closed gaussian surface is
equal to the net charge qi, inside the surface divided by g,. The net electric flux is
independent of the shape of that surface as shown in the following (Figure 3 b), When
closed surfaces of various shapes surrounding a charge q, the net electric flux is the
same through all surfaces. If a point charge located outside a closed surface, the number
of lines entering the surface equals the number leaving the surface (see Figure 3 c), this

means the net electric flux through a closed surface that surrounds no charge is zero.

_Gaussian X £ S;

\ & surface S,
\ Sp
\' 1A q
\ o d! — L
‘+—_{f"? LLE.I. e q
q E Y -
(@) (b) (c)

Fig 3: a) spherical gaussian surface of radius r surrounding a point charge g. b) Closed
surfaces of various shapes surrounding a charge g. ¢) A point charge located outside a

closed surface.

S

As example: The net flux through surface S is o o
J:/€o in the Figure 4. G

The net flux through surface S' is (g, + qz)/eo,
and the net flux through surface S" is zero.

Charge q, does not contribute to the flux q; ¢
through any surface because it is outside all
surfaces. §”

Fig 4. The net electric flux through any closed surface depends only on the charge

inside that surface.
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Note: The net electric flux through any closed surface depends only on the
charge inside that surface.
The electric field due to many charges is the vector sum of the electric fields

produced by the individual charges.
§ E.dA :f(El +Ey+......). dA

Application of Gauss’s Law to Various Charge Distributions

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry.

The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over the
surface.
2. The dot product of E.dA can be expressed as a simple product E dA because E and
dA are parallel.
3. The dot product is zero because E and dA are perpendicular.
4. The field can be argued to be zero over the surface.
Example 3: The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to an isolated point
charge q.

Solution:

A single charge represents the simplest possible charge distribution, and we use
this familiar case to show how to solve for the electric field with Gauss’s law. We
choose a spherical gaussian surface of radius r centered on the point charge, as shown in
Figure. The electric field due to a positive point charge is directed radially outward by
symmetry and is therefore normal to the surface at every point. Thus, as in condition

(2), E is parallel to dA at each point. Therefore, E . dA = E dA and Gauss’s law gives

{Imf.;zéE-dAzéﬂfmzi
" . =
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By symmetry, E is constant everywhere on the surface, which satisfies condition

(1), so it can be removed from the integral. Therefore,

-~ -

C# EdA = ff:c;D dA = E(4m?) = -1
. ’ €0
where we have used the fact that the surface area of a sphere is 4xr®. Now, we

solve for the electric field:

. q
EFE=——""—F= &k
"—j:'.}']'l‘_f{}}"2 “

This is the familiar electric field due to a point charge that we developed from

Coulomb’s law.

Gaussian

x / surface

» E%’(IA _
q E

Fig 5: The point charge q is at the center of the spherical gaussian surface, and E is
parallel to dA at every point on the surface.
Example 4: A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density p and
carries a total positive charge Q (Fig 6).

(a) Calculate the magnitude of the electric field at a point outside the sphere.
Solution:

Because the charge distribution is spherically symmetric, we again select a
spherical gaussian surface of radius r, concentric with the sphere, as shown in (Fig 6 a).
For this choice, conditions (1) and (2) are satisfied, as they were for the point charge in

Example 3. Following the line of reasoning given in Example 3, we find that

0
E= k, ;22' (for r = a)
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Note that this result is identical to the one we obtained for a point charge.
Therefore, we conclude that, for a uniformly charged sphere, the field in the region
external to the sphere is equivalent to that of a point charge located at the center of the

sphere.

P Gaussian
sph ere

: . Gaussian
N sphere
(a) (b)

Fig 5: A uniformly charged insulating sphere of radius a and total charge Q. (a) The
magnitude of the electric field at a point exterior to the sphere is k. Q /r %. (b) The
magnitude of the electric field inside the insulating sphere is due only to the charge

within the gaussian sphere defined by the dashed circle and is k. Q r /a°.

(b) Find the magnitude of the electric field at a point inside the sphere.
Solution:

In this case we select a spherical gaussian surface having radius r < a, concentric
with the insulated sphere (Fig. 6 b). Let us denote the volume of this smaller sphere by
V'. To apply Gauss’s law in this situation, it is important to recognize that the charge q;,
within the Gaussian surface of volume V' is less than Q. To calculate g;, , we use the

fact that g, = pV'
in — P Vi = p{;_':w?j}

By symmetry, the magnitude of the electric field is constant everywhere on the
spherical gaussian surface and is normal to the surface at each point—both conditions

(1) and (2) are satisfied. Therefore, Gauss’s law in the region r < a gives
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o~ -~

ifJffdA = If.‘#) dA = E(4mr?) = Lo
. . €)
Solving for E gives
E Gin p%'m“q p
1, — o — - — = ¥
4?TE{}?"’-] =‘Hn5”-:r2 ey

Because

p=Q/3ma’

by definition and since
k.= 1/(4mep),

this expression for E can be written as

EZ%Z %r (for r << a)
Note that this result for E differs from the one we obtained in part (a). It shows that
E — 0 asr — 0. Therefore, the result eliminates the problem that would exist at r = 0 if
E varied as 1/r % inside the sphere as it does outside the sphere. That is, if E co 1/r > for r
< a, the field would be infinite at r = 0, which is physically impossible. Note also that
the expressions for parts (a) and (b) match when r = a.

A plot of E versus r is shown in Figure 6.

/

|
|
|
|
|
|
|
|
|
|
|
|
|
1
s

Fig 6: A plot of E versus r for a uniformly charged insulating sphere. The electric field
inside the sphere (r < a) varies linearly with r. The field outside the sphere (r > a) is the

same as that of a point charge Q located at r = 0.
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Example 5: The Electric Field Due to a Thin Spherical Shell
A thin spherical shell of radius a has a total charge Q distributed uniformly over its
surface (Fig. 7 a). Find the electric field at points (a) outside and (b) inside the shell.
Solution:
a) When gaussian surface of radius r > a as (Fig. 7 b), the charge inside this
surface is Q. Therefore, the field at a point outside the shell is equivalent to that
due to a point charge Q located at the center:

EZkQ

e 9 (for r = a)
r

a) The electric field inside the spherical shell is zero (E = 0). This follows from
Gauss’s law applied to a spherical surface of radius r < a concentric with the
shell as (Fig. 7 c). Because of the spherical symmetry of the charge distribution
and because the net charge inside the surface is zero—satisfaction of conditions
(1) and (2) again—application of Gauss’s law shows that E = 0 in the region r <

a.

Gaussian Gaussian
sphere sphere

(@) (b) (c)
Fig. 7 (a) The electric field inside a uniformly charged spherical shell is zero.
(b) Gaussian surface forr > a ¢) Gaussian surface forr < a.
Example 6: A Cylindrically Symmetric Charge Distribution
Find the electric field a distance r from a line of positive charge of infinite length

and constant charge per unit length A (Fig. 8 a).
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Solution:
The symmetry of the charge distribution requires that E be perpendicular to the

line charge and directed outward, (see following Fig 8 (a) and (b)).

Gaussian
surface

+
i |

(a) (b)
Fig. 8: (a) An infinite line of charge surrounded by a cylindrical gaussian surface
concentric with the line. (b) An end view shows that the electric field at the cylindrical

surface is constant in magnitude and perpendicular to the surface.

The total charge inside our gaussian surface is A¢. Applying Gauss’s law and

conditions (1) and (2), we find that for the curved surface

-~

\ . . {in AL
Op=QE-dA=E]dA=FA=-1n =22

€\ €

The area of the curved surface is A = 21t r 7, therefore,

] _ Al
E2mrl) = —
€)
A
E= = 2k —
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Electric Flux

The field lines penetrate a surface of area A, whose plane is oriented perpendicular
to the field; the number of lines per unit area (line density) is proportional to the
magnitude of the electric field, as shown in (Figure 1 a). Therefore, the total number of
lines penetrating the surface is proportional to the product EA is called the electric flux
D

O, =FA (N.m*/C)
If the electric field is uniform and makes an angle 6 with the normal to a surface of

area A, as shown in (Figure 1 b), then the electric flux through the surface is
DO, =FA =FAcos 6

The equations land 2 are showing the flux through a surface of fixed area (A) has

a maximum value EA when the surface is perpendicular to the field, (when the normal

to the surface is parallel to the field, that is, 6= 0°); the flux is zero when the surface is
parallel to the field (when the normal to the surface is perpendicular to the field, that is,
0= 90°).

Area = A
—
\\
\\\ \\

(@) (b)
Fig 1: The uniform electric field penetrating a plane of area A

a) perpendicular to the field. b) at an angle 0 to the field.
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Consider a general surface divided up into a large number of small elements, each
of area AA (Figure 2 a). The electric field E; at the location of this element makes an

angle 0; with the vector AA;. The electric flux Ade through this element is

O, =FEAA 00;5'49=E; . A—A;

In general, the electric flux through a surface is
O, = lim > E . Ad,=[E . di,

The (Figure 2 b) shows that a net flux through the surface is proportional to the net
number of lines leaving the surface, where the net number means the number leaving
the surface minus the number entering the surface. If more lines are leaving than

entering, the net flux is positive. If more lines are entering than leaving, the net flux is

negative; we can write the net flux ¢g through a closed surface as

—{ E,.d4, = § E,dA

(a) (b)
Fig 2: @) The electric field makes an angle 0; with a small element of surface area AA;.
b) The flux through an area element can be positive (element 1), zero (element 2) and

negative (element 3).
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Example 1: Flux Through a Sphere

What is the electric flux through a sphere that has a radius of 1.00 m and carries a
charge of +1.00 uC at its center ?
Solution:

The magnitude of the electric field 1.00 m from this charge is given by Equation

E=h-L = (899 x 10°N-m2/c?) L X 10 C
r (1.00 m)
= 8.99 X 10° N/C

The field points radially outward and is therefore everywhere perpendicular to the
surface of the sphere. The flux through the sphere (whose surface area A = 4xnr® = 12.6

m?) is thus
dp = EA = (8.99 X 10° N/C)(12.6 m?)
= 1.13 X 10°N-m2/C

Example 2: Flux Through a Cube

Consider a uniform electric field E oriented in the x direction. Find the net electric
flux through the surface of a cube of edges ¢, oriented as shown in Figure
Solution:

The net flux is the sum of the fluxes through all faces of the cube.

The net flux through faces 1 and 2 is

{[:-E:jE-dA—FJ-E-dA /IdAs/[?D
1 2

For Face 1 iy - 4 . F
T
E is constant and directed inward but dA; ""jgf ::
L el E’Ns
is directed outward (6=180°); thus, the flux @/ dA,
< /7:‘ 4\,\'

through this face is o

j E-dA = j E(cos 1807)dA
1

1



Electricity and Magnetism
Dr. Shurooq Saad Mahmood
Lecturer (3)

= —Ej dA = — FA = — E¢?
1

because the area of each face is A = (2.
For Face 2

E is constant and outward and in the same direction as dA, (6=0°); hence, the flux
through this face is

j E-dA = j E(cos 0°)dA = Ej dA = + EA = E{€*
2 2 2

For Faces (3, 4, and the unnumbered ones):
@ = 0 because E is perpendicular to dA on these faces.

Therefore, the net flux over all six faces is
Op=—F2+E2+0+0+0+0= 0

Gauss’s Law

It describes a general relationship between the net electric flux through a closed
surface (often called a Gaussian surface) and the charge enclosed by the surface.

Let us consider a positive point charge g located at the center of a sphere of radius

r, as shown in (Figure 3 a). The net flux through the gaussian surface is

D, =$ E.dd = § Ed4 = E{ dA4

gz . K —
I Ame

where FE =K and 4 =Ajg _rz

0

o, =KL (ax:+?)

2

F

©, = 9 4x; @, =D
Ame, ¥ Ep
— {'_

®, =fEdd=""

&

where qi, represents the net charge inside the surface and E represents the electric
field at any point on the surface.
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Gauss’s law says that the net electric flux through any closed gaussian surface is
equal to the net charge qi, inside the surface divided by g,. The net electric flux is
independent of the shape of that surface as shown in the following (Figure 3 b), When
closed surfaces of various shapes surrounding a charge q, the net electric flux is the
same through all surfaces. If a point charge located outside a closed surface, the number
of lines entering the surface equals the number leaving the surface (see Figure 3 c), this

means the net electric flux through a closed surface that surrounds no charge is zero.

Gaussian g / A
\ surface O3 F B
So P -
r \ / /,////,,.-/’///,,
('\9__‘);—-» \7<§: *\if .y
1 E / \ \‘\:\\\\\ ”\“\\\\ )
\ S -
\\\ \\
N
(a) (b) ©

Fig 3: a) spherical gaussian surface of radius r surrounding a point charge g. b) Closed
surfaces of various shapes surrounding a charge g. ¢) A point charge located outside a

closed surface.

As example: The net flux through surface S is s o 79
Q1/e in the Figure 4. ‘I.l

The net flux through surface S' is (g, + qz)/eo,
and the net flux through surface S" is zero.

Charge g4 does not contribute to the flux q.s. ¢
through any surface because it is outside all
surfaces. §”

Fig 4: The net electric flux through any closed surface depends only on the charge

inside that surface.



Electricity and Magnetism
Dr. Shurooq Saad Mahmood
Lecturer (3)

Note: The net electric flux through any closed surface depends only on the
charge inside that surface.
The electric field due to many charges is the vector sum of the electric fields

produced by the individual charges.

fEdi=§(E+E,+......). d4

Application of Gauss’s Law
As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry.
The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:
1. The value of the electric field can be argued by symmetry to be constant over the
surface.
2. The dot product of E.dA can be expressed as a simple product E dA because E and
dA are parallel.
3. The dot product is zero because E and dA are perpendicular.

4. The field can be argued to be zero over the surface.

Example 3: The Electric Field Due to a Point Charge
Starting with Gauss’s law, calculate the electric field due to an isolated point charge g.

Solution: o
. _ surf:
A single charge represents the simplest '\ e
. .- . . r
possible charge distribution, and we use this \
S dA
familiar case to show how to solve for the q\/ )BL_’E

electric field with Gauss’s law. We choose

a spherical gaussian surface of radius r

. ) Fig 5: The point charge ¢ s at the center of
centered on the point charge, as shown in

the spherical gaussian surface, and E is
(Figure 5). parallel to A at every point on the surface.
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The electric field due to a positive point charge is directed radially outward by

symmetry and is therefore normal to the surface at every point. Thus, as in condition
(2), E is parallel to dA at each point. Therefore, E . dA = E dA and Gauss’s law gives:

{Im;.;=4>E-dA=4>E¢4=—?
" « ()

€

By symmetry, E is constant everywhere on the surface, which satisfies condition

(1), so it can be removed from the integral. Therefore,

o~ -

C;D EdA = EC{D dA = E(4mr?) = —-
. ’ €0
where we have used the surface area of a sphere is 4zr.

Now, we solve for the electric field:

E= Lﬂ = ke
daeqr r

This is the electric field due to a point charge that we developed from Coulomb’s
law.
Example 4: A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density p and
carries a total positive charge Q (Figure 6).

(a) Calculate the magnitude of the electric field at a point outside the sphere.
Solution:

Because the charge distribution is spherically symmetric, we again select a
spherical gaussian surface of radius r, concentric with the sphere, as shown in (Figure 6
a). For this choice, conditions (1) and (2) are satisfied, as they were for the point

charge in Example 3. We find that:

E= k,—5 (for r = a)

Note that this result is identical to the one we obtained for a point charge.
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Therefore, we conclude that, for a uniformly charged sphere, the field in the

region external to the sphere is equivalent to that of a point charge located at the center

of the sphere.

l'. \
' o
| 7
. | / r
\
N\
~

Gaussian

' £ sphere

‘\‘ /
\
N 2P /\ s
b, " ¥
~N ~ .
R g Gaussian

sphere

(a) (b)

Fig 6: A uniformly charged insulating sphere of radius a and total charge Q. (a) The
magnitude of the electric field at a point exterior to the sphere is ke Q /r 2. (b) The
magnitude of the electric field inside the insulating sphere is due only to the charge

within the gaussian sphere defined by the dashed circle and is k. Q r /a°.

(b) Find the magnitude of the electric field at a point inside the sphere.
Solution:

In this case we select a spherical gaussian surface having radius r < a, concentric
with the insulated sphere (Figure 6 b).

Let us denote the volume of this smaller sphere by V'. To apply Gauss’s law in this
situation, it is important to recognize that the charge g;, within the Gaussian surface of
volume V' is less than Q.

To calculate g, , we use the fact that g;, = pV"*
Jin — P Vi = p(%ﬂ—?ﬁ}

By symmetry, the magnitude of the electric field is constant everywhere on the
spherical gaussian surface and is normal to the surface at each point, both conditions
(1) and (2) are satisfied.
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Therefore, Gauss’s law in the region r < a gives

o~ -~

C# EdA = EC#) dA = E(4mr?) = —i
’ . 0
Solving for E gives
Gin p%?ﬂ“g P
E = 2 = = 2 = r
4".’|‘TE.[].T 4".'|‘TE[}T 3 =]
Because
p = Qf%wa?’

k.= 1/(4men),

this expression for E can be written as

k.
Ezi’"qz —;;!Qr (for r < a)
dmeya a

Note that this result for E differs from the one we obtained in part (a).

Example 5: The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distributed uniformly over its
surface (Figure 7 a). Find the electric field at points (a) outside and (b) inside the shell.
Solution:

Gaussian Gaussian
surface — surface

(a) (b) ©
Fig 7: (a) The electric field inside a uniformly charged spherical shell is zero. The field
outside is the same as that due to a point charge Q located at the center of the shell.

(b) Gaussian surface for r > a. (c) Gaussian surface forr < a.
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a) If we construct a spherical gaussian surface of radius r > a concentric with the
shell (Figure 7 b), the charge inside this surface is Q.
Therefore, the field at a point outside the shell is equivalent to that due to a point
charge Q located at the center:
E= k Q (for r = a)

[:
frg

b) The electric field inside the spherical shell is zero (E = 0).

This follows from Gauss’s law applied to a spherical surface of radius r < a
concentric with the shell as (Figure 7 c).

Because of the spherical symmetry of the charge distribution and because the net
charge inside the surface is zero, satisfaction of conditions (1) and (2), again

application of Gauss’s law shows that E = 0 in the region r < a.

Example 6: A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive charge of infinite length
and constant charge per unit length A (Figure 8 a).
Solution:

The symmetry of the charge distribution requires that E be perpendicular to the
line charge and directed outward, as shown in (Figure 8 (a) and (b)).

To reflect the symmetry of the charge distribution, we select a cylindrical gaussian
surface of radius r and length € that is coaxial with the line charge.

For the curved part of this surface, E is constant in magnitude and perpendicular to
the surface at each point, satisfaction of conditions (1) and (2).

Furthermore« the flux through the ends of the gaussian cylinder is zero because E
is parallel to these surfaces, the first application we have seen of condition (3).

The total charge inside our gaussian surface is Af. Applying Gauss’s law and

conditions (1) and (2), we find that for the curved surface

| I - AL
cIr;.;ziﬁE«dA:E#mA:ﬂa:ﬂz—

€) €)
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Gaussian
surface p—

N ;+ : y

|

1| E
|
:é—s\‘ > >
|

|

|

|

|

|

|

dA

E] |
(a) (b)

Fig 8: (a) An infinite line of charge surrounded by a cylindrical gaussian surface

concentric with the line. (b) An end view shows that the electric field at the cylindrical

surface is constant in magnitude and perpendicular to the surface.

The area of the curved surface is A = 21t r /, therefore,

_ Al
EQ2mrl) = —
€0
A A
E= = 2k,—
2eyr r

Conductors in Electrostatic Equilibrium

A good electrical conductor contains charges (electrons) that are not bound to any
atom and therefore are free to move about within the material.

When there is no net motion of charge within a conductor, the conductor is in
electrostatic equilibrium. A conductor in electrostatic equilibrium has the following
properties:

1. The electric field is zero everywhere inside the conductor.

2. If an isolated conductor carries a charge, the charge resides on its surface.

3. The electric field just outside a charged conductor is perpendicular to the surface of
the conductor and has a magnitude o / g, , where o is the surface charge density at

that point.
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4. On an irregularly shaped conductor, the surface charge density is greatest at

locations where the radius of curvature of the surface is smallest.

Consider a conducting slab in an external field.

If the field inside the conductor were not
zero, free electrons in the conductor would
experience an electrical force.

These electrons would accelerate.

These electrons would not be in equilibrium.
Therefore, there cannot be a field inside the

conductor.

Choose a gaussian surface inside but close to the

actual surface.

The electric field inside is zero.

There is no net flux through the gaussian
surface.

Because the gaussian surface can be as close
to the actual surface as desired, there can be

no charge inside the surface.

Applying Gauss’s law to this surface, we obtain:

Gin

tb,;=§>£¢4:m=—=

€

il

oA

€

where we have used the fact that g, = cA. Solving for E gives

. a
E=—
€

+ —

 —

+
} e—-
 —-
+ —

} —

Gaussian
surface
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1. Potential Difference and Electric Potential

When a test charge q, is placed in an electric field E created by some
other charged object, the electric force acting on the test charge is g, E.
F=qgE
The force q, E is conservative, because the force between charges
described by Coulomb’s law is conservative. If the test charge is moved in
the field by some external agent from point A to point B by a displacement
ds, the work done by the electric field on the charge is equal to the

negative of the work done by the external agent causing the

displacement.

q

@f -

g2
y ¥
X




1. Potential Difference and Electric Potential

For an infinitesimal displacement ds, the work done by the electric

field on the charge is:
W=F.ds = W=q,E.ds
As this amount of work is done by the electric field, the potential

energy of the charge field system is decreased by an amount:

dU =—q,E.ds
The change in potential energy of the system is:

AU=U,-U,



1. Potential Difference and Electric Potential

The potential energy per unit charge U/qois independent of the
value of goand has a value at every point in an electric field. This quantity

U/qois called the electric potential V.

Thus, the electric potential at any point in an electric field is

- ................. 0)

Note: The fact that potential energy U is a scalar quantity means

that electric potential V also is a scalar quantity.



1. Potential Difference and Electric Potential

The potential difference AV = Vg - V, between any two points A and
B in an electric field is defined as the change in potential energy of the

system divided by the test charge q, :

_ ................. 3)

The SI unit of both electric potential and potential difference is

joules J per coulomb C, which is defined as a volt (V):

1V=1J/C



2. Potential Differences in a Uniform Electric Field

Let us calculate the potential difference between two

W

points A and B separated by a distance d, where d is parallel A UT

to the field lines. Equation 3 gives:
d

B B B
Vg— Vy=AV=—]| E-ds=— EcosO°ds=—f E ds \
A A A "
B

Because E is constant, we can remove it from the

Integral sign; this gives: \ \ \ \ \

Fig. 1

The negative sign indicates that the electric potential at point B is
lower than at point A; that is, Vg <V,.
Electric field lines always point in the direction of decreasing electric

potential, as shown in Figure 1.



2. Potential Differences in a Uniform Electric Field

When the electric field E is directed downward as shown in Figure 1, a
point B is at a lower electric potential than point A. When a positive test
charge moves from point A to point B, its loses electric potential energy.

Now suppose that a test charge g, moves from A to B. We can

calculate the change in its potential energy from Equations 3 and 4:

_ ................. (5)

From this result, if g, is positive, then AU is negative. We conclude that
a positive charge loses electric potential energy when it moves in the
direction of the electric field.

While q, Is negative, then AU is positive and the situation is
reversed: A negative charge gains electric potential energy when it

moves in the direction of the electric field.



2. Potential Differences in a Uniform Electric Field

Now consider the more general case of a charged particle that moves

between A and B in a uniform electric field such that the vector s is not

parallel to the field lines, as shown in Figure 2. E

The change in potential energy of the
charge is:

The dot product for S, , o, where =0 Fig. 2: A uniform electric field
Therefore, Vg = V.. directed along the positive x axis.

The name equipotential surface is given to any surface
consisting of a continuous distribution of points having the

same electric potential.



2. Potential Differences in a Uniform Electric Field

Example 1: A battery produces a specified potential difference AV
between conductors attached to the battery terminals. A 12 V
battery is connected between two parallel plates. The
separation between the plates is d = 0.3 cm. Find the
magnitude of the electric field between the plates.

Solution:

_ve—wal _ 12V

E
d 0.30 X 1072 m

= 40X 103V/m




2. Potential Differences in a Uniform Electric Field

Example 2: A proton is released from rest in a uniform electric field that
has a magnitude of 8x104 V/m and is directed along the positive x axis as
shown in Figure 3. The proton undergoes a displacement of 0.5 m in the
direction of E. (A) Find the change in electric potential between points A
and B.

: E
Solution: = > =
Because the proton (carries a positive |+ -
charge) moves in the direction of the field, we |+ -
expect it to move to a position of lower |+ I
electric potential. * v T
VA=0 N
From Equation 4, we have N @Q-————-- o5~
A
AV=—FEd= — (80X 10*V/m)(0.50 m) " }4 d " ~

= —40Xx10*V Fig. 3




2. Potential Differences in a Uniform Electric Field

(B) Find the change in potential energy of the proton for this
displacement.

Solution:
AU= goAV= 1AV
= (1.6 X 10719C)(—4.0 X 10*V)

= —64X1071]

The negative sign means the potential energy of the proton

decreases as the proton moves in the direction of the electric field.

As the proton accelerates in the direction of the field, it gains kinetic

energy and at the same time loses electric potential energy.
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3. Electric Potential and Potential Energy Due to Point Charges

Consider a positive point charge g produces an electric field that is directed radially
outward from the charge (see Figure 4). To find the electric potential at a point located a

distance r from the charge, we begin with the general expression for potential difference:
V,=V,=- ) E .ds
At any point in space, the electric field due to the point charge is:
— q n
E=Fk,—r
AP
Where r” Is a unit vector directed from the charge toward the point.

E.ds=k, L} ds=k, Ldscosb

r r
where 0 is the angle between " and ds.




3. Electric Potential and Potential Energy Due to Point Charges

=k, %dr
r

r tdr
Vy-V,=-[Edr=—k.q =
A

Fa

_ kg |
r |,

rA

1 1
A keq["B - TA]

It is customary to choose the reference of electric potential

for a point charge to be zero (V =0) at r, = .



3. Electric Potential and Potential Energy Due to Point Charges

The electric potential created by a point charge at any distance r from the charge is:

y-_1 4
dre, r

The total electric potential at some point P due to several point charges is:

v, = 1 g, B 1 9,

C4me, 1, 4re, r,
AN S I - +V,=>7,
y=—Yy%




3. Electric Potential and Potential Energy Due to Point Charges

The potential energy U when the two particles are separated by a distance r,, (see Figure 5)

U=k, 112
ri19 92
| R Q
Note that if the charges are of the same sign, U is positive. This Is ne iY
consistent with the fact that positive work must be done by an external O:: \‘?\3
agent on the system to bring the two charges near one another. b \;15“\\‘9
If the charges are of opposite sign, U is negative; this means that Fig. 5

negative work is done by an external agent against on theirs.

If the system consists of more than two charged particles as shown in the Figure 5, then total

potential energy of the system U is:

—_— (q1q2 L D9 qzqs)
‘ 2 rs r2s




3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge g, = 2.00 uC is located at the origin, and a charge g, = - 6.00 pC is located
at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at

the point P, whose coordinates are (4.00, 0) m.

Solution: )
-6.00uC

Vp=k,(ql i f]2) Q

" 7'2
N-m?2 (200X 10°6C  —6.00 X 10-6(:) 3.00
= 8.99 X 109 + o
C2 ( 4.00 m 5.00 m
e f X
= —6.29 X 103V 200uC [ s

Fig. 6 (a)



3. Electric Potential and Potential Energy Due to Point Charges

(b) Find the change in potential energy of the system of two charges plus a charge q; = 3.00 pC

as the latter charge moves from infinity to point P (Figure 6b).

Solution: y
aU =U; - U, ~6.00 uC
When the charge is at infinity, Ui = 0, and when

the charge is at P, U, = g5 Vp; therefore, 3.00 m

e
W

AU = ¢3Vp— 0 = (3.00 X 107%C)(—6.29 X 103V) 2.00 uC 4.00 m

= —189X1073]
Fig. 6 (b)



3. Electric Potential and Potential Energy Due to Point Charges

(c) Find the potential energy of the system of three charges (Fig. 6b).

Solution:

y

U:K(ql Q2+Q1 Q3+Q2 Q3) _5,00#(30

P 3 3
Uz(gxwg)((leo*‘) (6x107)  (2x10°) (3x10) (-6x107) (3x10'6)] 3.00 m
3 4 5

(N .

U~ -5.5x107J 2.00uC | 4.00 m 3.0?;; -

Fig. 6 (b)



4. Obtaining the value of the electric field From the electric potential

We can express the potential difference dV between two points a distance ds apart as:

dV= —E-ds

If the electric field has only one component E, , then E.ds = E, dx. Therefore, above Equation

mesdV =-E r
becomes d L dx, 0 v

Cdx

E,=

That is, the x component of the electric field is equal to the negative of the derivative of the
electric potential with respect to x. Similar statements can be made about the y and z components.
If the charge distribution creating an electric field has spherical symmetry such that the

volume charge density depends only on the radial distance r, then the electric field is radial.

v

E,=———
' dr



4. Obtaining the value of the electric field From the electric potential

When a test charge undergoes a displacement ds along an equipotential surface, then dV = 0 because

the potential is constant along an equipotential surface.

From Equation 4V = — E-ds

, We see that dV = E.ds = 0; thus, E must be perpendicular to the
displacement along the equipotential surface. This shows that the equipotential surfaces must always be

perpendicular to the electric field lines passing through them. as shown in the (Figure 7).

I | I I I I I
4 . — . —
I | I | | | |
| I | I I | I
| I | | | | ]
| | | I I I I
I | I I I I I
| | | | | | |
I I I | | | |
I | | I | | |
| I | | | | |
| I | I I I I
| I | I I I I
| | | I I I I
I I I | I [ [
I I I | | (R

(@)

E

Fig. 7: Equipotential surfaces (dashed blue lines) and electric field lines (red lines) for (a) a uniform

electric field produced by an infinite sheet of charge, (b) a point charge.
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1. Definition of Capacitance

Consider two conductors carrying charges of equal magnitude and opposite sign. Such a combination

of two conductors is called a capacitor. The conductors are called plates. The quantity of charge Q on a

capacitor is linearly proportional to the potential difference AV between the conductors of the capacitor

Oa AV

The proportionality constant depends on the shape and separation of the conductors. We can write

this relationship as
O =CAV

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either

conductor to the magnitude of the potential difference between the conductors:

The SI unit of capacitance is the farad (F).
IF=1C/V



2. Calculating the capacitance

We can calculate the capacitance for a spherical charged conductor, where the electric

potential of the sphere of radius R is simply k,Q /R

P N
AV k0Q/R  k,

= 411 GOR

C=4rn¢g R

This expression shows that the capacitance of an isolated charged sphere is proportional to

Its radius and is independent of both the charge on the sphere and the potential difference.



The capacitance of a pair of conductors depends on the geometry of the conductors as

following.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure

1. One plate carries a charge + Q, and the other carries a charge -O .

The value of the electric field between two parallel plates is:

=~
0 <
E _ _ Q +0 4/

€ € A

The surface charge density on either plate is &= Q/A

Because the field between the plates is uniform, the / /(

magnitude of the potential difference between the plates equals Area=A
[—

Ed; therefore
] ) d
AV = EFEd= Q .
€A Fig.1




Substituting this result into Equation (1), we find that the capacitance is

_ Q0 _ 0
AV Qd/GoA
C = GoA

d

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates

and inversely proportional to the plate separation.

Example 1: A parallel-plate capacitor has an area A = 2.00 x 10 m?and a plate separation d =
1.00 mm. Find its capacitance.

Solution:

2.00 X 104 1112>

A
,. | m

=177 X 10712F = 1.77 pF
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1. Definition of Capacitance

Consider two conductors carrying charges of equal magnitude and opposite sign. Such a combination

of two conductors is called a capacitor. The conductors are called plates. The quantity of charge Q on a

capacitor is linearly proportional to the potential difference AV between the conductors of the capacitor

Oa AV

The proportionality constant depends on the shape and separation of the conductors. We can write

this relationship as
O =CAV

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either

conductor to the magnitude of the potential difference between the conductors:

The SI unit of capacitance is the farad (F).
IF=1C/V



2. Calculating the capacitance

We can calculate the capacitance for a spherical charged conductor, where the electric

potential of the sphere of radius R is simply k,Q /R

P N
AV k0Q/R  k,

= 411 GOR

C =4rm¢g R

This expression shows that the capacitance of an isolated charged sphere is proportional to

Its radius and is independent of both the charge on the sphere and the potential difference.



The capacitance of a pair of conductors depends on the geometry of the conductors as

following:

1- Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure

1. One plate carries a charge + Q, and the other carries a charge -O .

The value of the electric field between two parallel plates is:

=~
ag <
E _ _ Q +0 4/

€ € A

The surface charge density on either plate is &= Q/A

Because the field between the plates is uniform, the / /(

magnitude of the potential difference between the plates equals Area=A
[—

Ed; therefore
] ) d
AV = EFEd= Q .
€A Fig.1




Substituting this result into Equation (1), we find that the capacitance is

_ Q0 _ 0
AV Qd/GoA
C = GoA

d

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates

and inversely proportional to the plate separation.

Example 1: A parallel-plate capacitor has an area A = 2.00 x 10 m?and a plate separation d =
1.00 mm. Find its capacitance.

Solution:

2.00 X 104 1112>

A
,. | m

=177 X 10712F = 1.77 pF



The capacitance of a pair of conductors depends on the geometry of the conductors as

following:

2- The Spherical Capacitor
A spherical capacitor consists of a spherical conducting shell of radius b and charge - Q
concentric with a smaller conducting sphere of radius a and charge + Q (Figure 2). To find the

capacitance:

The field outside a spherically symmetric charge distribution is
radial and given by the expression k, Q / r2.In this case, this result
applies to the field between the spheres (a < r <b).

From Gauss’s law we see that only the inner sphere contributes

to this field. Thus, the potential difference between the spheres is:

b b dr 11]°
Vb_ Va = —J E,d-r= _keQ, —2 o ktei—.]

¥ la Fig. 2




2- The Spherical Capacitor

(5-)
— R\ T

The magnitude of the potential difference is:

the capacitance approaches the value

(b— a)

AV=|V,— V,| = k,Q .
a

Substituting this value for AV into Equation (1), we obtain:

ab
ke(b — a)

Q
C=— =
AV

As the radius b of the outer sphere approaches infinity,

Where b >> a
ab ab a

K (b—a)

C=lim
b—wx




2- The Spherical Capacitor
The capacitance approaches the value
C=4re,a
3- The Cylindrical Capacitor
A solid cylindrical conductor of radius a and charge + Q is coaxial with a cylindrical shell of

negligible thickness, radius b > a, and charge - Q (Figure 3).

H. W.
Find the capacitance of this cylindrical capacitor

If its length is .

Figure 3: (a) A cylindrical capacitor consists of
a solid cylindrical conductor of radius a and
length ¢ surrounded by a coaxial cylindrical
shell of radius b. (b) The dashed line represents
the end of the cylindrical gaussian surface of
radius r and length £.

Gaussian
surface

(a) (b)




3. Combinations of capacitors

1- Parallel Combination

Two capacitors connected as shown in Figure 4 a are known as a parallel combination of
capacitors. Figure 4 b shows a circuit diagram for this combination of capacitors.

The left plates of the capacitors are connected by a conducting wire to the positive terminal
of the battery and are therefore both at the same electric potential as the positive terminal.
Likewise, the right plates are connected to the negative terminal and are therefore both at the

same potential as the negative terminal.

Thus, the individual potential differences across capacitors connected in parallel are all the

same and are equal to the potential difference applied across the combination.




3. Combinations of capacitors
1- Parallel Combination

C,
AV, = AV = AV
[ Tt
[ ]| Ceq=Cl+C2
Q,
12
| ||
Qs
|
+|I— + —
AV AV

(a) (b) (c)

Figure 4: (a) A parallel combination of two capacitors in an electric circuit in which the
potential difference across the battery terminals is AV. (b) The circuit diagram for the parallel
combination. (c) The equivalent capacitance is C,, = C; + C, .



3. Combinations of capacitors
1- Parallel Combination

The total charge Q stored by the two capacitors is:
O=01+ 09 i, (2)

That Is, the total charge on capacitors connected in parallel is the sum of the charges on the

Individual capacitors. Because the voltages across the capacitors are the same, the charges that they

carry are.
Y 0,=C AV  Qy= CyAV

Suppose that we to replace these two capacitors by one equivalent capacitor having a
capacitance C,, , as shown in Figure 4 c. The effect this equivalent capacitor has on the circuit must be
exactly the same as the effect of the combination of the two individual capacitors. That is, the
equivalent capacitor must store Q units of charge when connected to the battery. the voltage across the
equivalent capacitor also is AV because the equivalent capacitor is connected directly across the

ery terminals.



3. Combinations of capacitors
1- Parallel Combination

Thus, for the equivalent capacitor,
Q= CeqAV
Substituting these three relationships for charge into Equation 2, we have
CeqAV = C1AV+ C2 AV

Ceq = C1 + Co (parallel combination)

If we extend this treatment to three or more capacitors connected in parallel, we find the

equivalent capacitance to be
Ceq= C1+ Cg+ Cg + -~ (parallel combination)

Thus, the equivalent capacitance of a parallel combination of capacitors is greater than any of

the individual capacitances.




3. Combinations of capacitors

2- Series Combination
Two capacitors connected as shown in Figure 5 a are known as a series combination of
capacitors. The left plate of capacitor 1 and the right plate of capacitor 2 are connected to the

terminals of a battery. The other two plates are connected to each other and to nothing else.

Figure 5: (a) A series combination of two
capacitors. The charges on the two capacitors
are the same. (b) The capacitors replaced by a
single equivalent capacitor. The equivalent
capacitance can be calculated from the
relationship

(a) (b)



3. Combinations of capacitors
2- Series Combination

Thus, the charges on capacitors connected in series are the same.

From Figure 5 a, we see that the voltage AV across the battery terminals is split between the
two capacitors:
AV=AV; + AVo oo (3)

where AV, and AV, are the potential differences across capacitors C, and C, , respectively. In

general, the total potential difference across any number of capacitors connected in series is the sum

of the potential differences across the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the series
combination. After it is fully charged, the equivalent capacitor must have a charge of - Q on its right
plate and a charge of + Q on its left plate. Applying the definition of capacitance to the circuit in

Figure 5 b, we have 0




3. Combinations of capacitors

2- Series Combination

Because we can apply the expression Q = C AV to each capacitor shown in Figure 5 a, the

potential difference across each is:

AVl =

0 |(‘Q

AV2 — &
Co

Substituting these expressions into Equation 3 and noting that AV = Q /C, , we have

= - (series combination)



3. Combinations of capacitors

Example 2: Find the equivalent capacitance between a and b for the combination of capacitors

shown in Figure 6 a. All capacitances are in microfarads.

Solution:

' 40 -, 2.0

S IS SR VTS TS

\—I 1/ =

- a e _”
T s PR S B . o
LooHH e Br be

\\ﬁ| Ua’ 8.0 4.0

\\.‘_’, .

(a) (b) (c) (d)

Figure 6: To find the equivalent capacitance of the capacitors in part (a), we reduce the
various combinations in steps as indicated in parts (b), (c), and (d), using the series and
parallel rules described in the text.



3. Combinations of capacitors

we reduce the combination step by step as indicated in the figure. The 1.0 uF and 3.0 pF
capacitors are in parallel and combine according to the expression:
Ceqn =Cy+C, =1pF +3 pF =4pF
The 2.0 yF and 6.0 pF capacitors also are in parallel and have an equivalent capacitance of:
Ce2=Cs+Cs =6puF +2 uF =8uF
Thus, the upper branch in Figure 6 b consists of two 4.0 pF capacitors in series, which combine
as follows: 1/Cez=1/C3+1/Coy =1/4+1/4 C,3=2pF
The lower branch in Figure 6 b consists of two 8.0 pF capacitors in series, which combine to
yield an equivalent capacitance of :
1/Cea=1/Cep +1/Cs =1/8+1/8 Ceqy =4 pF

Finally, the 2.0 uF and 4.0 uF capacitors in Figure 6 c are in parallel and thus have an equivalent

itance of Ciota] = Ceq3 + Ceq4 = 2uF + 4uF= 6 uF



4. Electric current

Consider a system of electric charges in motion. Whenever there is a net flow of charge

through some region, a current is said to exist. To define current more precisely, suppose that the
charges are moving perpendicular to a surface of area A, as shown in Figure 7.

The current is the rate at which charge flows through this surface.

If AQ is the amount of charge that passes through this area in a time interval At, the average

current |, is equal to the charge that passes through A per unit time:

A [ O
I-a:v — _Q @ * t‘
At | —_—
If the rate at which charge flows varies in time, \A /_’C")

then the current varies in time; we define the
Figure 7: Charges in motion through an area

instantaneous current | as the differential limit of A The time rate at which charge flows

through the area is defined as the current I.

dQ The direction of the current is the direction in

[=— which positive charges flow when free to do
di sO.

average current:



4. Electric current

The Sl unit of current is the ampere (A):

The charges passing through the surface in Figure 7 can be positive or negative, or both. It is

conventional to assign to the current the same direction as the flow of positive charge.

The direction of the current is opposite the direction of flow of electrons, while the current

the same direction as the flow of positive charge.



4. Electric current

Consider the current in a conductor of cross-sectional area A (Figure 8). The volume of a section
of the conductor of length Ax (the gray region shown in Fig. 8) is A AX. If n represents the number of
mobile charge carriers per unit volume (in other words, the charge carrier density), the number of

carriers in the gray section is nA Ax. Therefore, the charge AQ in this section is

AQ = number of carriers in section x charge per carrier = (nA AX)q

where q is the charge on each carrier.

Figure 8: A section of a uniform conductor of cross- 7 .y
sectional area A. The mobile charge carriers move Q= A

with a speed v, , and the distance they travel in a time
At is AX = v4 At. The number of carriers in the section

of length Ax is nAv, At, where n is the number of
carriers per unit volume. L*”dA‘A’I




4. Electric current

If the carriers move with a speed v, , the distance they move in a time Az is Ax = v, At. Therefore,

we can write AQ in the form
AQ = (nAvzAt)q

If we divide both sides of this equation by At , we see that the average current in the conductor is

AQ
Iy = Tt" = nqugqA

The current density J in the conductor is defined as the current per unit area

4
J = Z=nqud A/m?

Where v Is the drift speed of the charge carriers, we see that current density is in the direction
of charge motion for positive charge carriers and opposite the direction of motion for negative

charge carriers.
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5. Resistance and Ohm’s Law

In Chapter (Gauss’s Law) we found that no electric field can exist inside a conductor.
However, this statement is true only if the conductor is in static equilibrium. This section is describe
what happens when the charges in the conductor are allowed to move.

Charges moving in a conductor produce a current under the action of an electric field. An
electric field can exist in the conductor because the charges in this situation are in motion, that is,
this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The current density J in

the conductor is defined as the current per unit area. Because the current | = NQV4A, the current
density is I

= — = nqu
J A TYa

where J has Sl units of A/m2. This expression is valid only if the current density is uniform

and only if the surface of cross-sectional area A is perpendicular to the direction of the current.



5. Resistance and Ohm’s Law

In general, the current density Is a vector quantity:

J = ngvy
From this equation, we see that current density, like current, is in the direction of charge
motion for positive charge carriers and opposite the direction of motion for negative charge carriers.
A current density J and an electric field E are established in a conductor whenever a
potential difference is maintained across the conductor.
If the potential difference is constant, then the current also is constant. In some materials, the

current density is proportional to the electric field:

J=0E (1)

where the constant of proportionality < is called the conductivity of the conductor.
Materials that obey Equation (1) are said to follow Ohm’s law, named after Georg
Simon Ohm (1787-1854).



5. Resistance and Ohm’s Law

More specifically, Ohms law states that: for many materials (including most metals), the ratio of
the current density to the electric field is a constant ¢ that is independent of the electric field
producing the current.

We can obtain a form of Ohm’s law useful in practical applications by considering a segment of
straight wire of uniform cross-sectional area A and length ¢, as shown in Figure 9. A potential
difference 4V = V, -V, is maintained across the wire, creating in the wire an electric field and a
current. If the field is assumed to be uniform, the potential difference is related to the field through

the relationship
AV =E(

Figure 9: A uniform conductor of length ¢ and cross-
sectional area A. A potential difference 4V =V, -V,
maintained across the conductor sets up an electric
field E, and this field produces a current | that is
proportional to the potential difference.




5. Resistance and Ohm’s Law
Therefore, we can express the magnitude of the current density in the wire as

AV
]=0'E=O'T

Because J = I/A, we can write the potential difference as

4 ¢
AV=—]=—|I
o J ( gA )
The quantity £ / o A is called the resistance R of the conductor. We can define the resistance as

the ratio of the potential difference across a conductor to the current through the conductor:

From this result we see that resistance has Sl units of volts per ampere. One volt per ampere is
defined to be 1 ohm (Q):

1Q



5. Resistance and Ohm’s Law

The inverse of conductivity is resistivity p .

1
p=—
o

where p has the units ohm-meters (€2 . m). We can use this definition and Equation (2) to

express the resistance of a uniform block of material as

¢
=p— i 3
R=p 1 (3)
. be (
6. Electrical Energy And Power Ly R
The rate at which the charge Q loses potential energy ae d
In going through the resistor is
AU AQ
——=—=AV=TAV
At At

Figure 10: A circuit consisting of a resistor of resistance R and a battery
having a potential difference AV across its terminals. Positive charge flows in
the clockwise direction.



6. Electrical Energy And Power

where AU = q AV and | is the current in the circuit.

Thus, the power P, representing the rate at which energy is delivered to the resistor, is

P=IAV (3)

Using Equation 3 and the fact that AV = IR for a resistor, we can express the power delivered to
the resistor in the alternative forms:

P=I2 R — (AIV)2



TABLE (1) Resistivities and Temperature Coefficients of Resistivity for
Various Materials

Resistivity ? Temperature
Material (2 - m) Coefficient o[(°C)™!]
Silver 1.59 X 1078 3.8 X 1073
Copper 1.7 X 1078 3.9 X 1073
Gold 2.44 X 1078 3.4 %X 1073
Aluminum 2.82 X 1078 3.9 x 1073
Tungsten 5.6 X 1078 4.5 %X 1073
Iron 10 X 1078 5.0 X 1073
Platinum 11 X 1078 3.92 x 1073
Lead 22 X 1078 3.9 X 1073
NichromeP 1.50 X 1076 0.4 X 1073
Carbon 3.5 X 1075 —0.5 %X 1073
Germanium 0.46 —48 X 1073
Silicon 640 —75 % 1073
Glass 1019 to0 1014
Hard rubber ~ 1013
Sulfur 1015
Quartz (fused) 75 X 1016

2 All values at 20°C.

P A nickel—chromium alloy commonly used in heating elements.



Example 3: Calculate the resistance of an aluminum cylinder that is 10.0 cm long and has a cross-
sectional area of 2.00 x 10* m2. Repeat the calculation for a cylinder of the same dimensions and
made of glass having a resistivity of 3 x 101°Q . m.

Solution:
From Equation 3 and Table 1, we can calculate the resistance of the aluminum cylinder as

follows:

0.100 m )

L (2.82 X 1078 Q )(
p A 7 m 2.00 X 104 m?2

I~
|

= 141 X 1075Q

Similarly, for glass we find that

¢ 0.100
R=p— = (3.0X1019Q-m) o
A

2.00 X 1074 m?2

= 15X 1013Q



Example 4: (a) Calculate the resistance per unit length of a 22-gauge Nichrome wire, which has a
radius of 0.321 mm.
Solution:

The cross-sectional area of this wire is:

A=m2= 70321 X 103m)%2 =3.24 X 107" m?

The resistivity of Nichrome is 1.5 x 10° QO . m (see Table 1). Thus, we can use Equation 1 to

find the resistance per unit length:

R p 15%X107°Q-m
= = = 460
14 A 3.94 X 10~7 m2 =

(b) If a potential difference of 10 V is maintained across a 1.0 m length of the Nichrome wire, what
IS the current in the wire?

Solution:
AV 10V
I = — — 22 A




Example 5: An electric heater is constructed by applying a potential difference of 120 V to a

Nichrome wire that has a total resistance of 8.00 Q. Find the current carried by the wire and the
power rating of the heater.
Solution:

Because AV = IR, we have

AV 120V
1= R 8000 15.0A

We can find the power rating using the expression

P = I2R = (15.0A)%(8.00Q) = 1.80 kW



7. Resistors in Series and Parallel

In parallel combination

In series combination

R,

Wy
N

ae \M o)
Iy
i
|, AV
+|I—

R, ) Ry
AW
A Vv
|IAV
+]"-

The potential differences across the resistors
are the same.

Vtotal:Vl :VZ

The potential difference applied across the
series combination of resistors will divide
between the resistors.

Vtotal=V 1 +V2




7. Resistors In Series and Parallel

In parallel combination In series combination

The current I that enters point a must equal the | The current results in the same current in the
total current leaving that point. battery as

Liotar = [, +15 Itotal — Ilzlz

The equivalent resistance is The equivalent resistance is

I/Req — 1/R1+1/R2 Req — R1+R2




Example 6: Three resistors are connected in parallel as shown in Figure 11. A potential difference
of 18 V is maintained between points a and b. (a) Find the current in each resistor.
Solution:

The resistors are in parallel, and so the potential difference across each must be 18 V. Applying

the relationship AV = IR to each resistor gives

I
AV 18V —
L =——= = 6.0A &
"R, 300
L
A ISV I )/ I
—RV=600= 3.0 A ll§ ng 31§
2 . I
AV 18V BBV 300l 60Q] 9.00
= = 20A
Rs 9.0 Q) S




Example 6: (b) Calculate the power delivered to each resistor and the total power delivered to the
combination of resistors.
Solution:

We apply the relationship 9 = (AV)2/R 1o each resistor and obtain

_AVE (18V)?

P, = = = 110 W
L' R, 3.0 Q
AV? (18 V)2
Po = = = 54W
T Ry 6.0 Q
AV? (18 V)2
g) pr— pu— pr— W
T Rg 9.0 O 56

This shows that the smallest resistor receives the most power. Summing the three quantities

gives a total power of 200 W.



Example 6: (c) Calculate the equivalent resistance of the circuit.

Solution:

S S S
Rq 300  60Q 900
__ 6 ., 8 2 _ U
18Q 180 180 18Q
18 Q)

Req = = 1.6
3 11 Q
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Magnetostatics and Magnetic Field

Magnetostatics is the subfield of electromagnetics describing a static magnetic fields, it study
of magnetic fields in systems where the currents are steady (not changing with time). It is the
magnetic analogue of electrostatics, where the charges are stationary.

Every magnet, regardless of its shape, has two poles, called north (N) and south (S) poles as
shown in Figure 1. The exert forces on other magnetic poles similar to the way that electric
charges exert forces on one another, where the different magnetic electrodes are attracted to each

other (N - S), while the similar polynomials (N - N or S - S) are repulsion.

1" Bj )

N SN Attract
r~ ™
[ Js .
| 5 N ’ -
Fig 1l Ss {J




Magnetostatics and Magnetic Field

The magnetic field (B) is a vector that has both magnitude and direction. The direction of the

magnetic field at any point in space Is the direction indicated by the north pole of a small compass

needle placed at that point (Figure 2).

The magnetic field B on the test object at some point in space in terms can be determined by a
magnetic force Fethat the field exerts on a charged particle moving with a velocity v. Let us assume
that no electric or gravitational fields are present at the location of the test object. Experiments on
various charged particles moving in a magnetic field give the following results: Fig 2

(Properties of the magnetic force on a charge moving in a magnetic field B) /1—-—*\\\

IS proportional to the charge g and to the speed v of the particle. \((d NB/
» The magnitude and direction of F5 depend on the velocity of the /Q-\ ,,.)\

ticle and on the magnitude and direction of the magnetic field B. ‘ \\ /

« The magnitude Fg of the magnetic force exerted on the particle



Magnetostatics and Magnetic Field

» When a charged particle moves parallel to the magnetic field vector, the magnetic force

acting on the particle is zero.
» When the particle’s velocity vector makes any angle 6 # 0 with the magnetic field, the

magnetic force acts in a direction perpendicular to both v and B; that is, Fg is perpendicular to the

plane formed by v and B (Figure 3a). y
Figure 3: The direction of the magnetic force -
Fg acting on a charged particle moving with a e —
velocity v in the presence of a magnetic field
B. (@) The magnetic force is perpendicular to Fp
both v and B. (b) Oppositely directed
magngtic forces Fg are exerteo_l on two —
oppositely charged particles moving at the e

same velocity in a magnetic field. . o
g

(a) (b)



Magnetostatics and Magnetic Field

» The magnetic force exerted on a positive charge is in the direction opposite the direction of
the magnetic force exerted on a negative charge moving in the same direction (Figure 3b).

» The magnitude of the magnetic force exerted on the moving particle is proportional to sin 6,
where 0 is the angle the particle’s velocity vector makes with the direction of B.

We can summarize these observations by writing the magnetic force in the form
FB — qv X B

The magnitude of the magnetic force on a charged particle is

Fg=|q|vBsin 6

where 0 is the angle between v and B. From this expression, we see that Fg is zero
when v is parallel or antiparallel to B (6 = 0 or 180°) and maximum when Vv Is

perpendicular to B (6 = 90°).




Magnetostatics and Magnetic Field
To determine the direction of the force on a positive charge, we use a righthand rule that helps

us understand the 3D perpendicular nature of magnetic fields.

Figure 4 reviews the right-hand rule for determining the direction of the cross product v x B.
You point the four fingers of your right hand along the direction of v with the palm facing B and curl
them toward B. The extended thumb, which is at a right angle to the fingers, points in the direction of
v x B. Because Fg = g v x B is in the direction of v x B if q is positive (Fig. 4a) and opposite the
direction of v x B if g Is negative (Fig. 4b).

Figure 4: The right-hand rule for determining the
direction of the magnetic force Fg = q v x B acting
on a particle with charge g moving with a velocity
Vv in a magnetic field B.

The direction of v x B is the direction in which the
thumb points. (a) If q is positive, Fg is upward. (b)
If q is negative, Fg is downward, antiparallel to
the direction in which the thumb points.




Magnetostatics and Magnetic Field

Note: When a charge is placed in a magnetic field, it experiences a magnetic force If two
conditions are met:

1. The charge must be moving. No magnetic force acts on a stationary charge.

2. The velocity of the moving charge must have a component that is perpendicular to the
direction of the field.
Unit of Magnetic Field

The SI unit of magnetic field is the newton per coulomb-meter per second, which is called

the tesla (T): |T=—N
C-m/s

Because a coulomb per second is defined to be an ampere, we see that

1 T=1

A-m

A non-SI magnetic-field unit in common use, called the gauss (G), is related to the

tesla through the conversion 1T=10% G.



The properties of magnetic field line

1. The lines originate from the North Pole and end on the South Pole.

2. The magnetic field at any point is tangent to the magnetic field line at that point.

3. The strength of the field is proportional to the number of lines per unit area that passes
through a surface oriented perpendicular to the lines.

4. The magnetic field lines will never come to cross each other.

Figure 5: The magnetic field lines of a bar magnetic



Example 1: An electron in a television picture tube moves toward the front of the tube with a
speed of 8 x 10 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire
that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying
In the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution:

Fg=|q|vBsin 6
= (1.6 X 10717 C) (8.0 X 10° m/s) (0.025 T ) (sin 60°)

28 X 10" 14N

Because v x B is in the positive z direction (from the
righthand rule) and the charge Is negative, Fg Is In the

negative z direction.




Example 1: An electron in a television picture tube moves toward the front of the tube with a

speed of 8 x 10 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire
that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying
In the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution: ,

The mass of the electron is 9.11 x10-3! kg, and so its %

acceleration is /

Fp 28 X 10" 14N
T = = 3.1 X 106 m/s2
“ m, 0.11 x 10731 kg m/s

In the negative z direction.
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The Biot — Savart Law

Jean-Baptiste Biot (1774-1862) and Feélix Savart (1791-1841) performed quantitative
experiments on the force exerted by an electric current on a nearby magnet. From their
experimental results, Biot and Savart arrived at a mathematical expression that gives the magnetic
field at some point in space in terms of the current that produces the field. That expression is
based on the following experimental observations for the magnetic field dB at a point P associated

with a length element ds of a wire carrying a steady current | (Figure 1): B

((Properties of the magnetic field created by an electric current)) /

o i

out

 The vector dB is perpendicular both to ds (which points in
the direction of the current) and to the unit vector r" directed from

ds to P.

Figure 1: The magnetic field dB at point P due to the
current | through a length element ds is given by the
Biot-Savart law.



The Biot — Savart Law

 The magnitude of dB is inversely proportional to r 2, where r is the distance from ds to P.

« The magnitude of dB is proportional to the current and to the magnitude ds of the length
element ds.

« The magnitude of dB is proportional to sin @ where 0 is the angle between the vectors ds

and r”.

dB out , P
/

Figure 1: The magnetic field dB at point P due to the
current | through a length element ds is given by the
Biot—Savart law.




The Biot — Savart Law

These observations are summarized in the mathematical formula known today as the Biot—

Savart law:

Ids X 1
ap—— == (1)

41 r

where p, is a constant called the permeability of free space, and has a value of:

mo =47 X 1077 T-m/A

It is important to note that the field dB in Equation (1) is the field created by the current in only
a small length element ds of the conductor. To find the total magnetic field B created at some point
by a current of finite size, we must sum up contributions from all current elements Ids that make up

the current. The total magnetic field is getting by integral Equation (1):

I | ds X r
lel«of :
491 r




Ampere’s Law

The magnetic field at a distance r from a very long straight wire (Figure 2), carrying a steady

current I (i.e. do not change with time), has a magnitude equal to:

p=tol

and a direction perpendicular to r and I. The closed path integral along a circle centered around

the wire, which is equivalent to the line integral of B . ds, is

I
%B-ds = B#gds = ’2"—0 27 = wol

wr

Where ¢ds = 2qrr Is the circumference of the circular path.

Figure 2 u




Ampere’s Law

The general case, known as Ampere’s law, can be stated as follows:

The line integral of B . ds around any closed path equals g, I, where 1 is the total

continuous current passing through any surface bounded by the closed path.

Note: In order to apply Ampeére’s Law all currents have to be steady (i.e. do not change with

time).



Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to define
electric flux.
D = f E- dA

Consider an element of area dA on an arbitrarily shaped surface, as shown in (Figure 3). If
the magnetic field at this element is B, the magnetic flux through the element is B . dA, where dA
IS a vector that is perpendicular to the surface and has a magnitude equal to the area dA.

Hence, the total magnetic flux ®@g through the surface dAis:
D, = f B - dA
The unit of flux is the T . m2, which is defined as a 9
y
weber (Wb);  1Wb=1T.m?2 ‘
Figure 3: The magnetic flux through an area element dA is

B . dA = BdA cos 6, where dA is a vector perpendicular to the
surface.



Magnetic Flux
Consider the special case of a plane of area A in a uniform field B that makes an angle 0 with

dA. The magnetic flux through the plane in this case is:

®; = BA cos 0

 |If the magnetic field is parallel to the plane, as in Figure 4a, then 6=90° and the flux is zero.

If the magnetic field is perpendicular to the plane, as in Figure 4b, then 6=0 and the flux is BA

(the maximum value). dA
— (A
t = B
- ]

I
(a)

Figure 4: Magnetic flux through a plane lying in a magnetic field.
(@) The flux through the plane is zero when the magnetic field is
parallel to the plane surface.
(b) The flux through the plane is a maximum when the magnetic (b)
field is perpendicular to the plane.



the point P, whose coordinates are (4.00, 0) m.

3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge g, = 2.00 uC is located at the origin, and a charge g, = - 6.00 pC is located

at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at

L B

Solution:
y
Vp = ke( L "2)
r ro -6.00uC
— 800 x 100 N-M? (2.00 X 1076C =600 X 10-6(3) Q
' C? 4.00 m 5.00 m
- —6.29 X 103V s
2 &
< =a*+b O
2.00 uC
e R

4.00 m

Fig. 6 (a)



3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge g, = 2.00 uC is located at the origin, and a charge g, = - 6.00 pC is located

at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at
the point P, whose coordinates are (4.00, 0) m.

Solution:

PYTHAGORAS

— .+ b




Q 1: Consider two charge as shows in Figure with the charge g,= 3.0 nC is located at (0, 2.0) cm, and
separation distance d=4.0 cm from another charge g,= —3.0 nC. Find the total electric potential due to
these charges at the point P whose coordinates are (a) (0, 1.0 cm), (b) (0, 5.0 cm)?

Solution:

y
Vp=Fk (ql + 92)
1'1 1’2 —T= QZE.UHC
(a) P ¢ (0,1.0cm)
f] ~q d=40cm 0 e
Vp =999 x10" A (f_’“o _ 2T C) :Q v
C 0.0lm 003w "
(b) £ @ g=-30nC
-9
q Nm 3 X0 ¢ 3)\\0
X ID o
\/P % q l ( 0-QFWm 0-.-073 W\\) ( §V
P ¢ (0,-5.0cm)




3. Electric Potential and Potential Energy Due to Point Charges

(c) Find the potential energy of the system of three charges (Fig. 6b).

Solution:

y

U:K(ql Q2+Q1 Q3+Q2 Q3) _5,00#(30

P 3 3
Uz(gxwg)((leo*‘) (6x107)  (2x10°) (3x10) (-6x107) (3x10'6)] 3.00 m
3 4 5

(N .

U~ -5.5x107J 2.00uC | 4.00 m 3.0?;; -

Fig. 6 (b)



Q 2: Find the potential energy of the system of three charges (g,=2nC, g,=4nC, g;=6nC) moves from
infinity to the corners of an equilateral triangle of side length 5 cm, where is the magnitude of electric
potential due to these charges of 5.43 x 10% v?

Solution: g Ine

UzK(ql q- + q, 4s " q> Q3) Bew howm

"> A3 73

5cm
To=Unc c‘\?)-“-e"‘c

2 -9 -q -9 a &
=999 5 1p N ((zuo J(uo Y (210 ") (éx10 q)+ (Yx16%y ¢ 6x10°)

F 0.05m O-05m >

O-QH m
YA ey




Example 1: An electron in a television picture tube moves toward the front of the tube with a
speed of 8 x 10 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire
that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying
In the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution:

Fg=|q|vBsin 6
= (1.6 X 10717 C) (8.0 X 10° m/s) (0.025 T ) (sin 60°)

28 X 10" 14N

Because v x B is in the positive z direction (from the
righthand rule) and the charge Is negative, Fg Is In the

negative z direction.




Q 3: Calculate the magnitude of magnetic field when a proton moved perpendicularly (90°) across a
magnetic field with a speed of 7 x 10°> m/s if the exert magnetic force on this proton of 2.5 x 10712 N?

Solution:

N

}:; = }7/'?)0( B sinG” O - A6°
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Q 4: Three resistors are connected in Series-Parallel as shown in (Figure a).
(1) Calculate the equivalent resistance of the circuit.
(2) Find the current drawn from the power supply in the circuit shown in (Figure b).

Solution: 7

[ ]

B ——
R, 380
E . R,
E
25V ! Sl
R, R, 25V :
202 302 Req

(a) Series-Parallel Resistor Circuit (b) Equivalent Series Circuit
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EXAMPLE 26.2  The Cylindrical Capacitor

A solid cylindrical conductor of radius @ and charge Q 1s
coaxial with a cylindrical shell of negligible thickness, radius
b > a, and charge —Q (Fig. 26.5a). Find the capacitance of
this cylindrical capacitor if its length is €.

Solution
configuration, although we can reasonably expect the capaci-

[t 1s difficult to apply physical arguments to this

tance to be proportional to the cylinder length ¢ for the same
reason that parallel-plate capacitance 1s proportional to plate
area: Stored charges have more room i which to be distrib-
uted. If we assume that € is much greater than ¢ and b, we can
neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the
region between them (Fig. 26.5b). We must first calculate the
potential difference between the two cylinders, which is given

b
V,— V, = —f E- ds
il

where E is the electric field in the region a < r < b. In Chap-
ter 24, we showed using Gauss’s law that the magnitude of the

in general by

electric field of a cylindrical charge distribution having linear
charge density A is £, = 2k,A/r (Eq. 24.7). The same result
applies here because, according to Gauss’s law, the charge on
the outer cylinder does not contribute to the electric field in-
side it. Using this result and noting from Figure 26.5b that E
is along r, we find that

b b
d b
V,— V, = —f E, dr= —ng)tf == — 2k ,A 111(—)
i {1 ' (L

Substituting this result into Equation 26.1 and using the fact
that A = Q/{, we obtain

Q Q 4

b
2k, ln(—)
il

where AVis the magnitude of the pﬂtential difference, given

(26.4)

AV 9k,0 ( b)
—‘“‘111 -
{ a

by AV=|V, = V,| = 2k,AIn (b/a), a positive quantity. As
predicted, the capacitance 1s proportuonal to the length of
the cylinders. As we might expect, the capacitance also de-
pends on the radin of the two cylindrical conductors. From
Equaton 26.4, we see that the capacitance per unit length of
a combination of concentric cylindrical conductors is

c__ 1 (26.5)

4 b
2k, ln(—>
4

An example of this type of geometric arrangement is a coaxial
cable, which consists of two concentric cylindrical conductors

separated by an insulator. The cable carries electrical signals
in the mner and outer conductors. Such a geometry is espe-
cially useful for shielding the signals from any possible exter-
nal influences.
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(a) (b)
Figure 26.5

cal conductor of radius @ and length € surrounded by a coaxial cylin-
drical shell of radius 4. (b) End view. The dashed line represents the
end of the cylindrical gaussian surface of radius r and length {.

(a) A cylindrical capacitor consists of a solid cylindri-






