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Fundamentals of classical electromagnetism 

Electromagnetism is a branch of Physics that deals with the electromagnetic force 

that occurs between electrically charged particles. The electromagnetic force is one of 

the four fundamental forces and exhibits electromagnetic fields such as magnetic fields, 

electric fields, and light. It is the basic reason electrons bound to the nucleus and 

responsible for the complete structure of the nucleus. 

The electromagnetic force is a type of physical interaction that occurs between 

electrically charged particles. It acts between charged particles and is the combination 

of all magnetic and electrical forces. The electromagnetic force can be attractive or 

repulsive. 

Before the invention of electromagnetism, people or scientists used to think 

electricity and magnetism are two different topics. The view has changed after James 

Clerk Maxwell published A Treatise on Electricity and Magnetism in the year 1873. 

The publication states that the interaction of positive and negative charges are mediated 

by one force. This observation laid a foundation for Electromagnetism. 

Electrostatics is the study of electromagnetic phenomena that occur when there 

are no moving charges (at rest) —i.e., after a static equilibrium has been established. 

Charges reach their equilibrium positions rapidly, because the electric force is extremely 

strong. 

Electric Charges 

Experiments  

1- After running a comb through your hair on a dry day you will find that the comb 

attracts bits of paper.  

2- Certain materials are rubbed together, such as glass rubbed with silk or rubber 

with fur, same effect will appear.  

3- Another simple experiment is to rub an inflated balloon with wool. The balloon 

then adheres to a wall, often for hours.  

 

 

https://byjus.com/physics/electricity-and-magnetism/
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Results  

When materials behave in this way, they are said to be electrified, or to have 

become electrically charged. 

 There are two kinds of electric charges: positive and negative.  

 Negative charges are the type possessed by electrons.  

 Positive charges are the type possessed by protons.  

 Charges of the same sign repel one another.  

 Charges with opposite signs attract one another. 

                               

(a) The rubber rod is negatively charged and the glass rod is positively charged. The 

two rods will attract. 

(b) The rubber rod is negatively charged and the second rubber rod is also negatively 

charged. The two rods will repel. 

 Electric charge is always conserved in an isolated system. 

 For example, charge is not created in the process of rubbing two objects 

together. 

 The electrification is due to a transfer of charge from one object to 

another. 
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Conservation of Electric Charges 

 A glass rod is rubbed with silk. 

 Electrons are transferred from the glass to the silk. 

 Each electron adds a negative charge to the silk. 

 An equal positive charge is left on the rod. 
 

The law of conservation of charge states that electric charge can neither be created 

nor destroyed. In a closed system, the amount of charge remains the same. When 

something changes its charge it doesn't create charge but transfers it. 

Quantization of Electric Charges 

Quantization of charge means that when we say something has a given charge, 

we mean that that is how many times the charge of a single electron it has. Because all 

charges are associated with a whole electron, this is possible. 

The electric charge is said to be quantized. 

 q is the standard symbol used for charge as a variable. 

 Electric charge exists as discrete packets. 

                              q =  Ne       N is an integer 

e is the fundamental unit of charge 

 |e| = 1.6 x 10
-19

 C 

 Electron: q = -e 

 Proton: q = +e 
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Conductors, Insulators and Semiconductors 

 Can be classifying materials in terms of the ability of electrons to move through 

the material: 

 

Conductors: Electrical conductors are materials in which most of the electrons are free 

electrons. 

 Free electrons are not bound to the atoms. 

 These electrons can move relatively freely through the material. 

 Examples of good conductors include copper, aluminum and silver. 

 When a good conductor is charged in a small region, the charge readily 

distributes itself over the entire surface of the material. 

 

Insulators: Electrical insulators are materials in which all of the electrons are bound to 

atoms. 

 These electrons cannot move relatively freely through the material. 

 Examples of good insulators include glass, rubber and wood. 

 When a good insulator is charged in a small region, the charge is unable to move 

to other regions of the material. 

 

Semiconductors: The electrical properties of semiconductors are somewhere between 

those of insulators and conductors. 

 Examples of semiconductor materials include silicon and germanium. 

 Semiconductors made from these materials are commonly used in making 

electronic chips. 

 The electrical properties of semiconductors can be changed by the addition of 

controlled amounts of certain atoms to the material. 
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Charging by Induction 

Charging by induction requires no contact with the object inducing the charge. 

Assume we start with a neutral metallic sphere.  

(a) The sphere has the same number of positive and negative charges. 

(b)  A charged rubber rod is placed near the sphere. 

 It does not touch the sphere. 

 The electrons in the neutral sphere are redistributed. 

(c)  The sphere is grounded. Some electrons can leave the sphere through the 

ground wire. 

        

(d) The ground wire is removed. 

 There will now be more positive charges. 

 The charges are not uniformly distributed. 

 The positive charge has been induced in the sphere. 

(e) The rod is removed.  

 The electrons remaining on the sphere redistribute themselves. 

 There is still a net positive charge on the sphere. 

 The charge is now uniformly distributed. 

 Note the rod lost none of its negative charge during this process. 
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Coulomb’s Law 

Charles Coulomb (1736–1806) measured the magnitudes of the electric forces 

between charged objects using the torsion balance, which he invented. Consider a 

system of two point charges, q1 and q2, separated by a distance r in vacuum. 

He found the force depended on the charges and the distance 

between them. The electric force between two stationary charged 

particles: 

 Is inversely proportional to the square of the separation r 

between the particles and directed along the line joining 

them. 

                                   Fe ∝ 1/r 2  

 Is proportional to the product of the charges q1 and q2 on the 

two particles. 

                                  Fe ∝ q1 q2 

 Is attractive if the charges are of opposite sign and 

repulsive if the charges have the same sign.  

 Is a conservative force.  

 

Coulomb’s Law, Equation 

  

 

Where ke is the Coulomb constant 

 ke = 1/(4π ɛo) = 9  x 10
9
 N.m

2
/C

2
  

Where ɛo is the permittivity of free space 

 ɛo = 8.8542 x 10
-12

 C
2
 / N.m

2
 

 The smallest unit of charge known in nature is the charge on an electron or 

proton, which has an absolute value of 

 e = 1.602 x 10
-19

 C 

 1 2

2e e

q q
F k

r

Coulomb’s torsion balance, 

used to establish the inverse-

square law for the electric 

force between two charges. 
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 1 C of charge is approximately equal to the charge of 6.24 x 10
18

 electrons or 

protons. 

 The force is a vector quantity. 

Charge and Mass of Electron, Proton and Neutron 

 

 The electron and proton are identical in the magnitude of their charge, but 

very different in mass. 

 The proton and the neutron are similar in mass, but very different in charge. 

 

Example 1: The Hydrogen Atom 

The electron and proton of a hydrogen atom are separated by a distance of 

approximately 5.3 x 10
-11

 m. Find the magnitudes of the electric force and the 

gravitational force between the two particles. 

Solution: From Coulomb’s law, we find that the attractive electric force has the 

magnitude: 

         q1= 1.6 x 10
-19

 C     and       q2= 1.6 x 10
-19

 C 

     

Using Newton’s law of gravitation, we find that the gravitational force has the 

magnitude 

  

  

The ratio    Fe /Fg ≈ 2 x 10
39

. 

Thus, the gravitational force between charged atomic particles is negligible when 

compared with the electric force. 
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Vector Nature of Electric Forces 

When dealing with Coulomb’s law, you must remember that force is a vector 

quantity. Thus, the law expressed in vector form for the electric force exerted by a 

charge q1 on a second charge q2 , written F12 , is   

 

  Where rˆ is a unit vector directed from q1 to q2 

 Electrical forces obey Newton’s Third Law: the force on 

q1 is equal in magnitude and opposite in direction to the 

force on q2  

 

 The like charges produce a repulsive force between them . 

 With like signs for the charges, the product q1q2 is positive 

and the force is repulsive.  

 

 Two point charges are separated by a distance r. 

 The unlike charges produce an attractive force between 

them. 

 With unlike signs for the charges, the product q1q2 is 

negative and the force is attractive. 

 When more than two charges are present, the force between any pair of them is 

given by Equation 2. Therefore, the resultant force on any one of them equals the 

vector sum of the forces exerted by the various individual charges. For example, 

if four charges are present, then the resultant force exerted by particles 2, 3, and 4 

on particle 1 is 
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Example 2: Find the Resultant Force 

Consider three point charges located at the corners of a right triangle as shown in 

Figure, where q1 = q3 = 5µC, q2 = -2µC, and a = 0.10 m. Find the resultant force exerted 

on q3. 

Solution: The force exerted by q1 on q3 is F13. The force exerted by q2 on q3 is F23. The 

resultant force F3 exerted on q3 is the vector sum FT=F13 + F23. 

The magnitude of F23 is 

 

  Note that because q3 and q2 have opposite signs, 

 F23 is to the left. 

The magnitude of the force exerted by q1 on q3 is 

 

 

 

The repulsive force F13 makes an angle of 45° with the x axis. Therefore, the x and y 

components of F13 are equal, with magnitude given by F13 cos 45° = 7.9 N. 

F13x = F13 cos 45° = 7.9 N. 

F13y = F13 sin 45° = 7.9 N. 

             

 

 

We can also express the resultant force acting on q3 in unit-vector form as 

 

The angle that the force makes with the positive x-axis is 
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Example 3:  

Three point charges are in a straight line. Their charges are Q1=+2×10
−9

 C, 

Q2=+1×10
−9

 C and Q3=−3×10
−9

 C. The distance between Q1 and Q2 is 2×10
−2

 m and the 

distance between Q2 and Q3 is 4×10
−2

 m. What is the net electrostatic force on Q2 due to 

the other two charges? 

 

Solution:  

Force on Q2 due to Q1: 

 

Force on Q2 due to Q3: 

 

** Vector addition of forces 

The force between Q1 and Q2 is repulsive (like charges). This means that it pushes Q2 to 

the right, or in the positive direction. 

The force between Q2 and Q3 is attractive (unlike charges) and pulls Q2 to the right. 
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Therefore both forces are acting in the positive direction. Therefore, 

 

The resultant force acting on Q2 is 6,19×10
−5

 N to the right. 

Example 4:  

Three point charges form a right-angled triangle. Their charges are Q1= 4 nC, Q2= 

6 nC and Q3= −3 nC. The distance between Q1 and Q2 is 5×10
−2

 m and the distance 

between Q1 and Q3 is 3×10
−2

 m. What is the net electrostatic force on Q1 due to the 

other two charges if they are arranged as shown? 

 

Solution:  

The magnitude of the force exerted by Q2 on Q1, which we will call F2, is: 

 

The magnitude of the force exerted by Q3 on Q1, which we will call F3, is: 



Electricity and Magnetism 

Dr. Shurooq Saad Mahmood 

Lecturer (1) 
 

 

** Vector addition of forces 

 

** Resultant force 

The magnitude of the resultant force acting on Q1 can be calculated from the forces 

using Pythagoras' theorem because there are only two forces and they act in the x- and 

y-directions: 

 

and the angle, θR made with the x-axis can be found using trigonometry. 

 

 

 

 

 

 

The final resultant force acting on Q1 is 1,48×10
−4

 N acting at an angle of 54,25° to 

the negative x-axis or 125,75°to the positive x-axis. 
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Problem 1: For the charge configuration shown, calculate the resultant force on Q2 if: 

       
 

Problem 2: Calculate the resultant force on Q1 given this charge configuration: 
 

 
 

Problem 3: Calculate the resultant force on Q2 given this charge configuration: 
 

 

Problem 4: For the charge configuration shown, calculate the charge on Q3 if the 

resultant force on Q2 is 6,3×10
−1

 N to the right and: 
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Problem 1: For the charge configuration shown, calculate the resultant force on Q2 if: 

       
 

Solution:  

We first calculate the force of Q1 on Q2. Note that for this force we must add r1 and 

r2. 

 

And then we calculate the force on Q2 from Q3: 

 

Next we note that the force of Q3 on Q2 is repulsive and the force of Q1 on Q2 is 

also repulsive. So these two forces act in the same direction (towards the right). The 

resultant force is: 
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Problem 2: Calculate the resultant force on Q1 given this charge configuration: 
 

 

Solution:  

We first calculate the force on Q1 from Q2: 

 

And then we calculate the force of Q3 on Q1: 

 

The magnitude of the resultant force acting on Q1 can be calculated from the forces 

using Pythagoras' theorem because there are only two forces and they act in the x- and 

y-directions: 
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We can find the angle using trigonometry: 

 

The final resultant force acting on Q1 is 3,42×10
−5

 N acting at an angle of 83,8° to 

the negative x-axis. 

 

Problem 3: Calculate the resultant force exerted on Q2 given this charge configuration: 
 

 

Solution:  

We first calculate the force on Q2 from Q1: 

 

And then we calculate the force of Q3 on Q2: 
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The magnitude of the resultant force acting on Q2 can be calculated from the forces 

using Pythagoras' theorem because there are only two forces and they act in the x- and 

y-directions: 

 

We can find the angle using trigonometry: 

 

The final resultant force acting on Q1 is 1,05×10
−4

 N acting at an angle of 34,76° to 

the positive x-axis. 

 

Problem 4: For the charge configuration shown, calculate the charge on Q3 if the 

resultant force on Q2 is 6,3×10
−1

 N to the right and: 

    

Solution:  

We are told that the resultant force is 6,3×10
−5

 N to the right. Since the force of Q1 

on Q2 is attractive, the force of Q3 on Q2 must be repulsive to cause a resultant force to 

the right (if it was also attractive, the resultant force would be to the left). So we know 

that Q3 must be negative.  
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We first calculate the force on Q2 from Q1: 

 

Next we use this and the resultant force to find the force on Q2 from Q3 

 

And then we calculate the charge on Q3: 
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The Electric Field 

 

 The electric force is a field force. 

 Field forces can act through space producing effect even with no physical 

contact between interacting objects. 

 An electric field is said to exist in the region of space around a charged object. 

This charged object is the source charge. 

 When another charged object, the test charge, enters this electric field, an 

electric force acts on it. 

 The electric field is defined as the electric force on the test charge per unit 

charge.  

 

The electric field vector E at a point in space is defined as the electric force F 

acting on a positive test charge q0 placed at that point divided by the test charge: 

 

                                                         ………………..   (1) 

 

The SI units of E are N/C. 

 

Note that E is the field produced by some charge or charge distribution separate 

from the test charge; it is not the field produced by the test charge itself.  

 

Also, note that the existence of an electric field is a property of the source charge; 

the presence of the test charge is not necessary for the field to exist. 

 

 The test charge serves as a detector of the field. 
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 The direction of E is that of the force on a positive test charge. 

 We can also say that an electric field exists at a point if a test charge at that point 

experiences an electric force. 

Relationship between F and E 

Equation 1 can be rearranged as 

                                               ………….. (2) 

 

This equation gives us the force on a charged particle placed in an electric field. 

 This is valid for a point charge only.  

 For larger objects, the field may vary over the size of the object.  

 If source charge, q, is positive, the force and the field are in the same direction. 

 If source charge, q, is negative, the force and the field are in opposite directions. 

 

 

Electric Field Direction 

 

a) If q is positive, then the force on the test charge is directed away from q. 
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b) The direction of the electric field at P points is also away from the positive 

source charge. 

 

c) If q is negative, then the force on the test charge is directed toward q. 

 

d) The electric field at P points is also toward the negative source charge.  

 

Electric Field, Vector Form 

According to Coulomb’s law, the force exerted by source charge q on the test 

charge qo, can be expressed as:  

 

where rˆ is a unit vector directed from q toward qo. 

The electric field at P, the position of the test charge is defined by (E = Fe / qo): 
 

                                                                                                                                     ……………….. (3) 
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Superposition with Electric Fields 

 

At any point P, the total electric field due to a 

group of source charges equals the vector sum of the 

electric fields of all the charges, can be expressed 

 

 

 

 

 

 

 

 

 

 

 

                    

                    

         

Or 

                     

 

Where ri is the distance from the ith source charge qi to the point P (the location of 

the test charge) and rˆi is a unit vector directed from qi toward point P.  
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E2x 

E2y 

Example 1:  

A charge q1 = 7.0 µC is located at the origin, and a second charge q2 = -5.0 µC is 

located on the x axis, 0.30 m from the origin. Find the electric field at the point P, which 

has coordinates (0, 0.40) m. 

Solution:  

The total electric field E at P equals the vector sum 

E1+E2, where E1 is the field due to the positive charge q1 

and E2 is the field due to the negative charge q2. 

 

The vector E1 has only a y component. The vector E2 

has an x component given by E2 cos θ = 3/5 E2 and a 

negative y component given by     E2 sin θ =    4/5 E2. Hence, 

we can express the vectors as 

 

 

 

 

The resultant field E at P is the superposition of E1 and E2: 

 
 

                                                       66° 

makes with the positive x axis and it has a magnitude 
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Electric Field of a Continuous Charge Distribution 

The electric field at P due to one charge element carrying 

charge Δq is 

 

The total electric field ΔE at P due to all elements in the 

charge distribution is approximately 

 

Because the charge distribution is modeled as continuous, 

the total field at P in the limit Δqi            0 is 

 

We illustrate this type of calculation with several examples, in which we assume 

the charge is uniformly distributed on a line, on a surface, or throughout a volume. 

 If a charge Q is uniformly distributed throughout a volume V, the volume charge 

density ρ is defined by 

 

 If a charge Q is uniformly distributed on a surface of area A, the surface charge 

density σ is defined by 

 

 If a charge Q is uniformly distributed along a line of length ℓ , the linear charge 

density λ is defined by 
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 If the charge is non-uniformly distributed over a volume, surface, or line, the 

amounts of charge dq in a small volume, surface, or length element are 

 
 

Electric Field Lines 

They are an imaginary line drawn through a region of space so that, at every point, 

it is tangent to the direction of the electric field vector at that point.  

The number of lines per unit area through a surface perpendicular to the lines is 

proportional to the magnitude of the electric field in that region.  

Thus, the field lines are close together where the electric field is strong and far 

apart where the field is weak. 

 The density of lines through surface A is greater 

than the density of lines through surface B. 

 The magnitude of the electric field is larger on 

surface A than on surface B. 

 The lines at different locations point in different 

directions. 

 This indicates the field is nonuniform.  

 

The electric field lines for a point charge 

a) The electric field lines for a Positive Point Charge 

 The field lines radiate outward in all directions. 

 In three dimensions, the distribution is spherical. 

 The lines are directed away from the source 

charge. 

 A positive test charge would be repelled away 

from the positive source charge. 
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b) The electric field lines for a Negative Point Charge 

 

 The field lines radiate inward in all directions. 

 In three dimensions, the distribution is spherical. 

 The lines are directed toward the source charge. 

 A positive test charge would be attracted toward 

the negative source charge. 

 

The electric field lines for two point charges (an electric dipole) 

a) Unlike charges 

 The charges are equal and opposite. 

 The number of field lines leaving the positive charge equals the number of lines 

terminating on the negative charge. 

b) Like charges 

 The charges are equal and positive. 

 The same number of lines leaves each charge since they are equal in magnitude.  

 At a great distance, the field is approximately equal to that of a single charge of 2q. 
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c) Unequal Charges 

 The positive charge is twice the magnitude of the negative charge. 

 Two lines leave the positive charge for each line that terminates on the negative 

charge. 

 At a great distance, the field would be approximately the same as that due to a 

single charge of +q 

 

 

Motion of Charged Particles in a Uniform Electric Field 

 

When a particle of charge q and mass m is placed in an electric field E, the electric 

force exerted on the charge is 

 

If E is uniform (that is, constant in magnitude and direction), then the acceleration 

is constant.  

If the particle has a positive charge, its acceleration is in the direction of the 

electric field.  

If the particle has a negative charge, its acceleration is in the direction opposite the 

electric field. 
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Electric Flux 

 

The field lines penetrate a surface of area A, whose plane is oriented perpendicular 

to the field; the number of lines per unit area (line density) is proportional to the 

magnitude of the electric field, as shown in (Figure 1 a). Therefore, the total number of 

lines penetrating the surface is proportional to the product EA is called the electric flux 

ΦE 

 

If the electric field is uniform and makes an angle θ with the normal to a surface of 

area A, as shown in (Figure 1 b), then the electric flux through the surface is 

 

The equations 1and 2 are showing the flux through a surface of fixed area (A) has 

a maximum value EA when the surface is perpendicular to the field, (when the normal 

to the surface is parallel to the field, that is, θ= 0°); the flux is zero when the surface is 

parallel to the field (when the normal to the surface is perpendicular to the field, that is, 

θ= 90°). 

     

(a)                                                                    (b) 

Fig 1: The uniform electric field penetrating a plane of area A 

a) perpendicular to the field.       b) at an angle θ to the field. 
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Consider a general surface divided up into a large number of small elements, each 

of area ΔA (Figure 2 a). The electric field Ei at the location of this element makes an 

angle θi with the vector ΔAi. The electric flux ΔϕE through this element is 

 

From the definition of the scalar product of two vectors 

 

In general, the electric flux through a surface is 

The (Figure 2 b) shows that a net flux through the surface is proportional to the net 

number of lines leaving the surface, where the net number means the number leaving 

the surface minus the number entering the surface. If more lines are leaving than 

entering, the net flux is positive. If more lines are entering than leaving, the net flux is 

negative; we can write the net flux ϕE through a closed surface as 

          ……………… (5) 

where En represents the component of the electric field normal to the surface. 

       

(a)                                                                    (b) 

Fig 2: a) The electric field makes an angle θi with a small element of surface area ΔAi. 

b) The flux through an area element can be positive (element 1), zero (element 2) and 

negative (element 3). 
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Example 1: Flux Through a Sphere 

What is the electric flux through a sphere that has a radius of 1.00 m and carries a 

charge of +1.00 µC at its center ? 

Solution:  

The magnitude of the electric field 1.00 m from this charge is given by Equation 

 

The field points radially outward and is therefore everywhere perpendicular to the 

surface of the sphere. The flux through the sphere (whose surface area A = 4πr
2
 = 12.6 

m
2
) is thus 

 

Example 2: Flux Through a Cube 

Consider a uniform electric field E oriented in the x direction. Find the net electric 

flux through the surface of a cube of edges ℓ, oriented as shown in Figure 

Solution:  

The net flux is the sum of the fluxes through all faces of the cube. 

The net flux through faces 1 and 2 is 

     

For Face 1 

E is constant and directed inward but dA1 

is directed outward (θ=180°); thus, the flux 

through this face is 
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because the area of each face is A = ℓ
2
. 

For Face 2 

E is constant and outward and in the same direction as dA2 (θ=0°); hence, the flux 

through this face is 

 

For Faces (3, 4, and the unnumbered ones): 

ΦE = 0 because E is perpendicular to dA on these faces. 

Therefore, the net flux over all six faces is 

 

Gauss’s Law 

It describes a general relationship between the net electric flux through a closed 

surface (often called a Gaussian surface) and the charge enclosed by the surface. 

Let us consider a positive point charge q located at the center of a sphere of radius 

r, as shown in (Figure 3 a). The net flux through the gaussian surface is 

 

 

where qin represents the net charge inside the surface and E represents the electric 

field at any point on the surface. 
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Gauss’s law says that the net electric flux through any closed gaussian surface is 

equal to the net charge qin inside the surface divided by ε0. The net electric flux is 

independent of the shape of that surface as shown in the following (Figure 3 b), When 

closed surfaces of various shapes surrounding a charge q, the net electric flux is the 

same through all surfaces. If a point charge located outside a closed surface, the number 

of lines entering the surface equals the number leaving the surface (see Figure 3 c), this 

means the net electric flux through a closed surface that surrounds no charge is zero. 

   

(a)                                                  (b)                                                 (c) 

Fig 3: a) spherical gaussian surface of radius r surrounding a point charge q. b) Closed 

surfaces of various shapes surrounding a charge q. c) A point charge located outside a 

closed surface. 

 

As example: The net flux through surface S is 

q1/ε0 in the Figure 4. 

The net flux through surface S' is (q2 + q3)/ε0, 

and the net flux through surface S'' is zero. 

Charge q4 does not contribute to the flux 

through any surface because it is outside all 

surfaces. 

 

Fig 4: The net electric flux through any closed surface depends only on the charge 

inside that surface. 
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Note: The net electric flux through any closed surface depends only on the 

charge inside that surface. 

The electric field due to many charges is the vector sum of the electric fields 

produced by the individual charges. 

 

Application of Gauss’s Law to Various Charge Distributions 

As mentioned earlier, Gauss’s law is useful in determining electric fields when the 

charge distribution is characterized by a high degree of symmetry. 

The goal in this type of calculation is to determine a surface that satisfies one or 

more of the following conditions: 

1. The value of the electric field can be argued by symmetry to be constant over the 

surface. 

2. The dot product of E.dA can be expressed as a simple product E dA because E and 

dA are parallel. 

3. The dot product is zero because E and dA are perpendicular. 

4. The field can be argued to be zero over the surface. 

Example 3: The Electric Field Due to a Point Charge 

Starting with Gauss’s law, calculate the electric field due to an isolated point 

charge q. 

Solution: 

A single charge represents the simplest possible charge distribution, and we use 

this familiar case to show how to solve for the electric field with Gauss’s law. We 

choose a spherical gaussian surface of radius r centered on the point charge, as shown in 

Figure. The electric field due to a positive point charge is directed radially outward by 

symmetry and is therefore normal to the surface at every point. Thus, as in condition 

(2), E is parallel to dA at each point. Therefore, E . dA = E dA and Gauss’s law gives 
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By symmetry, E is constant everywhere on the surface, which satisfies condition 

(1), so it can be removed from the integral. Therefore, 

 

where we have used the fact that the surface area of a sphere is 4πr
2
. Now, we 

solve for the electric field: 

 

This is the familiar electric field due to a point charge that we developed from 

Coulomb’s law. 

 

Fig 5: The point charge q is at the center of the spherical gaussian surface, and E is 

parallel to dA at every point on the surface. 

Example 4: A Spherically Symmetric Charge Distribution 

An insulating solid sphere of radius a has a uniform volume charge density ρ and 

carries a total positive charge Q (Fig 6).  

(a) Calculate the magnitude of the electric field at a point outside the sphere. 

Solution: 

Because the charge distribution is spherically symmetric, we again select a 

spherical gaussian surface of radius r, concentric with the sphere, as shown in (Fig  6 a). 

For this choice, conditions (1) and (2) are satisfied, as they were for the point charge in 

Example 3. Following the line of reasoning given in Example 3, we find that 
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Note that this result is identical to the one we obtained for a point charge. 

Therefore, we conclude that, for a uniformly charged sphere, the field in the region 

external to the sphere is equivalent to that of a point charge located at the center of the 

sphere. 

 

Fig 5: A uniformly charged insulating sphere of radius a and total charge Q. (a) The 

magnitude of the electric field at a point exterior to the sphere is ke Q /r 
2
. (b) The 

magnitude of the electric field inside the insulating sphere is due only to the charge 

within the gaussian sphere defined by the dashed circle and is ke Q r /a
3
. 

 

(b) Find the magnitude of the electric field at a point inside the sphere. 

Solution: 

In this case we select a spherical gaussian surface having radius r ˂ a, concentric 

with the insulated sphere (Fig. 6 b). Let us denote the volume of this smaller sphere by 

V'. To apply Gauss’s law in this situation, it is important to recognize that the charge qin 

within the Gaussian surface of volume V' is less than Q. To calculate qin , we use the 

fact that qin = ρV' 

 

By symmetry, the magnitude of the electric field is constant everywhere on the 

spherical gaussian surface and is normal to the surface at each point—both conditions 

(1) and (2) are satisfied. Therefore, Gauss’s law in the region r ˂ a gives 
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Solving for E gives 

 

Because  

 

by definition and since 

 

this expression for E can be written as 

 

Note that this result for E differs from the one we obtained in part (a). It shows that 

E → 0 as r → 0. Therefore, the result eliminates the problem that would exist at r = 0 if 

E varied as 1/r
 2
 inside the sphere as it does outside the sphere. That is, if E ∞ 1/r 

2
 for r 

˂ a, the field would be infinite at r = 0, which is physically impossible. Note also that 

the expressions for parts (a) and (b) match when r = a. 

A plot of E versus r is shown in Figure 6. 

 

Fig 6:  A plot of E versus r for a uniformly charged insulating sphere. The electric field 

inside the sphere (r < a) varies linearly with r. The field outside the sphere (r > a) is the 

same as that of a point charge Q located at r = 0. 
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Example 5: The Electric Field Due to a Thin Spherical Shell 

A thin spherical shell of radius a has a total charge Q distributed uniformly over its 

surface (Fig. 7 a). Find the electric field at points (a) outside and (b) inside the shell. 

Solution: 

a) When gaussian surface of radius r > a as (Fig. 7 b), the charge inside this 

surface is Q. Therefore, the field at a point outside the shell is equivalent to that 

due to a point charge Q located at the center: 

 

a) The electric field inside the spherical shell is zero (E = 0). This follows from 

Gauss’s law applied to a spherical surface of radius r < a concentric with the 

shell as (Fig. 7 c). Because of the spherical symmetry of the charge distribution 

and because the net charge inside the surface is zero—satisfaction of conditions 

(1) and (2) again—application of Gauss’s law shows that E = 0 in the region r < 

a. 

 

Fig. 7 (a) The electric field inside a uniformly charged spherical shell is zero. 

(b) Gaussian surface for r > a        c) Gaussian surface for r < a. 

Example 6: A Cylindrically Symmetric Charge Distribution 

Find the electric field a distance r from a line of positive charge of infinite length 

and constant charge per unit length (Fig. 8 a). 
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Solution: 

The symmetry of the charge distribution requires that E be perpendicular to the 

line charge and directed outward, (see following Fig 8 (a) and (b)). 

    

Fig. 8: (a) An infinite line of charge surrounded by a cylindrical gaussian surface 

concentric with the line. (b) An end view shows that the electric field at the cylindrical 

surface is constant in magnitude and perpendicular to the surface. 

 

The total charge inside our gaussian surface is . Applying Gauss’s law and 

conditions (1) and (2), we find that for the curved surface 

 

The area of the curved surface is A 2r , therefore, 

 



Electricity and Magnetism 

Dr. Shurooq Saad Mahmood 

Lecturer (3) 
 

 

Electric Flux 

 

The field lines penetrate a surface of area A, whose plane is oriented perpendicular 

to the field; the number of lines per unit area (line density) is proportional to the 

magnitude of the electric field, as shown in (Figure 1 a). Therefore, the total number of 

lines penetrating the surface is proportional to the product EA is called the electric flux 

ΦE 

 

If the electric field is uniform and makes an angle θ with the normal to a surface of 

area A, as shown in (Figure 1 b), then the electric flux through the surface is 

 

The equations 1and 2 are showing the flux through a surface of fixed area (A) has 

a maximum value EA when the surface is perpendicular to the field, (when the normal 

to the surface is parallel to the field, that is, θ= 0°); the flux is zero when the surface is 

parallel to the field (when the normal to the surface is perpendicular to the field, that is, 

θ= 90°). 

 

(a)                                                                    (b) 

Fig 1: The uniform electric field penetrating a plane of area A 

a) perpendicular to the field.       b) at an angle θ to the field. 
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Consider a general surface divided up into a large number of small elements, each 

of area ΔA (Figure 2 a). The electric field Ei at the location of this element makes an 

angle θi with the vector ΔAi. The electric flux ΔϕE through this element is 

 

In general, the electric flux through a surface is 

 

The (Figure 2 b) shows that a net flux through the surface is proportional to the net 

number of lines leaving the surface, where the net number means the number leaving 

the surface minus the number entering the surface. If more lines are leaving than 

entering, the net flux is positive. If more lines are entering than leaving, the net flux is 

negative; we can write the net flux ϕE through a closed surface as 

          ……………… (5) 

where En represents the component of the electric field normal to the surface. 

       

(a)                                                                    (b) 

Fig 2: a) The electric field makes an angle θi with a small element of surface area ΔAi. 

b) The flux through an area element can be positive (element 1), zero (element 2) and 

negative (element 3). 
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Example 1: Flux Through a Sphere 

What is the electric flux through a sphere that has a radius of 1.00 m and carries a 

charge of +1.00 µC at its center ? 

Solution:  

The magnitude of the electric field 1.00 m from this charge is given by Equation 

 

The field points radially outward and is therefore everywhere perpendicular to the 

surface of the sphere. The flux through the sphere (whose surface area A = 4πr
2
 = 12.6 

m
2
) is thus 

 

Example 2: Flux Through a Cube 

Consider a uniform electric field E oriented in the x direction. Find the net electric 

flux through the surface of a cube of edges ℓ, oriented as shown in Figure 

Solution:  

The net flux is the sum of the fluxes through all faces of the cube. 

The net flux through faces 1 and 2 is 

     

For Face 1 

E is constant and directed inward but dA1 

is directed outward (θ=180°); thus, the flux 

through this face is 
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because the area of each face is A = ℓ
2
. 

For Face 2 

E is constant and outward and in the same direction as dA2 (θ=0°); hence, the flux 

through this face is 

 

For Faces (3, 4, and the unnumbered ones): 

ΦE = 0 because E is perpendicular to dA on these faces. 

Therefore, the net flux over all six faces is 

 

Gauss’s Law 

It describes a general relationship between the net electric flux through a closed 

surface (often called a Gaussian surface) and the charge enclosed by the surface. 

Let us consider a positive point charge q located at the center of a sphere of radius 

r, as shown in (Figure 3 a). The net flux through the gaussian surface is 

 

 

where qin represents the net charge inside the surface and E represents the electric 

field at any point on the surface. 
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Gauss’s law says that the net electric flux through any closed gaussian surface is 

equal to the net charge qin inside the surface divided by ε0. The net electric flux is 

independent of the shape of that surface as shown in the following (Figure 3 b), When 

closed surfaces of various shapes surrounding a charge q, the net electric flux is the 

same through all surfaces. If a point charge located outside a closed surface, the number 

of lines entering the surface equals the number leaving the surface (see Figure 3 c), this 

means the net electric flux through a closed surface that surrounds no charge is zero. 

   

(a)                                                  (b)                                                 (c) 

Fig 3: a) spherical gaussian surface of radius r surrounding a point charge q. b) Closed 

surfaces of various shapes surrounding a charge q. c) A point charge located outside a 

closed surface. 

 

As example: The net flux through surface S is 

q1/ε0 in the Figure 4. 

The net flux through surface S' is (q2 + q3)/ε0, 

and the net flux through surface S'' is zero. 

Charge q4 does not contribute to the flux 

through any surface because it is outside all 

surfaces. 

 

Fig 4: The net electric flux through any closed surface depends only on the charge 

inside that surface. 



Electricity and Magnetism 

Dr. Shurooq Saad Mahmood 

Lecturer (3) 
 

Note: The net electric flux through any closed surface depends only on the 

charge inside that surface. 

The electric field due to many charges is the vector sum of the electric fields 

produced by the individual charges. 

 

Application of Gauss’s Law  

As mentioned earlier, Gauss’s law is useful in determining electric fields when the 

charge distribution is characterized by a high degree of symmetry. 

The goal in this type of calculation is to determine a surface that satisfies one or 

more of the following conditions: 

1. The value of the electric field can be argued by symmetry to be constant over the 

surface. 

2. The dot product of E.dA can be expressed as a simple product E dA because E and 

dA are parallel. 

3. The dot product is zero because E and dA are perpendicular. 

4. The field can be argued to be zero over the surface. 

Example 3: The Electric Field Due to a Point Charge 

Starting with Gauss’s law, calculate the electric field due to an isolated point charge q. 

Solution: 

A single charge represents the simplest 

possible charge distribution, and we use this 

familiar case to show how to solve for the 

electric field with Gauss’s law. We choose 

a spherical gaussian surface of radius r 

centered on the point charge, as shown in 

(Figure 5).  

Fig 5: The point charge q is at the center of 

the spherical gaussian surface, and E is 

parallel to dA at every point on the surface. 
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The electric field due to a positive point charge is directed radially outward by 

symmetry and is therefore normal to the surface at every point. Thus, as in condition 

(2), E is parallel to dA at each point. Therefore, E . dA = E dA and Gauss’s law gives: 

 

By symmetry, E is constant everywhere on the surface, which satisfies condition 

(1), so it can be removed from the integral. Therefore, 

 

where we have used the surface area of a sphere is 4πr
2
.  

Now, we solve for the electric field: 

 

This is the electric field due to a point charge that we developed from Coulomb’s 

law. 

Example 4: A Spherically Symmetric Charge Distribution 

An insulating solid sphere of radius a has a uniform volume charge density ρ and 

carries a total positive charge Q (Figure 6).  

(a) Calculate the magnitude of the electric field at a point outside the sphere. 

Solution: 

Because the charge distribution is spherically symmetric, we again select a 

spherical gaussian surface of radius r, concentric with the sphere, as shown in (Figure  6 

a). For this choice, conditions (1) and (2) are satisfied, as they were for the point 

charge in Example 3. We find that: 

 

Note that this result is identical to the one we obtained for a point charge. 
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 Therefore, we conclude that, for a uniformly charged sphere, the field in the 

region external to the sphere is equivalent to that of a point charge located at the center 

of the sphere. 

 

Fig 6: A uniformly charged insulating sphere of radius a and total charge Q. (a) The 

magnitude of the electric field at a point exterior to the sphere is ke Q /r 
2
. (b) The 

magnitude of the electric field inside the insulating sphere is due only to the charge 

within the gaussian sphere defined by the dashed circle and is ke Q r /a
3
. 

 

(b) Find the magnitude of the electric field at a point inside the sphere. 

Solution: 

In this case we select a spherical gaussian surface having radius r ˂ a, concentric 

with the insulated sphere (Figure 6 b).  

Let us denote the volume of this smaller sphere by V'. To apply Gauss’s law in this 

situation, it is important to recognize that the charge qin within the Gaussian surface of 

volume V' is less than Q.  

To calculate qin , we use the fact that qin = ρV' 

 

By symmetry, the magnitude of the electric field is constant everywhere on the 

spherical gaussian surface and is normal to the surface at each point, both conditions 

(1) and (2) are satisfied.  
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Therefore, Gauss’s law in the region r ˂ a gives 

 

Solving for E gives 

 

Because  

 

 

this expression for E can be written as 

 

Note that this result for E differs from the one we obtained in part (a).  
 

Example 5: The Electric Field Due to a Thin Spherical Shell 

A thin spherical shell of radius a has a total charge Q distributed uniformly over its 

surface (Figure 7 a). Find the electric field at points (a) outside and (b) inside the shell. 

Solution: 

 

Fig 7: (a) The electric field inside a uniformly charged spherical shell is zero. The field 

outside is the same as that due to a point charge Q located at the center of the shell. 

(b) Gaussian surface for r > a.        (c) Gaussian surface for r < a. 
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a) If we construct a spherical gaussian surface of radius r > a concentric with the 

shell (Figure 7 b), the charge inside this surface is Q.  

Therefore, the field at a point outside the shell is equivalent to that due to a point 

charge Q located at the center: 

 

b) The electric field inside the spherical shell is zero (E = 0).  

This follows from Gauss’s law applied to a spherical surface of radius r < a 

concentric with the shell as (Figure 7 c).  

Because of the spherical symmetry of the charge distribution and because the net 

charge inside the surface is zero, satisfaction of conditions (1) and (2), again 

application of Gauss’s law shows that E = 0 in the region r < a. 
 

Example 6: A Cylindrically Symmetric Charge Distribution 

Find the electric field a distance r from a line of positive charge of infinite length 

and constant charge per unit length (Figure 8 a). 

Solution: 

The symmetry of the charge distribution requires that E be perpendicular to the 

line charge and directed outward, as shown in (Figure 8 (a) and (b)). 

To reflect the symmetry of the charge distribution, we select a cylindrical gaussian 

surface of radius r and length ℓ that is coaxial with the line charge.  

For the curved part of this surface, E is constant in magnitude and perpendicular to 

the surface at each point, satisfaction of conditions (1) and (2).  

Furthermore, the flux through the ends of the gaussian cylinder is zero because E 

is parallel to these surfaces, the first application we have seen of condition (3). 

The total charge inside our gaussian surface is . Applying Gauss’s law and 

conditions (1) and (2), we find that for the curved surface 
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Fig 8: (a) An infinite line of charge surrounded by a cylindrical gaussian surface 

concentric with the line. (b) An end view shows that the electric field at the cylindrical 

surface is constant in magnitude and perpendicular to the surface. 

The area of the curved surface is A 2r , therefore, 

 

Conductors in Electrostatic Equilibrium 

A good electrical conductor contains charges (electrons) that are not bound to any 

atom and therefore are free to move about within the material.  

When there is no net motion of charge within a conductor, the conductor is in 

electrostatic equilibrium. A conductor in electrostatic equilibrium has the following 

properties: 

1. The electric field is zero everywhere inside the conductor. 

2. If an isolated conductor carries a charge, the charge resides on its surface. 

3. The electric field just outside a charged conductor is perpendicular to the surface of 

the conductor and has a magnitude /, where is the surface charge density at 

that point. 
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4. On an irregularly shaped conductor, the surface charge density is greatest at 

locations where the radius of curvature of the surface is smallest. 

 

Consider a conducting slab in an external field. 

 If the field inside the conductor were not 

zero, free electrons in the conductor would 

experience an electrical force. 

 These electrons would accelerate. 

 These electrons would not be in equilibrium. 

 Therefore, there cannot be a field inside the 

conductor. 

Choose a gaussian surface inside but close to the 

actual surface. 

 The electric field inside is zero. 

 There is no net flux through the gaussian 

surface. 

 Because the gaussian surface can be as close 

to the actual surface as desired, there can be 

no charge inside the surface. 

 

Applying Gauss’s law to this surface, we obtain:  

 

where we have used the fact that qin = σA. Solving for E gives 
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When a test charge q0 is placed in an electric field E created by some

other charged object, the electric force acting on the test charge is q0 E.

The force q0 E is conservative, because the force between charges

described by Coulomb’s law is conservative. If the test charge is moved in

the field by some external agent from point A to point B by a displacement

ds, the work done by the electric field on the charge is equal to the

negative of the work done by the external agent causing the

displacement.

1. Potential Difference and Electric Potential



For an infinitesimal displacement ds, the work done by the electric

field on the charge is:

As this amount of work is done by the electric field, the potential

energy of the charge field system is decreased by an amount:

The change in potential energy of the system is:

…………….. (1)

1. Potential Difference and Electric Potential



The potential energy per unit charge U/q0 is independent of the

value of q0 and has a value at every point in an electric field. This quantity

U/q0 is called the electric potential V.

Thus, the electric potential at any point in an electric field is

…………….. (2)

Note: The fact that potential energy U is a scalar quantity means

that electric potential V also is a scalar quantity.

1. Potential Difference and Electric Potential



1. Potential Difference and Electric Potential

The potential difference ∆V = VB - VA between any two points A and

B in an electric field is defined as the change in potential energy of the

system divided by the test charge q0 :

…………….. (3)

The SI unit of both electric potential and potential difference is

joules J per coulomb C, which is defined as a volt (V):

1 V = 1 J/C



Let us calculate the potential difference between two

points A and B separated by a distance d, where d is parallel

to the field lines. Equation 3 gives:

Because E is constant, we can remove it from the

integral sign; this gives:

…………….. (4)

2. Potential Differences in a Uniform Electric Field

The negative sign indicates that the electric potential at point B is

lower than at point A; that is, VB <VA.

Electric field lines always point in the direction of decreasing electric 

potential, as shown in Figure 1.

Fig. 1



When the electric field E is directed downward as shown in Figure 1, a

point B is at a lower electric potential than point A. When a positive test

charge moves from point A to point B, its loses electric potential energy.

Now suppose that a test charge q0 moves from A to B. We can

calculate the change in its potential energy from Equations 3 and 4:

…………….. (5)

From this result, if q0 is positive, then ΔU is negative. We conclude that

a positive charge loses electric potential energy when it moves in the

direction of the electric field.

While q0 is negative, then ΔU is positive and the situation is

reversed: A negative charge gains electric potential energy when it

moves in the direction of the electric field.

2. Potential Differences in a Uniform Electric Field



Now consider the more general case of a charged particle that moves

between A and B in a uniform electric field such that the vector s is not

parallel to the field lines, as shown in Figure 2.

The change in potential energy of the

charge is:

The dot product for sA → C, where θ = 0 

Therefore, VB = VC.

Fig. 2: A uniform electric field

directed along the positive x axis.

The name equipotential surface is given to any surface

consisting of a continuous distribution of points having the

same electric potential.

2. Potential Differences in a Uniform Electric Field



Example 1: A battery produces a specified potential difference ΔV

between conductors attached to the battery terminals. A 12 V

battery is connected between two parallel plates. The

separation between the plates is d = 0.3 cm. Find the

magnitude of the electric field between the plates.

Solution:

2. Potential Differences in a Uniform Electric Field



Example 2: A proton is released from rest in a uniform electric field that

has a magnitude of 8104 V/m and is directed along the positive x axis as

shown in Figure 3. The proton undergoes a displacement of 0.5 m in the

direction of E. (A) Find the change in electric potential between points A

and B.

Solution:

Fig. 3

2. Potential Differences in a Uniform Electric Field

Because the proton (carries a positive

charge) moves in the direction of the field, we

expect it to move to a position of lower

electric potential.

From Equation 4, we have



(B) Find the change in potential energy of the proton for this

displacement.

Solution:

The negative sign means the potential energy of the proton

decreases as the proton moves in the direction of the electric field.

As the proton accelerates in the direction of the field, it gains kinetic

energy and at the same time loses electric potential energy.

2. Potential Differences in a Uniform Electric Field



Electric Potential (2)
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Consider a positive point charge q produces an electric field that is directed radially

outward from the charge (see Figure 4). To find the electric potential at a point located a

distance r from the charge, we begin with the general expression for potential difference:

At any point in space, the electric field due to the point charge is:

Where rˆ is a unit vector directed from the charge toward the point.

where  is the angle between rˆ and ds.

3. Electric Potential and Potential Energy Due to Point Charges

Fig. 4



It is customary to choose the reference of electric potential

for a point charge to be zero (V = 0) at rA = .

3. Electric Potential and Potential Energy Due to Point Charges

Fig. 4



3. Electric Potential and Potential Energy Due to Point Charges

The electric potential created by a point charge at any distance r from the charge is:

The total electric potential at some point P due to several point charges is:



3. Electric Potential and Potential Energy Due to Point Charges

The potential energy U when the two particles are separated by a distance r12 (see Figure 5)

If the system consists of more than two charged particles as shown in the Figure 5, then total

potential energy of the system U is:

Fig. 5

Note that if the charges are of the same sign, U is positive. This is

consistent with the fact that positive work must be done by an external

agent on the system to bring the two charges near one another.

If the charges are of opposite sign, U is negative; this means that

negative work is done by an external agent against on theirs.



3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge q1 = 2.00 µC is located at the origin, and a charge q2 = - 6.00 µC is located

at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at

the point P, whose coordinates are (4.00, 0) m.

Solution:

Fig. 6 (a)



3. Electric Potential and Potential Energy Due to Point Charges

(b) Find the change in potential energy of the system of two charges plus a charge q3 = 3.00 µC

as the latter charge moves from infinity to point P (Figure 6b).

Solution:

U = Uf - Ui

When the charge is at infinity, Ui = 0, and when

the charge is at P, Uf = q3 VP; therefore,

Fig. 6 (b)



3. Electric Potential and Potential Energy Due to Point Charges

(c) Find the potential energy of the system of three charges (Fig. 6b).

Solution:

Fig. 6 (b)



4. Obtaining the value of the electric field From the electric potential

We can express the potential difference dV between two points a distance ds apart as:

If the electric field has only one component Ex , then E.ds = Ex dx. Therefore, above Equation

becomes dV = - Ex dx, or

That is, the x component of the electric field is equal to the negative of the derivative of the

electric potential with respect to x. Similar statements can be made about the y and z components.

If the charge distribution creating an electric field has spherical symmetry such that the

volume charge density depends only on the radial distance r, then the electric field is radial.



4. Obtaining the value of the electric field From the electric potential

When a test charge undergoes a displacement ds along an equipotential surface, then dV = 0 because

the potential is constant along an equipotential surface.

From Equation , we see that dV = E.ds = 0; thus, E must be perpendicular to the

displacement along the equipotential surface. This shows that the equipotential surfaces must always be

perpendicular to the electric field lines passing through them. as shown in the (Figure 7).

Fig. 7: Equipotential surfaces (dashed blue lines) and electric field lines (red lines) for (a) a uniform 

electric field produced by an infinite sheet of charge, (b) a point charge.

(a)                                                                      (b)
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1. Definition of Capacitance

Consider two conductors carrying charges of equal magnitude and opposite sign. Such a combination

of two conductors is called a capacitor. The conductors are called plates. The quantity of charge Q on a

capacitor is linearly proportional to the potential difference ΔV between the conductors of the capacitor

The proportionality constant depends on the shape and separation of the conductors. We can write

this relationship as

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either

conductor to the magnitude of the potential difference between the conductors:

………………(1)

The SI unit of capacitance is the farad (F).



2. Calculating the capacitance

We can calculate the capacitance for a spherical charged conductor, where the electric

potential of the sphere of radius R is simply ke Q / R

This expression shows that the capacitance of an isolated charged sphere is proportional to

its radius and is independent of both the charge on the sphere and the potential difference.



The capacitance of a pair of conductors depends on the geometry of the conductors as

following.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure

1. One plate carries a charge + Q, and the other carries a charge -Q .

The value of the electric field between two parallel plates is:

The surface charge density on either plate is

Fig.1

Because the field between the plates is uniform, the

magnitude of the potential difference between the plates equals

Ed; therefore,



Substituting this result into Equation (1), we find that the capacitance is

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates

and inversely proportional to the plate separation.

Example 1: A parallel-plate capacitor has an area A = 2.00 x 10-4 m2 and a plate separation d =

1.00 mm. Find its capacitance.

Solution:



Capacitance, Current and Resistance

Electricity and Magnetism

Dr. Shurooq Saad Mahmood



1. Definition of Capacitance

Consider two conductors carrying charges of equal magnitude and opposite sign. Such a combination

of two conductors is called a capacitor. The conductors are called plates. The quantity of charge Q on a

capacitor is linearly proportional to the potential difference ΔV between the conductors of the capacitor

The proportionality constant depends on the shape and separation of the conductors. We can write

this relationship as

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either

conductor to the magnitude of the potential difference between the conductors:

………………(1)

The SI unit of capacitance is the farad (F).



2. Calculating the capacitance

We can calculate the capacitance for a spherical charged conductor, where the electric

potential of the sphere of radius R is simply ke Q / R

This expression shows that the capacitance of an isolated charged sphere is proportional to

its radius and is independent of both the charge on the sphere and the potential difference.



The capacitance of a pair of conductors depends on the geometry of the conductors as

following:

1- Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure

1. One plate carries a charge + Q, and the other carries a charge -Q .

The value of the electric field between two parallel plates is:

The surface charge density on either plate is

Fig.1

Because the field between the plates is uniform, the

magnitude of the potential difference between the plates equals

Ed; therefore,



Substituting this result into Equation (1), we find that the capacitance is

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates

and inversely proportional to the plate separation.

Example 1: A parallel-plate capacitor has an area A = 2.00 x 10-4 m2 and a plate separation d =

1.00 mm. Find its capacitance.

Solution:



The capacitance of a pair of conductors depends on the geometry of the conductors as

following:

2- The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge - Q

concentric with a smaller conducting sphere of radius a and charge + Q (Figure 2). To find the

capacitance:

Fig. 2

The field outside a spherically symmetric charge distribution is

radial and given by the expression ke Q / r2.In this case, this result

applies to the field between the spheres (a < r < b).

From Gauss’s law we see that only the inner sphere contributes

to this field. Thus, the potential difference between the spheres is:



2- The Spherical Capacitor

The magnitude of the potential difference is:

Substituting this value for ∆V into Equation (1), we obtain:

As the radius b of the outer sphere approaches infinity,

Where b >> a

Fig. 2

the capacitance approaches the value



2- The Spherical Capacitor

The capacitance approaches the value

3- The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge + Q is coaxial with a cylindrical shell of

negligible thickness, radius b > a, and charge - Q (Figure 3).

H. W.

Find the capacitance of this cylindrical capacitor

if its length is ℓ.

Figure 3: (a) A cylindrical capacitor consists of

a solid cylindrical conductor of radius a and

length ℓ surrounded by a coaxial cylindrical

shell of radius b. (b) The dashed line represents

the end of the cylindrical gaussian surface of

radius r and length ℓ.



3. Combinations of capacitors

1- Parallel Combination

Two capacitors connected as shown in Figure 4 a are known as a parallel combination of

capacitors. Figure 4 b shows a circuit diagram for this combination of capacitors.

The left plates of the capacitors are connected by a conducting wire to the positive terminal

of the battery and are therefore both at the same electric potential as the positive terminal.

Likewise, the right plates are connected to the negative terminal and are therefore both at the

same potential as the negative terminal.

Thus, the individual potential differences across capacitors connected in parallel are all the

same and are equal to the potential difference applied across the combination.



3. Combinations of capacitors

1- Parallel Combination

Figure 4: (a) A parallel combination of two capacitors in an electric circuit in which the

potential difference across the battery terminals is ∆V. (b) The circuit diagram for the parallel

combination. (c) The equivalent capacitance is Ceq = C1 + C2 .



3. Combinations of capacitors
1- Parallel Combination

The total charge Q stored by the two capacitors is:

.................... (2)

That is, the total charge on capacitors connected in parallel is the sum of the charges on the

individual capacitors. Because the voltages across the capacitors are the same, the charges that they

carry are:

Suppose that we to replace these two capacitors by one equivalent capacitor having a

capacitance Ceq , as shown in Figure 4 c. The effect this equivalent capacitor has on the circuit must be

exactly the same as the effect of the combination of the two individual capacitors. That is, the

equivalent capacitor must store Q units of charge when connected to the battery. the voltage across the

equivalent capacitor also is ∆V because the equivalent capacitor is connected directly across the

battery terminals.



3. Combinations of capacitors
1- Parallel Combination

Thus, for the equivalent capacitor,

Substituting these three relationships for charge into Equation 2, we have

(parallel combination)

If we extend this treatment to three or more capacitors connected in parallel, we find the

equivalent capacitance to be

Thus, the equivalent capacitance of a parallel combination of capacitors is greater than any of

the individual capacitances.



3. Combinations of capacitors

2- Series Combination

Two capacitors connected as shown in Figure 5 a are known as a series combination of

capacitors. The left plate of capacitor 1 and the right plate of capacitor 2 are connected to the

terminals of a battery. The other two plates are connected to each other and to nothing else.

Figure 5: (a) A series combination of two

capacitors. The charges on the two capacitors

are the same. (b) The capacitors replaced by a

single equivalent capacitor. The equivalent

capacitance can be calculated from the

relationship



3. Combinations of capacitors
2- Series Combination

Thus, the charges on capacitors connected in series are the same.

From Figure 5 a, we see that the voltage ∆V across the battery terminals is split between the

two capacitors:

………………… (3)

where ∆V1 and ∆V2 are the potential differences across capacitors C1 and C2 , respectively. In

general, the total potential difference across any number of capacitors connected in series is the sum

of the potential differences across the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the series

combination. After it is fully charged, the equivalent capacitor must have a charge of - Q on its right

plate and a charge of + Q on its left plate. Applying the definition of capacitance to the circuit in

Figure 5 b, we have



3. Combinations of capacitors

2- Series Combination

Because we can apply the expression Q = C ∆V to each capacitor shown in Figure 5 a, the

potential difference across each is:

Substituting these expressions into Equation 3 and noting that ∆V = Q /Ceq , we have

Canceling Q , we arrive at the relationship

(series combination)



3. Combinations of capacitors

Example 2: Find the equivalent capacitance between a and b for the combination of capacitors

shown in Figure 6 a. All capacitances are in microfarads.

Solution:

Figure 6: To find the equivalent capacitance of the capacitors in part (a), we reduce the

various combinations in steps as indicated in parts (b), (c), and (d), using the series and

parallel rules described in the text.



3. Combinations of capacitors

we reduce the combination step by step as indicated in the figure. The 1.0 µF and 3.0 µF

capacitors are in parallel and combine according to the expression:

The 2.0 µF and 6.0 µF capacitors also are in parallel and have an equivalent capacitance of:

Thus, the upper branch in Figure 6 b consists of two 4.0 µF capacitors in series, which combine

as follows:

The lower branch in Figure 6 b consists of two 8.0 µF capacitors in series, which combine to

yield an equivalent capacitance of :

Finally, the 2.0 µF and 4.0 µF capacitors in Figure 6 c are in parallel and thus have an equivalent

capacitance of



4. Electric current

Consider a system of electric charges in motion. Whenever there is a net flow of charge

through some region, a current is said to exist. To define current more precisely, suppose that the

charges are moving perpendicular to a surface of area A, as shown in Figure 7.

The current is the rate at which charge flows through this surface.

If ∆Q is the amount of charge that passes through this area in a time interval ∆t, the average

current Iav is equal to the charge that passes through A per unit time:

Figure 7: Charges in motion through an area

A. The time rate at which charge flows

through the area is defined as the current I.

The direction of the current is the direction in

which positive charges flow when free to do

so.

If the rate at which charge flows varies in time,

then the current varies in time; we define the

instantaneous current I as the differential limit of

average current:



4. Electric current

The SI unit of current is the ampere (A):

The charges passing through the surface in Figure 7 can be positive or negative, or both. It is

conventional to assign to the current the same direction as the flow of positive charge.

The direction of the current is opposite the direction of flow of electrons, while the current

the same direction as the flow of positive charge.



4. Electric current

Figure 8: A section of a uniform conductor of cross-

sectional area A. The mobile charge carriers move

with a speed vd , and the distance they travel in a time

∆t is ∆x = vd ∆t. The number of carriers in the section

of length ∆x is nAvd ∆t, where n is the number of

carriers per unit volume.

Consider the current in a conductor of cross-sectional area A (Figure 8). The volume of a section

of the conductor of length ∆x (the gray region shown in Fig. 8) is A ∆x. If n represents the number of

mobile charge carriers per unit volume (in other words, the charge carrier density), the number of

carriers in the gray section is nA ∆x. Therefore, the charge ∆Q in this section is

∆Q = number of carriers in section x charge per carrier = (nA ∆x)q

where q is the charge on each carrier.



4. Electric current

If the carriers move with a speed vd , the distance they move in a time ∆t is ∆x = vd ∆t. Therefore,

we can write ∆Q in the form

If we divide both sides of this equation by ∆t , we see that the average current in the conductor is

The current density J in the conductor is defined as the current per unit area

Where vd is the drift speed of the charge carriers, we see that current density is in the direction

of charge motion for positive charge carriers and opposite the direction of motion for negative

charge carriers.
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5. Resistance and Ohm’s Law

In Chapter (Gauss’s Law) we found that no electric field can exist inside a conductor.

However, this statement is true only if the conductor is in static equilibrium. This section is describe

what happens when the charges in the conductor are allowed to move.

Charges moving in a conductor produce a current under the action of an electric field. An

electric field can exist in the conductor because the charges in this situation are in motion, that is,

this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The current density J in

the conductor is defined as the current per unit area. Because the current I = nqvdA, the current

density is

where J has SI units of A/m2. This expression is valid only if the current density is uniform

and only if the surface of cross-sectional area A is perpendicular to the direction of the current.



5. Resistance and Ohm’s Law

In general, the current density is a vector quantity:

From this equation, we see that current density, like current, is in the direction of charge

motion for positive charge carriers and opposite the direction of motion for negative charge carriers.

A current density J and an electric field E are established in a conductor whenever a

potential difference is maintained across the conductor.

If the potential difference is constant, then the current also is constant. In some materials, the

current density is proportional to the electric field:

………………… (1)

where the constant of proportionality  is called the conductivity of the conductor.

Materials that obey Equation (1) are said to follow Ohm’s law, named after Georg

Simon Ohm (1787–1854).



5. Resistance and Ohm’s Law

More specifically, Ohm’s law states that: for many materials (including most metals), the ratio of

the current density to the electric field is a constant  that is independent of the electric field

producing the current.

We can obtain a form of Ohm’s law useful in practical applications by considering a segment of

straight wire of uniform cross-sectional area A and length , as shown in Figure 9. A potential

difference ΔV = Vb –Va is maintained across the wire, creating in the wire an electric field and a

current. If the field is assumed to be uniform, the potential difference is related to the field through

the relationship

Figure 9: A uniform conductor of length  and cross-

sectional area A. A potential difference ΔV = Vb –Va

maintained across the conductor sets up an electric

field E, and this field produces a current I that is

proportional to the potential difference.



5. Resistance and Ohm’s Law

Therefore, we can express the magnitude of the current density in the wire as

Because J = I/A, we can write the potential difference as

The quantity  /  A is called the resistance R of the conductor. We can define the resistance as

the ratio of the potential difference across a conductor to the current through the conductor:

………….. (2)

From this result we see that resistance has SI units of volts per ampere. One volt per ampere is

defined to be 1 ohm ():



5. Resistance and Ohm’s Law

The inverse of conductivity is resistivity  :

where  has the units ohm-meters ( . m). We can use this definition and Equation (2) to

express the resistance of a uniform block of material as

……….. (3)

6. Electrical Energy And Power

Figure 10: A circuit consisting of a resistor of resistance R and a battery

having a potential difference V across its terminals. Positive charge flows in

the clockwise direction.

The rate at which the charge Q loses potential energy

in going through the resistor is



6. Electrical Energy And Power

where U = q V and I is the current in the circuit.

Thus, the power P, representing the rate at which energy is delivered to the resistor, is

…………. (3)

Using Equation 3 and the fact that V = IR for a resistor, we can express the power delivered to

the resistor in the alternative forms:



TABLE (1) Resistivities and Temperature Coefficients of Resistivity for 

Various Materials



Example 3: Calculate the resistance of an aluminum cylinder that is 10.0 cm long and has a cross-

sectional area of 2.00  10-4 m2. Repeat the calculation for a cylinder of the same dimensions and

made of glass having a resistivity of 3  1010 . m.

Solution:

From Equation 3 and Table 1, we can calculate the resistance of the aluminum cylinder as

follows:

Similarly, for glass we find that



Example 4: (a) Calculate the resistance per unit length of a 22-gauge Nichrome wire, which has a

radius of 0.321 mm.

Solution:

The cross-sectional area of this wire is:

The resistivity of Nichrome is 1.5  10-6  . m (see Table 1). Thus, we can use Equation 1 to

find the resistance per unit length:

(b) If a potential difference of 10 V is maintained across a 1.0 m length of the Nichrome wire, what

is the current in the wire?

Solution:



Example 5: An electric heater is constructed by applying a potential difference of 120 V to a

Nichrome wire that has a total resistance of 8.00 . Find the current carried by the wire and the

power rating of the heater.

Solution:

Because V = IR, we have

We can find the power rating using the expression



7. Resistors in Series and Parallel

In parallel combination In series combination

The potential differences across the resistors

are the same.

The potential difference applied across the

series combination of resistors will divide

between the resistors.



7. Resistors in Series and Parallel

In parallel combination In series combination

The current I that enters point a must equal the

total current leaving that point.

The current results in the same current in the

battery as

The equivalent resistance is The equivalent resistance is



Example 6: Three resistors are connected in parallel as shown in Figure 11. A potential difference

of 18 V is maintained between points a and b. (a) Find the current in each resistor.

Solution:

The resistors are in parallel, and so the potential difference across each must be 18 V. Applying

the relationship V = IR to each resistor gives



Example 6: (b) Calculate the power delivered to each resistor and the total power delivered to the

combination of resistors.

Solution:

We apply the relationship to each resistor and obtain

This shows that the smallest resistor receives the most power. Summing the three quantities

gives a total power of 200 W.



Example 6: (c) Calculate the equivalent resistance of the circuit.

Solution:
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Magnetostatics and Magnetic Field 

Magnetostatics is the subfield of electromagnetics describing a static magnetic fields, it study

of magnetic fields in systems where the currents are steady (not changing with time). It is the

magnetic analogue of electrostatics, where the charges are stationary.

Every magnet, regardless of its shape, has two poles, called north (N) and south (S) poles as

shown in Figure 1. The exert forces on other magnetic poles similar to the way that electric

charges exert forces on one another, where the different magnetic electrodes are attracted to each

other (N - S), while the similar polynomials (N - N or S - S) are repulsion.

Fig 1



Magnetostatics and Magnetic Field 

The magnetic field (B) is a vector that has both magnitude and direction. The direction of the

magnetic field at any point in space is the direction indicated by the north pole of a small compass

needle placed at that point (Figure 2).

The magnetic field B on the test object at some point in space in terms can be determined by a

magnetic force FB that the field exerts on a charged particle moving with a velocity v. Let us assume

that no electric or gravitational fields are present at the location of the test object. Experiments on

various charged particles moving in a magnetic field give the following results:

(Properties of the magnetic force on a charge moving in a magnetic field B)

Fig 2

• The magnitude FB of the magnetic force exerted on the particle

is proportional to the charge q and to the speed v of the particle.

• The magnitude and direction of FB depend on the velocity of the

particle and on the magnitude and direction of the magnetic field B.



Magnetostatics and Magnetic Field 

• When a charged particle moves parallel to the magnetic field vector, the magnetic force

acting on the particle is zero.

• When the particle’s velocity vector makes any angle θ ≠ 0 with the magnetic field, the

magnetic force acts in a direction perpendicular to both v and B; that is, FB is perpendicular to the

plane formed by v and B (Figure 3a).

Figure 3: The direction of the magnetic force

FB acting on a charged particle moving with a

velocity v in the presence of a magnetic field

B. (a) The magnetic force is perpendicular to

both v and B. (b) Oppositely directed

magnetic forces FB are exerted on two

oppositely charged particles moving at the

same velocity in a magnetic field.



Magnetostatics and Magnetic Field 

• The magnetic force exerted on a positive charge is in the direction opposite the direction of

the magnetic force exerted on a negative charge moving in the same direction (Figure 3b).

• The magnitude of the magnetic force exerted on the moving particle is proportional to sin θ,

where θ is the angle the particle’s velocity vector makes with the direction of B.

We can summarize these observations by writing the magnetic force in the form

The magnitude of the magnetic force on a charged particle is

where θ is the angle between v and B. From this expression, we see that FB is zero

when v is parallel or antiparallel to B (θ = 0 or 180°) and maximum when v is

perpendicular to B (θ = 90°).



Magnetostatics and Magnetic Field 

To determine the direction of the force on a positive charge, we use a righthand rule that helps

us understand the 3D perpendicular nature of magnetic fields.

Figure 4 reviews the right-hand rule for determining the direction of the cross product v × B.

You point the four fingers of your right hand along the direction of v with the palm facing B and curl

them toward B. The extended thumb, which is at a right angle to the fingers, points in the direction of

v × B. Because FB = q v × B is in the direction of v × B if q is positive (Fig. 4a) and opposite the

direction of v × B if q is negative (Fig. 4b).

Figure 4: The right-hand rule for determining the

direction of the magnetic force FB = q v × B acting

on a particle with charge q moving with a velocity

v in a magnetic field B.

The direction of v × B is the direction in which the

thumb points. (a) If q is positive, FB is upward. (b)

If q is negative, FB is downward, antiparallel to

the direction in which the thumb points.



Magnetostatics and Magnetic Field 

Note: When a charge is placed in a magnetic field, it experiences a magnetic force if two

conditions are met:

1. The charge must be moving. No magnetic force acts on a stationary charge.

2. The velocity of the moving charge must have a component that is perpendicular to the

direction of the field.

Unit of Magnetic Field

The SI unit of magnetic field is the newton per coulomb-meter per second, which is called

the tesla (T):

Because a coulomb per second is defined to be an ampere, we see that

A non-SI magnetic-field unit in common use, called the gauss (G), is related to the

tesla through the conversion 1T=104 G.



The properties of magnetic field line

1. The lines originate from the North Pole and end on the South Pole.

2. The magnetic field at any point is tangent to the magnetic field line at that point.

3. The strength of the field is proportional to the number of lines per unit area that passes

through a surface oriented perpendicular to the lines.

4. The magnetic field lines will never come to cross each other.

Figure 5: The magnetic field lines of a bar magnetic



Example 1: An electron in a television picture tube moves toward the front of the tube with a

speed of 8 × 106 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire

that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying

in the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution:

Because v × B is in the positive z direction (from the

righthand rule) and the charge is negative, FB is in the

negative z direction.



Example 1: An electron in a television picture tube moves toward the front of the tube with a

speed of 8 × 106 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire

that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying

in the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution:

The mass of the electron is 9.11 ×10-31 kg, and so its

acceleration is

in the negative z direction.
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The Biot – Savart Law 

Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841) performed quantitative

experiments on the force exerted by an electric current on a nearby magnet. From their

experimental results, Biot and Savart arrived at a mathematical expression that gives the magnetic

field at some point in space in terms of the current that produces the field. That expression is

based on the following experimental observations for the magnetic field dB at a point P associated

with a length element ds of a wire carrying a steady current I (Figure 1):

((Properties of the magnetic field created by an electric current))

• The vector dB is perpendicular both to ds (which points in

the direction of the current) and to the unit vector rˆ directed from

ds to P.

Figure 1: The magnetic field dB at point P due to the

current I through a length element ds is given by the

Biot–Savart law.



The Biot – Savart Law 

Figure 1: The magnetic field dB at point P due to the

current I through a length element ds is given by the

Biot–Savart law.

• The magnitude of dB is inversely proportional to r 2, where r is the distance from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of the length

element ds.

• The magnitude of dB is proportional to sin θ where θ is the angle between the vectors ds

and rˆ.



These observations are summarized in the mathematical formula known today as the Biot–

Savart law:

…………….…. (1)

where μ0 is a constant called the permeability of free space, and has a value of:

It is important to note that the field dB in Equation (1) is the field created by the current in only

a small length element ds of the conductor. To find the total magnetic field B created at some point

by a current of finite size, we must sum up contributions from all current elements Ids that make up

the current. The total magnetic field is getting by integral Equation (1):

The Biot – Savart Law 



Ampère’s Law 

The magnetic field at a distance r from a very long straight wire (Figure 2), carrying a steady

current I (i.e. do not change with time), has a magnitude equal to:

and a direction perpendicular to r and I. The closed path integral along a circle centered around

the wire, which is equivalent to the line integral of B . ds, is

Where is the circumference of the circular path.

Figure 2



Ampère’s Law 

The general case, known as Ampère’s law, can be stated as follows:

The line integral of B . ds around any closed path equals μ0 I, where I is the total

continuous current passing through any surface bounded by the closed path.

Note: In order to apply Ampère’s Law all currents have to be steady (i.e. do not change with

time).



Magnetic Flux

The flux associated with a magnetic field is defined in a manner similar to that used to define

electric flux.

Consider an element of area dA on an arbitrarily shaped surface, as shown in (Figure 3). If

the magnetic field at this element is B, the magnetic flux through the element is B . dA, where dA

is a vector that is perpendicular to the surface and has a magnitude equal to the area dA.

Hence, the total magnetic flux ΦB through the surface dA is:

Figure 3: The magnetic flux through an area element dA is

B . dA = BdA cos θ, where dA is a vector perpendicular to the

surface.

The unit of flux is the T . m2, which is defined as a

weber (Wb); 1 Wb = 1 T . m2.



Magnetic Flux

Consider the special case of a plane of area A in a uniform field B that makes an angle θ with

dA. The magnetic flux through the plane in this case is:

• If the magnetic field is parallel to the plane, as in Figure 4a, then θ=90° and the flux is zero.

• If the magnetic field is perpendicular to the plane, as in Figure 4b, then θ=0 and the flux is BA

(the maximum value).

Figure 4: Magnetic flux through a plane lying in a magnetic field.

(a) The flux through the plane is zero when the magnetic field is

parallel to the plane surface.

(b) The flux through the plane is a maximum when the magnetic

field is perpendicular to the plane.



3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge q1 = 2.00 µC is located at the origin, and a charge q2 = - 6.00 µC is located

at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at

the point P, whose coordinates are (4.00, 0) m.

Solution:

Fig. 6 (a)



3. Electric Potential and Potential Energy Due to Point Charges

Example 3: A charge q1 = 2.00 µC is located at the origin, and a charge q2 = - 6.00 µC is located

at (0, 3.00) m, as shown in Figure 6a. (a) Find the total electric potential due to these charges at

the point P, whose coordinates are (4.00, 0) m.

Solution:



Q 1: Consider two charge as shows in Figure with the charge q1= 3.0 nC is located at (0, 2.0) cm, and

separation distance d=4.0 cm from another charge q2= –3.0 nC. Find the total electric potential due to

these charges at the point P whose coordinates are (a) (0, 1.0 cm), (b) (0, –5.0 cm)?

Solution:

(a)

(b)



3. Electric Potential and Potential Energy Due to Point Charges

(c) Find the potential energy of the system of three charges (Fig. 6b).

Solution:

Fig. 6 (b)



Q 2: Find the potential energy of the system of three charges (q1=2nC, q2=4nC, q3=6nC) moves from

infinity to the corners of an equilateral triangle of side length 5 cm, where is the magnitude of electric

potential due to these charges of 5.43 × 104 v?

Solution:



Example 1: An electron in a television picture tube moves toward the front of the tube with a

speed of 8 × 106 m/s along the x axis (Fig. 29.5). Surrounding the neck of the tube are coils of wire

that create a magnetic field of magnitude 0.025 T, directed at an angle of 60° to the x axis and lying

in the xy plane. Calculate the magnetic force on and acceleration of the electron.

Solution:

Because v × B is in the positive z direction (from the

righthand rule) and the charge is negative, FB is in the

negative z direction.



Q 3: Calculate the magnitude of magnetic field when a proton moved perpendicularly (90o) across a

magnetic field with a speed of 7 × 105 m/s if the exert magnetic force on this proton of 2.5 × 10−12 N?

Solution:



Q 4: Three resistors are connected in Series-Parallel as shown in (Figure a).

(1) Calculate the equivalent resistance of the circuit.

(2) Find the current drawn from the power supply in the circuit shown in (Figure b).

Solution:






