
Experiment No. (1)                                                                                                     Introduction to MATLAB 

  1 

Experiment No. ( 1 ) 
Introduction to MATLAB 

 
 
 
 
1-1 Introduction 
 

MATLAB is a high-performance language for technical computing. It integrates 
computation, visualization, and programming in an easy-to-use environment where problems 
and solutions are expressed in familiar mathematical notation.  

The name MATLAB stands for matrix laboratory. MATLAB was originally written to 
provide easy access to matrix. 
 
 
1-1-1 Starting and Quitting MATLAB 
 

• To start MATLAB, double-click the MATLAB shortcut icon        on your Windows 
desktop. You will know MALTAB is running when you see the special                    
" >> "   prompt in the MATLAB Command Window.  

 
• To end your MATLAB session, select Exit MATLAB from the File menu in the 

desktop, or type quit (or exit) in the Command Window, or with easy way by   
click on close button       in control box.  

 
 
1-1-2 Desktop Tools 
 

1- Command Window: Use the Command Window to enter variables and run 

functions and M-files. 

2- Command History: Statements you enter in the Command Window are logged in 

the Command History. In the Command History, you can view previously run 

statements, and copy and execute selected statements. 

3- Current Directory Browser: MATLAB file operations use the current directory 

reference point. Any file you want to run must be in the current directory or on the 

search path. 

4- Workspace: The MATLAB workspace consists of the set of variables (named 

arrays) built up during a MATLAB session and stored in memory. 



Experiment No. (1)                                                                                                     Introduction to MATLAB 

 2 

 

 

 

 

 

5- Editor/Debugger Window: Use the Editor/Debugger to create and debug M-files. 

Workspace 

Current Directory Browser Command Window 

Command 
History 



Experiment No. (1)                                                                                                     Introduction to MATLAB 

  3 

1-2 Basic Commands 
 

• clear Command: Removes all variables from workspace. 

• clc Command:  Clears the Command window and homes the cursor. 

• help Command:  help <Topic> displays help about that Topic if it exist. 

• lookfor Command: Provides help by searching through all the first lines of 

MATLAB     help topics and returning those that contains a key word you specify. 

• edit Command: enable you to edit (open) any M-file in Editor Window. This 

command doesn’t open built-in function like, sqrt. See also type Command. 

• more command: more on enables paging of the output in the MATLAB 

command window, and  more off disables paging of the output in the MATLAB 

command window.        

 

 

 

Notes: 
 

• A semicolon " ; " at the end of a MATLAB statement suppresses printing of results. 

• If a statement does not fit on one line, use " . . . ", followed by Enter to indicate that 

the statement continues on the next line. For example: 
 

>> S= sqrt (225)*30 /... 

  (20*sqrt (100) 

• If we don’t specify an output variable, MATLAB uses the variable ans (short for 
answer), to store the last results of a calculation. 

• Use Up arrow and Down arrow to edit previous commands you entered in 
Command Window. 

• Insert " % " before the statement that you want to use it as comment; the statement 
will appear in green color. 

 
 
 



Experiment No. (1)                                                                                                     Introduction to MATLAB 

 4 

 

Now Try to do the following: 
 
>> a=3 
 
>> a=3;                           can you see the effect of semicolon " ; " 
 
>> a+5                             assign the sum of a and 5 to ans 
 
>> b=a+5                            assign the sum of a and 5 to b 
 
>> clear a 
 
>> a                              can you see the effect of clear command 
 
>> clc                             clean the screen 
 
>> b 
 
 
 
 
Exercises 
 

1- Use edit command to edit the dct function, then try to edit sin function. State the 
difference. 

 
2- Use help command to get help about rand function. 

 
3- Enter a=3; b=5; c=7,  then clear the variable b only 

 
 
 
 
 



 

 5 

Experiment No. ( 2 ) 
Working with Matrices 

 
 

2-1 Entering Matrix 
 

The best way for you to get started with MATLAB is to learn how to handle matrices. 

You only have to follow a few basic conventions: 
 

• Separate the elements of a row with blanks or commas. 

• Use a semicolon ( ; ) to indicate the end of each row. 

• Surround the entire list of elements with square brackets, [ ].  
 

For Example 

      >> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1] 

          MATLAB displays the matrix you just entered. 

A = 

16  3  2  13 

5  10  11  8 

9  6  7  12 

4  15  14  1 

 

Once you have entered the matrix, it is automatically remembered in the MATLAB 
workspace. You can refer to it simply as A. Also you can enter and change the values of 
matrix elements by using workspace window. 

 
 

2-2 Subscripts 
 

The element in row i and column j of A is denoted by A(i,j). For example, A(4,2) 
is the number in the fourth row and second column. For the above matrix, A(4,2) is 15.    
So to compute the sum of the elements in the fourth column of A, type  

 

>> A(1,4) + A(2,4) + A(3,4) + A(4,4)              
 

ans = 
34 



Experiment No. (2)                                                                                                         Working with Matrices 

 6 

You can do the above summation, in simple way by using sum command. 
 
If you try to use the value of an element outside of the matrix, it is an error. 
 

>> t = A(4,5)          
??? Index exceeds matrix dimensions. 
 
On the other hand, if you store a value in an element outside of the matrix, the size 

increases to accommodate the newcomer. The initial values of other new elements are zeros. 
 
>> X = A; 

>> X(4,5) = 17 

X = 
16  3  2  13  0 
5  10  11  8  0 
9  6 7  12  0 
4  15  14  1  17 
 
 

2-3 Colon Operator 
 

The colon " : " is one of the most important MATLAB operators. It occurs in several 

different forms. The expression 
 

>> 1:10 

          is a row vector containing the integers from 1 to 10 

1 2 3 4 5 6 7 8 9 10 

To obtain nonunit spacing, specify an increment. For example, 

>> 100:-7:50 

100 93 86 79 72 65 58 51 
 

Subscript expressions involving colons refer to portions of a matrix. 

>>A(1:k,j) 

is the first k elements of the jth column of A. 
 



Experiment No. (2)                                                                                                         Working with Matrices  

  7 

The colon by itself refers to all the elements in a row or column of a matrix and the 
keyword end refers to the last row or column. So 

 
>> A(4,:)           or    >> A(4,1:end)   give the same action 
ans = 
4  15  14  1  
 
>> A(2,end) 
ans = 
8 

 
 
 
2-4 Basic Matrix Functions 
 

Command Description 

sum(x) 

>> x=[1 2 3 

      4 5 6]; 

>> sum(x) 

ans = 

       5     7     9 

>> sum(x,2) 

ans= 

       6 

       15 

>>sum(sum(x)) 

ans = 

 21 

The sum of the elements of x. For matrices, 

sum(x) is a row vector with the sum over 

each column. 

 

 
 

sum (x,dim) sums along the dimension dim. 
 

 

 

In order to find the sum of elements that are 

stored in matrix with n dimensions, you must 

use sum command n times in cascade form, 

this is also applicable for max, min, prod, 

mean, median commands. 



Experiment No. (2)                                                                                                         Working with Matrices 

 8 

Command Description 

mean(x) 

x=[1 2 3; 4 5 6]; 

>> mean(x) 

ans = 

    2.5   3.5    4.5 

 

>> mean(x,2) 

ans = 

         2 

         5 

>>mean(mean(x)) 

ans = 

          3.5000 

The average of the elements of x. For 

matrices, mean(x) is a row vector with the 

average over each column. 

mean (x,dim) averages along the dimension 

dim. 

 

zeros(N) 

zeros(N,M) 

>> zeros(2,3) 

ans = 

         0     0     0 

         0     0     0 

Produce N by N matrix of zeros. 

Produce N by M matrix of zeros. 

 

ones(N) 

ones(N,M) 

>> ones(2,3) 

ans = 

         1     1     1 

         1     1     1 

Produce N by N matrix of ones. 

Produce N by M matrix of ones. 

 



Experiment No. (2)                                                                                                         Working with Matrices  

  9 

Command Description 

size(x) 

>> x=[1 2 3 

      4 5 6]; 

>> size(x) 

ans = 

        2     3 

return the size (dimensions) of matrix x. 

length(v) 

>> v=[1 2 3]; 

>> length(v) 

ans = 

        3 

return the length (number of elements)         

of vector v. 

numel(x) 

 

>> v =[55 63 34]; 

>> numel(v) 

ans = 

     3 

 

>> x=[1 2  

      4 5  

      7 8 ]; 

>> numel(x) 

ans = 

     6 

 

 

 

returns the number of elements in array x. 



Experiment No. (2)                                                                                                         Working with Matrices 

 10 

Command Description 

single quote ( ' )  
 

>> x=[1 2 3 

      4 5 6 

      7 8 9]; 

>> x' 

ans = 

     1     4     7 

     2     5     8 

     3     6     9 

>> v=[1 2 3]; 

>> v' 

ans = 

     1 

     2 

     3 

Matrix transpose. It flips a matrix about its 
main diagonal and it turns a row vector into a 
column vector. 
 

max (x) 

>> x=[1 2 3 

      4 5 6]; 

>> max (x) 

ans = 

        4     5     6 

>> max(max(x)) 

ans = 

     6 

Find the largest element in a matrix or a 
vector. 



Experiment No. (2)                                                                                                         Working with Matrices  

  11 

Command Description 

min (x) 

>> x=[1 2 3 

      4 5 6]; 

>> min (x) 

ans = 

        1     2     3 

>> min(min(x)) 

ans = 

        1 

Find the smallest element in a matrix or a 
vector. 

magic(N) 

>> magic(3) 

ans = 

        8     1     6 

        3     5     7 

        4     9     2 

produce N Magic square. This command 
produces valid magic squares for all N>0 
except N=2. 

inv(x) 

>> x=[1  4; 

      5  8]; 
 

>> inv(x) 

ans = 

   -0.6667    0.3333 

    0.4167   -0.0833 

produce the inverse of matrix x. 



Experiment No. (2)                                                                                                         Working with Matrices 

 12 

Command Description 

diag(x) 

>> x=[1   2   3 

   4   5   6 

   7   8   9]; 

>> diag(x) 

ans = 

     1 

     5 

     9 

>> v=[1 2 3]; 

>> diag(v) 

ans = 

     1     0     0 

     0     2     0 

     0     0     3 

Return the diagonal of matrix x. if x is a 
vector then this command produce a diagonal 
matrix with diagonal x.  

prod(x) 

>> x=[1 2 3 

          4 5 6]; 

>> prod(x) 

ans =  4    10    18 

>> prod(prod(x)) 

ans = 

   720 

Product of the elements of x. For matrices, 
Prod(x) is a row vector with the product over 
each column. 
 
 



Experiment No. (2)                                                                                                         Working with Matrices  

  13 

Command Description 

median(x) 

x=[4  6  8 

  10  9  1 

   8  2  5]; 

>> median(x) 

ans = 

     8     6     5 

>> median(x,2) 

ans = 

     6 

     9 

     5 

>> median(median(x)) 

ans = 

     6 

The median value of the elements of x. For 

matrices, median (x) is a row vector with the 

median value for each column. 

 

 

 
 

median(x,dim) takes the median along the 

dimension dim of x. 

sort(x,DIM,MODE) 

>> x = [3 7 5 
       0 4 2]; 
>> sort(x,1) 
ans = 
     0     4     2 
     3     7     5 
>> sort(x,2) 
ans = 
     3     5     7 
     0     2     4 
>> sort(x,2,'descend') 
ans = 
     7     5     3 
     4     2     0 

Sort in ascending or descending order. 

- For vectors, sort(x) sorts the elements of x 

in ascending order. 

    For matrices, sort(x) sorts each column of 

x in ascending order. 

 

DIM= 1               by default 

MODE= 'ascend'   by default 

 



Experiment No. (2)                                                                                                         Working with Matrices 

 14 

Command Description 

det(x) 

>> x=[5 1 8 

      4 7 3 

      2 5 6]; 

>> det(x) 

ans = 

   165 

Det is the determinant of the square matrix x. 

tril(x) 

>> x=[5 1 8 

      4 7 3 

      2 5 6]; 

>> tril(x) 

ans = 

     5     0     0 

     4     7     0 

     2     5     6 

Extract lower triangular part of matrix x. 

triu(x) 

>> x=[5 1 8 

      4 7 3 

      2 5 6]; 

>> triu(x) 

ans = 

     5     1     8 

     0     7     3 

     0     0     6 

Extract upper triangular part of matrix x. 

 
 



Experiment No. (2)                                                                                                         Working with Matrices  

  15 

 

Note 

When we are taken away from the world of linear algebra, matrices become            

two-dimensional numeric arrays. Arithmetic operations on arrays are done                  

element-by-element. This means that addition and subtraction are the same for arrays and 

matrices, but that multiplicative operations are different. MATLAB uses a dot ( . ),         

or decimal point, as part of the notation for multiplicative array operations. 

 

Example:    Find the factorial of  5 
 
 >> x=2:5; 
 >> prod(x) 
 
 
Example: if x = [1,5,7,9,13,20,6,7,8], then 
 

a) replace the first five elements of vector x with its maximum value. 
b) reshape this vector into a 3 x 3 matrix. 

 
solution 
 

a)  
>> x(1:5)=max(x) 

 
b)  
>> y(1,:)=x(1:3); 
>> y(2,:)=x(4:6); 
>> y(3,:)=x(7:9); 
>> y 
 

Example: Generate the following row vector  b=[1, 2, 3, 4, 5, . . . . . . . . . 9,10],                 
then   transpose it to column vector. 

 
solution 
 
 >> b=1:10 

b = 
      1 2 3 4 5 6 7 8 9 10 
 >> b=b'; 



Experiment No. (2)                                                                                                         Working with Matrices 

 16 

Exercises 
 

1- If  x=[1 4; 8 3],  find : 
a) the inverse matrix of  x . 
b) the diagonal of x. 
c) the sum of each column and the sum of whole matrix x. 
d) the transpose of x. 

 
 
2- If  x= [2 8 5; 9 7 1],  b=[2 4 5]  find: 

a) find the maximum and minimum of x. 
b) find median value over each row of x. 
c) add the vector b as a third row to x. 

 
3- If x=[ 2 6 12; 15 6 3; 10 11 1], then 

 
a) replace the first row elements of matrix  x with its average value. 
b) reshape this matrix into row vector. 

 
4- Generate a  4 x 4 Identity matrix. 
 
5- Generate the following row vector  b=[5, 10, 15, 20 . . . . . . . . . 95, 100], then find the 

number of elements in this vector. 
 
 



 

 17 

Experiment No. ( 3 ) 
Expressions 

 
Like most other programming languages, MATLAB provides mathematical 

expressions, but unlike most programming languages, these expressions involve entire 

matrices. The building blocks of expressions are: 
 

1- Variable    2- Numbers         3- Operators         4- Functions 

 

3-1 Variable 

MATLAB does not require any type declarations or dimension statements. When 

MATLAB encounters a new variable name, it automatically creates the variable and allocates 

the appropriate amount of storage. If the variable already exists, MATLAB changes its 

contents and, if necessary, allocates new storage. For example, 

num_students = 25 

creates a 1-by-1 matrix named num_students and stores the value 25 in its 

single element. 

Variable names consist of a letter, followed by any number of letters, digits, or 

underscores. MATLAB uses only the first 31 characters of a variable name. MATLAB is 

case sensitive; it distinguishes between uppercase and lowercase letters. A and a are not the 

same variable. 

 

3-2 Numbers 

MATLAB uses conventional decimal notation, with an optional decimal point and 

leading plus or minus sign, for numbers. Scientific notation uses the letter ( e ) to specify a 

power-of-ten scale factor. Imaginary numbers use either i or j as a suffix. Some examples of 

legal numbers are 

3 -99         0.0001     9.6397238   1.60210e-20                 

                  6.02252e23        1i  3+5j 



Experiment No. (3)                                                                                                                           Expressions 

 18 

3-3 Arithmetic Operators 
 

Operator Description 

+ Plus 

- Minus 

* Matrix multiply 

.* Array multiply 

^ Matrix power 

. ^ Array power 

\ Backslash or left matrix divide 

/ Slash or right matrix divide 

. \ Left array divide 

. / Right array divide 

( ) Specify evaluation order 

 
 
 
3-4 Function 
 

MATLAB provides a large number of standard elementary mathematical functions, 
including abs, sqrt, exp, and sin. Taking the square root or logarithm of a negative number is 
not an error; the appropriate complex result is produced automatically. MATLAB also 
provides many more advanced mathematical functions, including Bessel and gamma 
functions. Most of these functions accept complex arguments. For a list of the elementary 
mathematical functions, type 

 

>> help elfun 
 

For a list of more advanced mathematical and matrix functions, type 
 

>> help specfun 
>> help elmat 
 
Some of the functions, like sqrt and sin, are built in. They are part of the MATLAB 

core so they are very efficient, but the computational details are not readily accessible. Other 



Experiment No. (3)                                                                                                                           Expressions  

  19 

functions, like gamma and sinh, are implemented in M-files. You can see the code and even 
modify it if you want. 

 
Command Description 

abs(x)  Absolute value (magnitude of complex number). 

acos(x)  Inverse cosine. 

angle(x)  Phase angle (angle of complex number). 

asin(x)  Inverse sine. 

atan(x)  Inverse tangent. 

atan2(x,y)  Four quadrant inverse tangent: tan-1 (x / y). 

ceil(x)  Round towards plus infinity. 

conj(x)  Complex conjugate. 

cos(x)  Cosine of x, assumes radians. 

exp(x)  Exponential: e x. 

fix(x)  Round towards zero. 

floor(x)  Round towards minus infinity. 

imag(x)  Complex imaginary part. 

log(x)  Natural logarithm: ln(x). 

log10(x)  Common (base 10) logarithm: log10(x). 

log2(x)  Base 2 logarithm: log2(x). 

real(x)  Complex real part. 

rem(x)  Remainder after division. 

mod(x) Modulus after division. 

round(x)  Round towards nearest integer. 

sign(x)  Signum: return sign of argument. 

sin(x)  Sine of x, assumes radians. 

sqrt(x)  Square root. 

tan(x)  Tangent of x, assumes radians. 



Experiment No. (3)                                                                                                                           Expressions 

 20 

rand(n) returns an N-by-N matrix containing pseudorandom 

values drawn     from the standard uniform distribution on 

the open interval(0,1). rand(M,N) returns an M-by-N 

matrix. rand returns a scalar. 

randn(n) returns an N-by-N matrix containing pseudorandom 

values drawn     from the standard normal distribution on 

the open interval(0,1). randn(M,N) returns an M-by-N 

matrix. randn returns a scalar. 

 
 
Several special functions provide values of useful constants. 

 
Constant Description 

eps  Floating point relative accuracy ≈ 2.2204e-016. 

realmax  Largest positive floating point number. 

realmin  Smallest positive floating point number. 

pi  3.1415926535897.... 

i and j  Imaginary unit 1− . 

inf  Infinity, e.g. 1/0 

NaN  Not A Number, e.g. 0/0 

 
 
3-5 Examples of Expressions 
 

1) >> x = (1+sqrt(5))/2 
x = 
1.6180 
>> a = abs(3+4i) 
a = 
5 
>> y=sin(pi/3)+cos(pi/4)-2*sqrt(3) 
y = 
-1.8910 
 



Experiment No. (3)                                                                                                                           Expressions  

  21 

 
2) Solve the following system 

 
x+y=1 
x-y+z=0 
x+y+z=2 
 

                 Solution 
   
  >> a=[1 1 0; 1 -1 1; 1 1 1]; b=[1;0;2]; 
  >> x=inv(a)*b 
  or 

>> x=a\b 
 
 
 
 
Exercises 
 
 

1- Write a MATLAB program to calculate the following expression and round the 
answers to the nearest integer.  

 

a) 225 yxz +=                                         where   x=2,  y=4 
b) j6sin(x)4cos(x)z +=                             where   x=π/4 

c) yexxz 3)cos(4)sin(3 ++=                     where    x=π/3 , y=2 
d) xxy /)sin(=                                               where    0 ≤ x ≤ 2π 

 
2- Solve the following system 

 
x + y - 2z = 3 
2x + y = 7 
x + y - z = 4 
 
 
 
 
 
 



Experiment No. (3)                                                                                                                           Expressions 

 22 

 
3- Use [ round, fix, ceil, floor ] commands to round the following numbers towards 

integer numbers: 
 

Before After 
1.3 1 
1.5 1 
1.9 2 
11.9 11 
-2.9 -2 
-3.9 -4 
3.4 3 

 
4- Write a Program to calculate the electromagnetic force between two electrons placed  

(in vacuum) at a distance ( r = 2*10-13 m ) from each other. Charge of electron (Q) is 
1.6*10-19 C. 

 
Hint 

 2
21

r
QQK  Force neticElectromag =  

 K=9*109 

 
5- Generate ten values from the uniform distribution on the interval [2, 3.5]. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 23 

Experiment No. (4) 
Relational and Logical Operations 

 

These operations and functions provide answers to True-False questions. One 

important use of this capability is to control the flow or order of execution of a series of 

MATLAB commands (usually in an M-file ) based on the results of true/false questions. 

As inputs to all relational and logical expressions, MATLAB considers any nonzero 

number to be true, and zero to be False. The output of all relational and logical expressions 

produces one for True and zero for False, and the array is flagged as logical. That is, the 

result contains numerical values 1 and 0 that can be used in mathematical statement, but also 

allow logical array addressing. 

 

4-1 Relational Operations 

 
Operation Description 

= = Equal                             

~ = Not equal                        

< Less than                           

> Greater than                       

<= Less than or equal               

>= Greater than or equal           

 
Example: 
 
>> a=1:9; b=9-a; 
>> t=a>4       %finds elements of (a) that are greater than 4. 
                
t = 
 
     0     0     0     0     1     1     1     1     1 
 
Zeros appear where a ≤ 4, and ones where a > 4. 



Experiment No. (4)                                                                                      Relational and Logical Operations 

 24 

>> t= (a==b)   %finds elements of (a) that are equal to those in (b). 
 
t = 

0     0     0     0     0     0     0     0     0                
 
 

4-2 Logical Operation 
 
 

Operation Description 

& Logical AND  and(a,b)     

| Logical OR     or(a,b)                     

~ Logical NOT       

xor (a,b) Logical EXCLUSIVE OR 

 
Example: 
 
>> a = [0  4  0  -3  -5  2]; 
>> b = ~a 
b = 
     1     0     1     0     0     0 
 
>> c=a&b 
c = 
     0     0     0     0     0     0 
 
 
Example: let x=[ 2 -3 5 ;0 11 0], then 
 

a) find elements in x that are greater than 2 
b) find the number of nonzero elements in x 

 
solution  

a)  
>> x>2 
ans = 
 

        0     0     1 
        0     1     0 



Experiment No. (4)                                                                                       Relational and Logical Operations 

  25 

b)  
>> t=~(~x); 
>> sum(sum(t)) 
 
ans = 
 
     4 
 

 
 

4-3 Bitwise Operation 
 

MATLAB also has a number of functions that perform bitwise logical 
operations. 

If A, B unsigned integers then: 
 

Operation Description 

bitand (A, B) Bitwise AND      

bitor (A, B) Bitwise OR      

bitset (A, BIT) sets bit position BIT in A to 1 

bitget (A, BIT) returns the value of the bit at position BIT in A 

xor (A, B) Bitwise EXCLUSIVE OR 

 
 
Example:     if  A=5,  B=6 then:                                          5 
 
  >> bitget(A,3)                   

ans = 1                                 where   A= 1 0 1 0 0 0 0 0 
                                             

>> bitget(A,(1:8)) 
ans = 

     1     0     1     0     0     0     0     0 
  >> bitand(A,B) 

ans = 
     4 

>> and(A,B) 
ans = 

     1 
 



Experiment No. (4)                                                                                      Relational and Logical Operations 

 26 

 
4-4 Logical Functions 

 
MATLAB has a number of useful logical functions that operate on scalars, 

vectors, and matrices. Examples are given in the following list:- 
 

 
 
Function Description 

any(x) True if any element of a vector is a nonzero number or is logical 1 (TRUE) 
all(x) True if all elements of a vector are nonzero. 
find(x) Find indices of nonzero elements 
isnan(x) True for Not-a-Number 
isinf(x) True for infinite elements. 
isempty(x) True for empty array. 
 
 
 
Example: Let A=[4 9 7 0 5],  
 
  >> any(A) 

ans =     1 
 
>> all(A) 
ans =     0 
 
>> find(A) 
ans =     1     2     3     5 

 
To remove zero elements from matrix 
  >> B=A(find(A)); 

>> B 
B =      4     9     7     5 

 
To find the location of maximum number of B 

>> find(B==max(B)) 
     ans =      2 

 
 
 
 



Experiment No. (4)                                                                                       Relational and Logical Operations 

  27 

Exercises 
 

1- write a program to read three bits x, y, z, then compute: 
 

a) v = (x and y) or z 
b) w = not (x or y) and z 
c) u = (x and not (y)) or (not (x) and y) 
  

2- Write a program for three bits parity generator using even-parity bit. 
 
3- Write a program to convert a three bits binary number into its equivalent gray code. 
 
4- if q=[1 5 6 8 3 2 4 5 9 10 1],x=[ 3 5 7 8 3 1 2 4 11 5 9],  
    then: 
 

a) find elements of (q) that are greater than 4. 
b) find elements of (q) that are equal to those in (x). 
c) find elements of (x) that are less than or equal to 7. 
 

5- If x=[10 3 ; 9 15],  y=[10 0; 9 3], z=[-1 0; -3 2], what is the 
output of the following statements: 

 
a)  v = x > y 
b)  w = z >= y 
c)  u = ~z & y 
d)  t = x & y < z 

  
 



 

 28 

Experiment No. ( 5 ) 
Plotting Function 

 
 
 MATLAB has extensive facilities for displaying vectors and matrices as graphs,         

as well as annotating and printing these graphs. 

 

5-1 Creating a Plot Using Plot Function 

 

The plot function has different forms, depending on the input arguments. If y is a 

vector, plot(y) produces a piecewise linear graph of the elements of y versus the index of the 

elements of y. If you specify two vectors as arguments, plot(x,y) produces a graph of             

y versus x. For example, these statements use the colon operator to create a vector of x values 

ranging from zero to 2*pi, compute the sine of these values, and plot the result. 

 

x = 0:pi/100:2*pi; 

y = sin(x); 

plot(y) 



Experiment No. (5)                                                                                                                 Plotting Function 
 

  29 

Now plot y variable by using:  
 

plot(x,y)                                    

 can you see the difference at x-axis 

 
 

5-2 Specifying Line Styles and Colors 
 
Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s is 

a character string made from one element from any or all the following 3 columns: 
 

Color  Marker  Line Style  
b blue . point     - solid 
g green o circle  : dotted 
r red x x-mark  -. dashdot  
c cyan + plus      -- dashed    
m magenta * star    (none) no line 
y yellow s square    
k black d diamond    
  v triangle (down)   
  > triangle (left)   
  p pentagram   
  h hexagram   

 



Experiment No. (5)                                                                                                                  Plotting Function 
 

 30 

Example: 
 

x1 = 0:pi/100:2*pi; 
x2 = 0:pi/10:2*pi; 
plot(x1,sin(x1),'r:',x2,cos(x2),'r+') 
 

 
 

5-3 Adding Plots to an Existing Graph 

The hold command enables you to add plots to an existing graph. When you type 

hold on MATLAB does not replace the existing graph when you issue another plotting 

command; it adds the new data to the current graph, rescaling the axes if necessary. 

 

Example: 
 

x1 = 0:pi/100:2*pi; 
x2 = 0:pi/10:2*pi; 
plot(x1,sin(x1),'r:') 
 
hold on 
 
plot(x2,cos(x2),'r+') 
 



Experiment No. (5)                                                                                                                 Plotting Function 
 

  31 

 
 

 
5-4 Multiple Plots in One Figure 
 
The subplot command enables you to display multiple plots in the same window or 

print them on the same piece of paper. Typing  
 

subplot(m,n,p) 
 
partitions the figure window into an m-by-n matrix of small subplots and selects the pth 
subplot for the current plot. The plots are numbered along first the top row of the figure 
window, then the second row, and so on. For example, these statements plot data in four 
different sub regions of the figure window.  

 
t = 0:pi/10:2*pi; 

x=sin(t); y=cos(t); z= 2*y-3*x; v=5-z;  

subplot(2,2,1); plot(x) 

subplot(2,2,2); plot(y) 

subplot(2,2,3); plot(z) 

subplot(2,2,4); plot(v) 

 



Experiment No. (5)                                                                                                                  Plotting Function 
 

 32 

 
    

                  
 
 

5-5 Setting Axis Limits 
 
By default, MATLAB finds the maxima and minima of the data to choose the axis 

limits to span this range. The axis command enables you to specify your own limits  
axis([xmin xmax ymin ymax]) 
 

 

5-6 Axis Labels and Titles 
 

The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The title command 
adds a title at the top of the figure and the text function inserts text anywhere in the figure.  
 
Example: 
 

t = -pi:pi/100:pi; 

y = sin(t); 

plot(t,y) 

axis([-pi pi -1 1]) 



Experiment No. (5)                                                                                                                 Plotting Function 
 

  33 

xlabel('-\pi to \pi') 

ylabel('sin(t)') 

title('Graph of the sine function') 

text(1,-1/3,'Note the odd symmetry') 

 

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-π to π

si
n(

t)

Graph of the sine function

Note the odd symmetry

 
 

 

 

 

 

 

 

 

 

Notice the symbol 



Experiment No. (5)                                                                                                                  Plotting Function 
 

 34 

Exercises 

 

1- Plot sawtooth  waveform as shown below  

 

 

 

 

 

 

2- Plot Sinc function, where Sinc (x) = sin(x) / x ,   and   -2π ≤ x ≤  2π 

3- Plot sin(x) and cos(x) on the same figure, then on the same axis using different colors. 

4- if y=sin(x), z=cos(x), v=exp(x),     where       -π ≤ x ≤ π 

could you plot y, z, v as shown below! 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 35 

Experiment No. ( 6 ) 
Complex and Statistical Functions 

 
 
 

6-1 Complex Numbers 
 
It is very easy to handle complex numbers in MATLAB. The special values i and j 

stand for √−1. Try sqrt(–1) to see how MATLAB represents complex numbers. 
 
The symbol i may be used to assign complex values, for example, 

 
>> z = 2 + 3*i    

 
represents the complex number 2 + 3i  (real part 2, imaginary part 3).  
 
You can also input a complex value like this: 
 
>> z=2 + 3i 
 
The imaginary part of a complex number may also be entered without an asterisk ( * ), 3i. 
 
You can also input a complex value like this: 
 
>> z=complex(2,3) 
z = 
   2.0000 + 3.0000i 
 
Example: Produce ten elements vector of random complex numbers and find the summation 
of this vector 
 
 

>> x=rand(1,10); 
>> y=rand(1,10); 
>> z=x+i*y 
>> sum(z) 

Or 
 
 >> z=complex(x,y) 
 >> sum(z) 
 



Experiment No. (6)                                                                             Complex and Statistical Functions 
 

 36 

All of the arithmetic operators (and most functions) work with complex numbers, such 
as sqrt(2 + 3*i) and exp(i*pi). Some functions are specific to complex numbers, like: 
 
 

Command Description 
>> A=3+4i 
A = 
   3.0000 + 4.0000i 
 
>> A = complex(3,4) 
A = 
   3.0000 + 4.0000i 
 
>> B = complex(-1,-3) 
B = 
  -1.0000 - 3.0000i 
 

Construct complex data from real and 
imaginary components 

>> abs(A) 
ans = 
     5 
 
>> abs(B) 
ans = 
    3.1623 

Absolute value and complex magnitude 

>> angle(A) 
ans = 
    0.9273 
 
>> angle(A)*180/pi 
ans = 
   53.1301 
 
>> angle(B)*180/pi 
ans = 
-108.4349 

Phase angle 

>> conj(A) 
ans = 
   3.0000 - 4.0000i 
>> conj(B) 
ans = 
  -1.0000 + 3.0000i 

Complex conjugate 



Experiment No. (6)                                                                       Complex and Statistical Functions 
 

  37 

Command Description 
>> real(A) 
ans = 
     3 
>> real(B) 
ans = 
    -1 

Real part of complex number 

>> imag(A) 
ans = 
     4 
>> imag(B) 
ans = 
    -3 

Imaginary part of complex number 

 
 
Example:  Exchange the real and imaginary parts of the following matrix 
 
    A =  0.8147 + 0.1576i   0.9058 + 0.9706i   0.1270 + 0.9572i 
       0.9134 + 0.4854i   0.6324 + 0.8003i   0.0975 + 0.1419i 
 
 
>> A=[0.8147 + 0.1576i,   0.9058 + 0.9706i,   0.1270 + 0.9572i 
     0.9134 + 0.4854i,   0.6324 + 0.8003i,   0.0975 + 0.1419i ]; 
 
>> x=real(A); 
>> y=imag(A); 
>> a=x; 
>> x=y; 
>> y=a; 
>> A=x+i*y 
 
A = 
 
   0.1576 + 0.8147i   0.9706 + 0.9058i   0.9572 + 0.1270i 
   0.4854 + 0.9134i   0.8003 + 0.6324i   0.1419 + 0.0975i 
 
 
 
 
 
 



Experiment No. (6)                                                                             Complex and Statistical Functions 
 

 38 

6-2 Statistical Functions 
 

Function Description 
mean(x) Average or mean value of array  ( x ) 
median(x) Median value of array  ( x ) 
mode(x) Most frequent values in array  ( x ) When there are multiple values 

occurring equally frequently, mode returns the smallest of those values. 
For complex inputs, this is taken to be the first value in a sorted list of 
values. 

std(x) returns the standard deviation of array ( x ) 

s = std(x) = std(x,0)   and it is equal to 

 

 

s = std(x,1) , it is equal to  

 

>> x =[ 1     5     9 
             7    15    22 ]; 
 
>> s = std(x,0) 

s = 

    4.2426    7.0711    9.1924 

>> s = std(x,1) 

s = 

    3.0000    5.0000    6.5000 

xprod:../../../techdoc/ref/mean.html�
xprod:../../../techdoc/ref/median.html�
xprod:../../../techdoc/ref/mode.html�
xprod:../../../techdoc/ref/std.html�


Experiment No. (6)                                                                       Complex and Statistical Functions 
 

  39 

Function Description 
var(x) Returns the variance of array ( x ), The variance is the square of the 

standard deviation (STD). 

s = var(x,0)  when the summation normalized by N-1 

s = var(x,1) when the summation normalized by N 

>> x = [ 1     5     9 

          7    15    22 ]; 

 

>> s = var(x,0) 

s = 

   18.0000   50.0000   84.5000 

>> s = var(x,1) 

s = 

    9.0000   25.0000   42.2500 

 
 
 
 
 
 
 
 
 
 
 

xprod:../../../techdoc/ref/var.html�


Experiment No. (6)                                                                             Complex and Statistical Functions 
 

 40 

Example: If X = 3 3 1 4 
                          0 0 1 1 
                          0 1 2 4 
  
    Then 
 >>mode(x)  

        ans=          [0 0 1 4]  

and  

>> mode(X,2)  

         ans=         [ 3 ; 0 ; 0 ] 

 
 
Example:  If A = 1 2 4 4 
                           3 4 6 6 
                           5 6 8 8 
                           5 6 8 8 
  
   >> median(A) 
            ans=  [4 5 7 7]  
  >> median(A,2)  
            ans= [3 ; 5 ; 7 ; 7] 
 
 
 
 
Exercises  
 

1- Represent the following complex numbers in polar coordinate 
 
Z= 2 + 5j 
Y= -3 - 3j 
D= -2 + 6j 
 

2- Find the conjugate of the numbers above 
3- Represent the following numbers in rectangular coordinate 

 
W= 5∟30o 
A= 2.5∟-20o 
Q= 3e1.5∟-73o 



Experiment No. (6)                                                                       Complex and Statistical Functions 
 

  41 

 
4- Compute the standard deviation by using the following equations then compare the 

result with that one obtained by std command  
 
 

 
 

 
 

5- Write a program to compute the most frequent numbers in vectors  ( x  ), and ( y ) 
if 
x= a*b 
y=a* c 
a = [ 1 3 ] 
b = [ 2 3 5 ; 4 7 8 ] 
b = [ 2 3 3 ; 4 7 7 ] 
 

 



 

 42 

Experiment No. ( 7 ) 
Input / Output of Variables 

    ( Numbers and Strings ) 
 

7-1 Characters and Text 
 

Enter text into MATLAB using single quotes. For example, 
 
>> S = 'Hello' 
 

The result is not the same kind of numeric matrix or array we have been dealing with 
up to now. The string is actually a vector whose components are the numeric codes for the 
characters (the first 127 codes in ASCII). The length of S is the number of characters. It is a 
1-by-5 character array. A quote within the string is indicated by two quotes. 
     

Concatenation with square brackets joins text variables together into larger strings. For 
example,  

>> h = ['MAT', 'LAB'] 
joins the strings horizontally and produces 

h = 
MATLAB 

and the statement 
>> v = ['MAT'; 'LAB'] 

joins the strings vertically and produces 
v = 

MAT 
LAB 

 
Note that both words in v have to have the same length. The resulting arrays are both 

character arrays; h is  1-by-6  and  v is  2-by-3. 
 
7-1-1 Some String Function 
 

Function Description 
char (x) 
 
>> char(100) 
 ans = 
  d 
>> char([73 82 65 81]) 
 ans = 
  IRAQ 

converts the array x that contains positive 
integers representing character codes into 
a MATLAB character array (the first 127 
codes in ASCII).   
 



Experiment No. (7)                                                                                  Input / Output of Variables 
 

  43 

Function Description 
double(s) 
 
>> double('z') 
 ans = 
  122 
>> double('ali') 
 ans = 
  97   108   105 

converts the character array to a numeric 
matrix containing floating point 
representations of the ASCII codes for 
each character. 
 

strcat(S1,S2,...) 
 
>>strcat('Hello',' Ali') 
 ans = 
  Hello Ali 
 

joins S1,S2,...variables horizontally 
together into larger string. 

strvcat(S1,S2,...) 
 
>> strvcat ('Hello', 'Hi', 'Bye') 
 ans = 
  Hello 
  Hi    
  Bye   
 

joins S1,S2,... variables vertically together 
into larger string. 

s = num2str(x) 
 
>> num2str(20) 
ans = 
20     % as a string, 

not a number 

converts the variable x into a string 
representation s. 
 

x = str2num(s) 
 
>> str2num('20') 
ans = 
20 

converts character array representation of 
a matrix of numbers to a numeric matrix. 
 

error (Msg)  displays the error message in the string 
(Msg), and causes an error exit from the 
currently executing M-file to the 
keyboard. 

lower(A) Converts any uppercase characters in A to 
the corresponding lowercase character and 
leaves all other characters unchanged. 



Experiment No. (7)                                                                                                  Input / Output of Variables 
 

 44 

Function Description 
upper(x) Converts any lower case characters in A to 

the corresponding upper case character 
and leaves all other characters unchanged 

Note 
 

The printable characters in the basic ASCII character set are represented by the integers 
32:127. (The integers less than 32 represent nonprintable control characters). Try 

>> char(33:127) 
 

7-2 Input of Variable 
 

• To enter matrix or vector or single element: 

>> x=input('parameter=   ') 

parameter=   2 

x = 

2  

>> x=input('parameter=   ') 

parameter=   [2 4 6] 

x = 2    4     6 

>> x=input('parameter=   ') 

parameter=   [1 2 3;4 5 6] 

x =  1     2     3 

     4     5     6 

• To enter text: 

 >> x=input('parameter=   ') 

parameter=   'faaz' 

x =  

      faaz 

>> x=input('parameter=   ' , 's' ) 

parameter=   faaz 

x =       faaz 

Notice the difference 
between the two 

statements 
 



Experiment No. (7)                                                                                  Input / Output of Variables 
 

  45 

7-3 Output of Variable 
 

• disp ( x ) 
 

displays the array ( x ), without printing the array name.  In all other ways                  
it's the same as leaving the semicolon off an expression except that empty arrays don't 
display. 
 

    If  ( x ) is a string, the text is displayed. 
 

>> x=[1 2 3]; 

>> x 

x = 

     1     2     3 
 

>> disp(x) 

     1     2     3 

 
 
Example: 
 
>> a=6; 
>> b=a; 
>> s='Ahmed has '; 
>> w='Ali has  ';  
>> t=' Dinars'; 
>>disp([ s  num2str(a)  t]); 
>>disp([ w  num2str(b)  t]); 
 
the execution result is: 
 

Ahmed has 6 Dinars 
Ali has  6 Dinars 

 
7-4 M-File:  

 
An M-File is an external file that contains a sequence of MATLAB statements. 

By typing the filename in the Command Window, subsequent MATLAB input is 



Experiment No. (7)                                                                                                  Input / Output of Variables 
 

 46 

obtained from the file. M-Files have a filename extension of " .m " and can be created 
or modified by using Editor/Debugger Window. 

 
7-4-1 Script Files 

 
You need to save the program if you want to use it again later. To save the 

contents of the Editor, select File → Save from the Editor menu bar. Under Save file 
as, select a directory and enter a filename, which must  have the extension .m, in the 
File name: box (e.g., faez.m). Click Save. The Editor window now has the title faez.m 
If you make subsequent changes to faez.m an asterisk appears next to its name at the 
top of the Editor until you save the changes. 

A MATLAB program saved from the Editor with the extension .m is called a 
script file, or simply a script. (MATLAB function files also have the extension .m. We 
therefore refer to both script and function files generally as M-files.). 

The special significances of a script file are that:- 
1- if you enter its name at the command-line prompt, MATLAB carries out each 

statement in it as if it were entered at the prompt. 
2- Scripts M-file does not accept input arguments or return output arguments. 

They operate on data in the workspace. 
3- The rules for script file names are the same as those for MATLAB variable 

names. 
 

7-4-2 Function Files 
 
MATLAB enables you to create your own function M-files. A function M-file is 
similar to a script file in that it also has an .m extension. However, it differs from 
a script file in that it communicates with the MATLAB workspace only through 
specially designated input and output arguments. 

  * Functions operate on variables within their own workspace, separate from the 
workspace you access at the MATLAB command prompt. 

 
General form of a function: A function M-file filename.m has the following general form: 

 
function [ outarg1, outarg2,...] = filename (inarg1, inarg2,...) 
 
% comments to be displayed with help 
... 
outarg1 = ... ; 
outarg2 = ... ; 

 
 



Experiment No. (7)                                                                                  Input / Output of Variables 
 

  47 

Note: 
inarg1, inarg2,...     are the input variables to the function filename.m 
outarg1, outarg2,... are the output variables from the function filename.m 
function              The function file must start with the keyword function (in the function 

definition line). 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercises: 
 

1- If x=[1 5 9; 2 7 4], then 
a) display the last two elements by using disp command. 
b) display the sum of each row as show below 
  The sum of 1st row  =   
  The sum of 2nd row  =   

 
2- Write a program in M-File to read 3 x 3 Matrix, then display the diagonal of matrix as 

shown below: 
 
 The Diagonal of This Matrix = [         ]   

 
3- Write a program to read a string, then replace each character in the string with its 

following character in ASCII code*. 
 

sphecart.m        ((function)) 
 
 

function [x,y,z] = sphecart(r,theta,rho) 
 

%conversion from spherical to Cartesian 
coordinates 
x = r*cos(rho)*cos(theta); 
y = r*cos(rho)*sin(theta); 
z = r*sin(rho); 

sphecart.m        ((script file)) 
 
%conversion from spherical to Cartesian 
coordinates 
 
x = r*cos(rho)*cos(theta); 
y = r*cos(rho)*sin(theta); 
z = r*sin(rho); 
%the values of  r, rho, theta are be obtained from 
workspace of command window 



Experiment No. (7)                                                                                                  Input / Output of Variables 
 

 48 

4- The Table shown below lists the degrees of three students, Write a program in M-file 
to read these degrees and calculate the average degree for each student.  

 
Name Mathematics Electric Circuits Communication 
Ahmed 80 80 80 
Waleed 75 80 70 
Hasan 80 90 85 

 
Then display results as shown below 
 

     Name                 Degree 
       ----------------------------- 

Ahmed                 80 
Waleed                75 
Hasan                 85 

 
5- Write a group of statements that carry out the same action of upper and lower 

functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* This operation is called Caesar cipher.



Section 8 

 49 

Experiment No. ( 8 ) 
Flow Control 

 
Computer programming languages offer features that allow you to control the flow of 

command execution based on decision making structures. MATLAB has several flow control 
constructions: 

 
 
• if  statement. 
• switch and case  statement. 
• for  statement. 
• while  statement. 
• break  statement. 

 
8-1 if statement 

 
The if statement evaluates a logical expression and executes a group of statements 

when the expression is true. The optional elseif and else keywords provide for the execution 
of alternate groups of statements. An end keyword, which matches the if, terminates the last 
group of statements. 

 
The general form of if statement is: 

 
if expression 1 

  group of statements 1 
 
elseif expression 2 

  group of statements 2 
 
else expression 3 

  group of statements 3 
 
end 
 
 
It is important to understand how relational operators and if statements work with 

matrices. When you want to check for equality between two variables, you might use 
 

if A = = B 
This is legal MATLAB code, and does what you expect when A and B are scalars. But 

when A and B are matrices, A = = B does not test if they are equal, it tests Where they are 



 

 50 

equal; the result is another matrix of 0’s and 1’s showing element-by-element equality.         
In fact, if A and B are not the same size, then A = = B is an error. The proper way to check 
for equality between two matrix is to use the isequal function, 
 

if isequal(A,B) 
 
 
Example: 
 

A=input('A='); 
B=input('B='); 
if A > B 
'greater' 
elseif A < B 
'less' 
elseif A == B 
'equal' 
else 
error ('Unexpected situation')   
end 

 
 
8-2 switch and case statement 
 

The switch statement executes groups of statements based on the value of a variable or 
expression. The keywords case and otherwise delineate the groups. Only the first matching 
case is executed. There must always be an end to match the switch. If the first case statement 
is true, the other case statements do not execute. 
 
 
 

The general form of switch statement is: 
 

switch expression 
  case 0 
   statements 0 
  case 1 
   statements 1 

 
otherwise 

   statements 3 
  end 
 



Experiment No. (9) 

  51 

Example 
 

method = 'Bilinear'; 
 

     switch lower(method) 
     case 'bilinear' 
        disp('Method is bilinear') 
       case 'cubic' 
         disp('Method is cubic') 
       case 'nearest' 
         disp('Method is nearest') 
       otherwise 
         disp('Unknown method.') 
       end 
 
 Execution result is:  

Method is bilinear 
 
 
 
8-3 for statement 
 

The for loop repeats a group of statements a fixed, predetermined number of times. 
 
The general form of  for statement is: 
 
 
for variable = initial value: step size: final value 
 statement 
 . . . 
  
 statement 

 
 end 
Example: 

 
for i=1:5 
for k=5:-1:1 
m(i,k)=i*k; 
end 
end 
 
>> m 



 

 52 

m = 
 
     1     2     3     4     5 
     2     4     6     8    10 
     3     6     9    12    15 
     4     8    12    16    20 
     5    10    15    20    25 
 
 
 
A for loop cannot be terminated by reassigning the loop variable within the for loop: 
 
for i=1:10 
x(i)=sin (pi/i); 
i=10;                    % this step do not effect on the for loop  
end 
x 
i 

 

 
Execution results are, 
x=  

0.0000    1.0000    0.8660    0.7071    0.5878    0.5000    
0.4339        0.3827     0.3420     0.3090 

i= 
 10 
 
 
 
 
8-4 while statement 

 
repeat statements an indefinite number of times under control of a logical condition.   

A matching end delineates the statements. 
 
The general form of  while statement is: 

 
 while expression 
  statement 

... 
statement 

end  
 



Experiment No. (9) 

  53 

Example:  Here is a complete program, illustrating while, if, else, and end, that 
uses interval bisection method to find a zero of a polynomial. 

 
 a = 0; fa = -Inf; 

b = 3; fb = Inf; 
while b-a > eps*b 

x = (a+b)/2; 
fx = x^3-2*x-5; 
if sign(fx) == sign(fa) 

a = x; fa = fx; 
else 

b = x; fb = fx; 
end 

end 
 
8-5 break 

 
Terminate execution of while or for loop. In nested loops, break exits from the 

innermost loop only. If break is executed in an IF, SWITCH-CASE statement, it terminates 
the statement at that point. 
 
 
8-6 Continue  

 passes control to the next iteration of FOR or WHILE loop in which it appears, 
skipping any remaining statements in the body of the FOR or WHILE loop. 
 
Example: 
 

we can modify the previous example by using break command. 
 

a = 0; fa = -Inf; 
b = 3; fb = Inf; 
while b-a > eps*b 

x = (a+b)/2; 
fx = x^3-2*x-5; 
if fx == 0 

break 
elseif sign(fx) == sign(fa) 

a = x; fa = fx; 
else 

b = x; fb = fx; 
end 

end 



 

 54 

Example: Without using the max command, find the maximum value of matrix (a) where     
a =[11 3 14;8 6 2;10 13 1] 

 
 
Solution   
 
 a=[11 3 14;8 6 2;10 13 1] 

temp=a(1); 
[n,m]=size(a); 
for i=1:n 

for j=1:m 
      if a(i,j)>temp 
         temp=a(i,j); 
      end 

end 
end 
temp 

 
the execution result is     14   
 
 
Example: Let x=[2 6; 1 8], y=[.8 -0.3 ; -0.1 0.2], prove that y is not the inverse matrix of x.  
 
Solution 
 

 z=inv(x); 
 if ~isequal(z,y) 
 disp(' y is not the inverse matrix of x ') 
 end 
 

the execution result is      
 

y is not the inverse matrix of x 
 
 
 
 
 
 
 
 
 
 
 



Experiment No. (9) 

  55 

Exercises 
 

1- The value of s could be calculated from the equation below: 
 

   xzy 42 −                                    if  y ≥ 4xz 
s =   
    inf        if y < 4xz 
 
write a MATLAB program in M-File to do the following steps:- 
 

a) input the value of x, y, z 
b) caluclate s 
c) print the output as shown below 
 
x = . . .  
y = . . . 
z = . . . 
s = . . . 

 
2- Write a program to find the current I in the circuit shown below 

a) By using conditional statements. 
b) Without using any conditional statements. 

 
 
 
 
 R

2= 5 Ω
 

R
3= 5 Ω

 

R1= 2.5 Ω 

V= 5 volt 

Switch I 



Experiment No. (9)                                                            MATLAB Simulink Basics 

1 
 

 

 
 Experiment No. ( 9 ) 

MATLAB Simulink Basic 
 

 
      Simulink is a graphical extension to MATLAB for the modeling and simulation of systems. In 
Simulink, systems are drawn on screen as block diagrams. Many elements of block diagrams are 
available (such as transfer functions, summing junctions, etc.), as well as virtual input devices (such 
as function generators) and output devices (such as oscilloscopes). Simulink is integrated with 
MATLAB and data can be easily transferred between the programs. In this tutorial, we will introduce 
the basics of using Simulink to model and simulate a system. 

 

Simulink is supported on Unix, Macintosh, and Windows environments, and it is included in the 
student version of MATLAB for personal computers. For more information on Simulink, contact the 
MathWorks. 

 

The idea behind these tutorials is that you can view them in one window while running Simulink in 
another window.  Do not confuse the windows, icons, and menus in the tutorials for your actual 
Simulink windows.  Most images in these tutorials are not live - they simply display what you should 
see in your own Simulink windows.  All Simulink operations should be done in your Simulink 
windows. 

 
 
 

9 - 1   Starting Simulink 
 

Simulink is started from the MATLAB command prompt by entering the following 
command:simulink 
Alternatively, you can click on the "Simulink Library Browser" button at the top of the MATLAB 
command window as shown below: 
 

 

 

 

 

 

 

 

 

 

 
 



Experiment No. (9)                                                            MATLAB Simulink Basics 

2 
 

 
The Simulink Library Browser window should now appear on the screen. Most of the blocks needed 
for modeling basic systems can be found in the subfolders of the main "Simulink" folder (opened by 
clicking on the "+" in front of "Simulink").  Once the "Simulink" folder has been opened, the Library 
Browser window should look like: 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
9 - 2   Basic Elements 
 
There are two major classes of elements in Simulink: blocks and lines. Blocks are used to generate, 
modify, combine, output, and display signals. Lines are used to transfer signals from one block to 
another. 

 

Blocks 
 
The subfolders underneath the "Simulink" folder indicate the general classes of blocks available for 
us to use: 
 
Continuous:  Linear, continuous-time system elements (integrators, transfer   functions, state - 
space   models, etc.) 
Discrete:  Linear, discrete-time system elements (integrators, transfer functions, state - space 
models, etc.) 
Functions & Tables:  User-defined functions and tables for interpolating function values  
Math:  Mathematical operators (sum, gain, dot product, etc.) 
Nonlinear:  Nonlinear operators (coulomb/viscous friction, switches, relays, etc.) 
Signals & Systems:  Blocks for controlling/monitoring signal(s) and for creating subsystems 
Sinks:  Used to output or display signals (displays, scopes, graphs, etc.) 
Sources: Used to generate various signals (step, ramp, sinusoidal, etc.) 

 

 



Experiment No. (9)                                                            MATLAB Simulink Basics 

3 
 

 
Blocks have zero to several input terminals and zero to several output terminals. Unused input 
terminals are indicated by a small open triangle. Unused output terminals are indicated by a small 
triangular point. The block shown below has an unused input terminal on the left and an unused 
output terminal on the right. 
 

 

 
 
Lines 

 
Lines transmit signals in the direction indicated by the arrow. Lines must always transmit signals 
from the output terminal of one block to the input terminal of another block. One exception to this is 
that a line can tap off of another line.  This sends the original signal to each of two (or more) 
destination blocks, as shown below: 
 
 

 

 

 

 

 
 
 
Lines can never inject a signal into another line; lines must be combined through the use of a block 
such as a summing junction. 

 
A signal can be either a scalar signal or a vector signal. For Single-Input, Single-Output systems, 
scalar signals are generally used. For Multi-Input, Multi-Output systems, vector signals are often 
used, consisting of two or more scalar signals. The lines used to transmit scalar and vector signals are 
identical. The type of signal carried by a line is determined by the blocks on either end of the line. 
 
 

 
9 - 3   Building a System 
To demonstrate how a system is represented using Simulink, we will build the block diagram for a 
simple model consisting of a sinusoidal input multiplied by a constant gain, which is shown below: 
 
 
 
 

 

 

 

 

 

 

 

 

 



Experiment No. (9)                                                            MATLAB Simulink Basics 

4 
 

 
This model will consist of three blocks:  Sine Wave, Gain, and Scope.  The Sine Wave is a Source 
Block from which a sinusoidal input signal originates.  This signal is transferred through a line in the 
direction indicated by the arrow to the Gain Math Block.  The Gain block modifies its input signal 
(multiplies it by a constant value) and outputs a new signal through a line to the Scope block.  The 
Scope is a Sink Block used to display a signal (much like an oscilloscope). 

 

We begin building our system by bringing up a new model window in which to create the block 
diagram.  This is done by clicking on the "New Model" button in the toolbar of the Simulink Library 
Browser (looks like a blank page).  

 

Building the system model is then accomplished through a series of steps: 
 

1.  The necessary blocks are gathered from the Library Browser and placed in the model window. 
2.  The parameters of the blocks are then modified to correspond with the system we are modelling. 
3.  Finally, the blocks are connected with lines to complete the model. 

 

Each of these steps will be explained in detail using our example system.  Once a system is built, 
simulations are run to analyze its behavior.  
 

 
9 - 4  Gathering Blocks 
 

Each of the blocks we will use in our example model will be taken from the Simulink Library 
Browser.  To place the Sine Wave block into the model window, follow these steps: 

 

1.  Click on the "+" in front of "Sources" (this is a subfolder beneath the "Simulink" folder) to 
display the various source blocks available for us to use. 
2.  Scroll down until you see the "Sine Wave" block.  Clicking on this will display a short  
explanation of what that block does in the space below the folder list: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3.  To insert a Sine Wave block into your model window, click on it in the Library Browser and drag 
the block into your workspace. 



Experiment No. (9)                                                            MATLAB Simulink Basics 

5 
 

 

The same method can be used to place the Gain and Scope blocks in the model window. The "Gain" 
block can be found in the "Math" subfolder and the "Scope" block is located in the "Sink" subfolder.  
Arrange the three blocks in the workspace (done by selecting and dragging an individual block to a 
new location) so that they look similar to the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
9 - 5   Modifying the Blocks 

 
Simulink allows us to modify the blocks in our model so that they accurately reflect the 
characteristics of the system we are analyzing.  For example, we can modify the Sine Wave block by 
double-clicking on it.  Doing so will cause the following window to appear: 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

This window allows us to adjust the amplitude, frequency, and phase shift of the sinusoidal input.  
The "Sample time" value indicates the time interval between successive readings of the signal.  
Setting this value to 0 indicates the signal is sampled continuously. 
 
 
 
 



Experiment No. (9)                                                            MATLAB Simulink Basics 

6 
 

 
 
Let us assume that our system's sinusoidal input has: 

Amplitude = 2 

Frequency = pi 

Phase = pi/2 

 
Enter these values into the appropriate fields (leave the "Sample time" set to 0) and click "OK" to 
accept them and exit the window.  Note that the frequency and phase for our system contain 'pi' 
(3.1415...).  These values can be entered into Simulink just as they have been shown. 

 

Next, we modify the Gain block by double-clicking on it in the model window. The following 
window will then appear: 
 

 

 

 

 

 

 
Note that Simulink gives a brief explanation of the block's function in the top portion of this window.  
In the case of the Gain block, the signal input to the block (u) is multiplied by a constant (k) to create 
the block's output signal (y).  Changing the "Gain" parameter in this window changes the value of k. 

 

For our system, we will let k = 5.  Enter this value in the "Gain" field, and click "OK" to close the 
window. 

 

The Scope block simply plots its input signal as a function of time, and thus there are no system 
parameters that we can change for it.  We will look at the Scope block in more detail after we have 
run our simulation. 
 
 
 
9 - 6  Connecting the Blocks 

 
For a block diagram to accurately reflect the system we are modeling, the Simulink blocks must be 
properly connected.  In our example system, the signal output by the Sine Wave block is transmitted 
to the Gain block.  The Gain block amplifies this signal and outputs its new value to the Scope block, 
which graphs the signal as a function of time.  Thus, we need to draw lines from the output of the Sine 
Wave block to the input of the Gain block, and from the output of the Gain block to the input of the 
Scope block. 
Lines are drawn by dragging the mouse from where a signal starts (output terminal of a block) to 
where it ends (input terminal of another block).  When drawing lines, it is important to make sure 
that the signal reaches each of its intended terminals.   Simulink will turn the mouse pointer into a 
crosshair when it is close enough to an output terminal to begin drawing a line, and the pointer will 
change into a double crosshair when it is close enough to snap to an input terminal.  A signal is  
 



Experiment No. (9)                                                            MATLAB Simulink Basics 

7 
 

properly connected if its arrowhead is filled in.  If the arrowhead is open, it means the signal is not 
connected to both blocks.  To fix an open signal, you can treat the open arrowhead as an output 
terminal and continue drawing the line to an input terminal in the same manner as explained before. 
 
 

 

 

                  Properly Connected Signal                                        Open Signal                
 
When drawing lines, you do not need to worry about the path you follow.  The lines will route 
themselves automatically.  Once blocks are connected, they can be repositioned for a neater 
appearance.  This is done by clicking on and dragging each block to its desired location (signals will 
stay properly connected and will re-route themselves). 
After drawing in the lines and repositioning the blocks, the example system model should look like: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
In some models, it will be necessary to branch a signal so that it is transmitted to two or more 
different input terminals.  This is done by first placing the mouse cursor at the location where the 
signal is to branch.  Then, using either the CTRL key in conjunction with the left mouse button or 
just the right mouse button, drag the new line to its intended destination.  This method was used to 
construct the branch in the Sine Wave output signal shown below: 
 

 

 

 

 

 

 

 

 

 

 

 

 

The routing of lines and the location of branches can be changed by dragging them to their desired 
new position.  To delete an incorrectly drawn line, simply click on it to select it, and hit the DELETE 
key. 
 
 



Experiment No. (9)                                                            MATLAB Simulink Basics 

8 
 

 

9 – 7  Running Simulations 
 

 
Now that our model has been constructed, we are ready to simulate the system.  To do this, go to the 
Simulation menu and click on Start , or just click on the "Start/Pause Simulation" button in the 
model window toolbar (looks like the "Play" button on a VCR).  Because our example is a relatively 
simple model, its simulation runs almost instantaneously.  With more complicated systems, however, 
you will be able to see the progress of the simulation by observing its running time in the the lower box of 
the model window.  Double-click the Scope block to view the output of the Gain block for the 
simulation as a function of time.  Once the Scope window appears, click the "Autoscale" button in its 
toolbar (looks like a pair of binoculars) to scale the graph to better fit the window.  Having done this, 
you should see the following: 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the output of our system appears as a cosine curve with a period of 2 seconds and 
amplitude equal to 10.  Does this result agree with the system parameters we set?   Its amplitude 
makes sense when we consider that the amplitude of the input signal was 2 and the constant gain of 
the system was 5 (2 x 5 = 10).  The output's period should be the same as that of the input signal, and 
this value is a function of the frequency we entered for the Sine Wave block (which was set equal to 
pi).   Finally, the output's shape as a cosine curve is due to the phase value of pi/2 we set for the input 
(sine and cosine graphs differ by a phase shift of pi/2). 

 

What if we were to modify the gain of the system to be 0.5?  How would this affect the output of the 
Gain block as observed by the Scope?  Make this change by double-clicking on the Gain block and 
changing the gain value to 0.5.  Then, re-run the simulation and view the Scope (the Scope graph 
will not change unless the simulation is re-run, even though the gain value has been modified).  The 
Scope graph should now look like the following: 
 

 

 

 

 

 

 

 



Experiment No. (9)                                                            MATLAB Simulink Basics 

9 
 

 
Note that the only difference between this output and the one from our original system is the 
amplitude of the cosine curve.  In the second case, the amplitude is equal to 1, or 1/10th of 10, which 
is a result of the gain value being 1/10th as large as it originally was. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	MATLAB Lecture 2012new
	new.docx

