[ASA) dadai¥) Aadal 1 dpapladl) dpsall
G gualadl Sl g Sl g 58 dagl Sl Al

linux
Sticky Note
120

Week Svllabus

13t 2nd Introduction and role of ANNs, fundamentals of biological Neural
Network, basic principles of ANNs and their early structures

3rd Properties of ANN, advantage, and disadvantage

Al st gth 7 network architectures, logic gates

g, ot 10t Types of learning rules, learning algorithms, training styles

11t 12% 13%| Hebb , Adaline, Madalines, delta rule

14t

150 16t Important perception function, neuron model, perception architecture,
learning rules, training (train)

17%,18h The back propagation learning procedure, derivation of the BP
algorithm, Back propagation training algorithm

19t 20t Search algorithm, Genetic algorithm

[T _F -

Typeofoperators, population, selection, crossover, crossover rate,
mutation., mutation rate

25%h 26t 27

Population, selection, crossover, and mutation algorithms

28h

Application of genefic algorithms

20t 30t

Advantage and disadvantage of Genetic algorithms

What Is A Neural Net?

* Artificial Neural Networks:

* An artifical neural network is an information-processing system that has
certain performance characteristics in common with biological neural
networks. Artificial neural networks have been developed as
generalizations of mathematical models of human cognition or neural
biology, based on the assumptions that:

. Information processing occurs at many simple elements called neurons.
2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural
net, multiplies the signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net
input (sum of weighted input signals) to determine its outputsignal.

A neural network is characterized by (1) its pattern of connections between
the neurons (called its architecture), (2) its method of determining the
weights on the connections (called its training, or learning, algorithm), and
(3) its activation function.

What s A Neural Net?

Why neural Networks And Why now

Biological Neural Networks

Brains versus Computers : Some numbers

Where Are Neural Nets Being used?

Why neural Networks And Why now

* As modern computers become ever more
powerful, scientists continue to be challenged to
use machines effectively for tasks that are
relatively simple for humans.

* We learn easily to recognize the letter A or
distinguisha cat from a bird.

* More experience allows us to refine our
responses and improve our performance.

* Even without a teacher, we can group similar
patternstogether.

Biological Neural Networks

« A biological neuron has three types of components that are of particular interest in
understanding an artificial neuron: its dendrites, soma, and axon.

« The many dendrites receive signals from other neurons. The signals are electric

impulses that are transmitted across a synaptic gap by means of a chemical
process.

= The action of the chemical transmitter modifies the incoming signal(typically, by
scaling the frequency of the signals that are received) in a manner similar to the
action of the weights in an artificial neural netwaork.

Axon from
Another Meuron
Dendrite Dendrite of
Another Neuron
/‘
Synaptic
Gap Soma
4
Axon
Synaptic /
Gap Dendrite of
Axon from Another Neuron

Another Neuron

Key Features

* Several key features of the processing elements of
artificial neural networks are:

1. The processing element receives many signals.

2. Signals may be modified by a weight at the receiving
synapse.

3. The processing element sums the weighted inputs.

4. Under appropriate circumstances (sufficient input), the
neuron transmits a single output.

5. The output from a particular neuron may go to many
other neurons (the axon branches).

Where Are Neural Nets Being used?

* 1- Signal Processing.

* 2- Control.

* 3- PatternRecognition.
* 4- Medicine.

* 5-SpeechProduction.

* b- SpeechRecognition.

Brains versus Computers : Some numbers

1. There are approximately 10 billion neurons in the human cortex, compared
with 10 of thousands of processors in the most powerful parallel
computers.

2. Each biological neuron is connected to several thousands of other neurons,
similar to the connectivity in powerful parallel computers.

3. lack of processing units can be compensated by speed. The typical
operating speeds of biological neurons is measured in milliseconds (107 s),
while a silicon chip can operate in nanoseconds (10°s).

4. The human brain is extremely energy efficient, using approximately 10*®
joules per operation per second, whereas the best computers today use
around 10 joules per operation per second.

5. Brains have been evolving for tens of millions of years, computers have
been evolving for tens of decades.

Properties of ANN, advantage. and disadvantage

Typical Architectures

Setting the Weights
Common Activation Functions

THE McCULLOCH-PITTSNEURON

Logic Functions

Advantages

1- ANN with multiple hidden lavers. andit is responsible for the rapid
development that’s going on in the Machine Learning industry
right now.

2- ANNs provided us the first step towards Al by generating a model
based on how our own human body learns.

Disadvantages

1- Pretty much just overuse of it. Evervone’s trying to apply deep
learning to everything now, even things that don’t require it.

2- It's leading to a huge misunderstanding of the whole field. Neural
Networks, and Machine Learning but have no clue what they
actually mean.

* Elements of Artificial Neural Networks
- Processing Units
- Topology
- Learning Algorithm

* Processing Units

Node input: net: =2 wi I
Node Output: O:i=f (net:)

Neuron Model

Single-Input Neuron
A single-input neuron is shown in Figure below. The scalar input is P

multiplied by the scalar weight w to form WP, one of the terms that is sent
to the summer. The other input, 1, is multiplied by a bias b and then

passed to the summer. The summer output 72, often referred to as the ner
input, goes into a fransfer function , which produces the scalar neuron

output @ . If we relate this simple model back to the biological neuron
that we discussed in Lecture 1, the weight W corresponds to the strength
of a svnapse. the cell body is represented by the summation and the
transfer function, and the neuron output & represents the signal on the
axo1n.

Inputs General Neuron The neuron outputis calculated as
r Y A a=flwp+b)
If, forinstancew =3 p=2 and b=-1.5 then
PRSI) BVAN g RIS a=f3 (2)- 1.5)=f4.5)
b
l The actual output @ depends on the particular transfer function that
Nt Nl / is chosen. The bias is much like a weight, except that it has a constant

a=fp+b) inputofl . Notethat Wand P are both adjustable scalar parameters of the
neuron.

Multiple-Input Neuron
Typically, a neuron has more than one input. A neuron with R inputs is

shown in Figure below. The individual inputs Py, P, ..., Py are each

weighted wy ;1 ,W; 5w; p by corresponding elements of the weight

matrix W . Inputs Multiple-Input Neuron

r N7 A\

R

Ds e
LV J
a=f(Wp+b)

Network Architectures

Commonly one neuron, even with many inputs, may notbe sufficient. We

might need five or ten, operating in parallel, in what we will call a laver.”

This conceptofa laver is discussedbelow.

A Layer of Neurons

A smgle laver network of S neuronsis shown. Note thateach of the
inputs is connected to each of the neurons and that the weight matrix now

has rows.

Inputs

Layer of S Neurons

a=f(Wp+b)

Wit W2 - Wig
W = (W21 W22 - Wop
W | Wsa oo Ws g

one-laver network also can be drawnin abbreviated notation,

as shownin Figure

Input Layer of S Neurons
‘SRR ¥ 4 A\

P) a |
Rx1 W \ Sx1

= n
1-b[b
Sx1
R
__/ U J
a=fWp+b)

Multiple Layers of Neurons
Now consider a network with several layers. Each layer has its own
weight matrix W . its own bias vector b ., a net input vector n and an
output vector . We need to imntroduce some additional notation to
distinguish between these layers. We will use superscripts to identify the
layers. Specifically. we append the number of the layer as a superscript to
the names for each of these variables. Thus, the weight matrix for the first
layer is written as W' | and the weight matrix for the second layer is
written as W41 _ This notation is used in the three-layer network shown in

Figure

Inputs First Layer

Al =1 (Wip+b') A= (Waal=b) A= (Wiai+=b')
M= DWW L Wip=bi)=b2)+b)

The same three-layer network discussed previously also can be drawn
using our abbreviated notation. as shown in Figure.

Input First Layer Second Layer Third Layer
(s W B 5 N N\
a n a
' W . 2:|1| [“.' Pa
Fas' : b P ' [
|-D{? l"{ b
R 'z s #z1 2 Pz LS
e O\ W 7N 7N J
al =1 (Wip+sb') A= (Wiaalb) A= (Wial«p)

MWW Wip=hi =) = b))

Setting the Weights

* In addition to the architecture, the method of setting
the values of the weights (training) is an important
distinguishing characteristic of different neural nets.

* The weights are then adjusted according to a learning
algorithm. This process is known as supervised
training.

* Unsupervised training Self-organizing neural nets
group similar input vectors together with out the use
of training data to specify what a typical member of

each group looks like or to which group each vector
belongs.

Unsupervised learning: A means of modifying the weights of a neural net without
specifying the desired output for any input patterns. Used in self-organizing
neural nets for clustering data, extracting principal components, or curve
fitting.

Supervised training: Process of adjusting the weights in a neural net using a learn-
ing algorithm; the desired output for each of a set of training input vectors
is presented to the net. Many iterations through the training data may be
required.

Adaptive . Adaptive .
X ™ network ’) 0 X o network ’) o
Bl W
Leamning
- signal
Distance d
generator
pld.0]
distance measure
(a} (b)

Figure 219 Block diagram for explanation of basic leaming modes: (a) supervised leaming and
(b) unsupervised learning.

Applications

- Pattern Classification

- Clustering/Categorization

- Function approximation

- Prediction/Forecasting

- Optimization

- Content-addressable Memory

- Control

Transfer function (type of activate functions)

‘Conmmnon Actvatton Functions

(i) Identity function: 76
f(x) = x for all .

Figure 1.7 ldentity function.

(ii) Binary step function (with threshold 8):

1 ifx=0
ﬂ“"{u ifx <6

Jix)

] x
Figure 1.8 Binary step function.

liii) Bmary sigmoid: l

_ I a
fx) = 1 + exp(—ox)

f'x) = of(x) [1 = flx)],

As 15 shown m Section 6.2.3, the logistic sigmoid function can be scaled to
have any range of values that 15 appropriate for a given problem. The most com-
mon range 1s from — 1to 1; we call this sigmoad the bipelar sigmeid.It 1s illustrated
m Figure 1.10for o = 1.

n

| +e

fix

Figure 1.9 Binary sigmoid. Steepness parameters a = | and a = 3.

fx)

—mrEEErTTEE e Eee-- O g e =

[~ m=] I ———

Figure 1.10 Bipolar sigmoid.
(iv) Bipolar sigmoid:

Z

glxy = 2f(x) -1 = 1+ exp(—ax) !

1 — exp(—ox)
1 + exp(—ox)

ﬂﬂ=%“+ﬂﬂm—gm1

The bipolar sigmoid 1s closely related to the hyperbolic tangent function.
which 1s also often used as the activation function when the desired range of
output values 1s between —1 and 1. We illustrate the correspondence between
the two for a = 1. We have

ﬂﬂ=§“+ﬂﬂm—EML

The bipolar sigmod 1s closely related to the hyperbolic tangent function
which 1s also often used as the activation function when the desired range of
output values 1s between —1 and 1. We illustrate the correspondence between
the two for a = 1. We have

1 — exp(—x)

glx) .= I + expl(—x).

The hyperbolic _taﬂgent 15
explx) — exp{—=x)
explx) + .expl(—x)

| = exp(—2x)
I + exp(—2x)

hix) =

THE McCULLOCH-PITTS NEURON

* The first formal definition of a synthetic neuron model
based on the highly simplified considerations of the
biological model described in the preceding section was
formulated by McCulloch and Pitts (1943). The inputs xi, for
i=1,2,...,n,are 0or 1, depending on the absence or
presence of the input impulse at instant k. The neuron's

output signal is denoted as o. The firing rule for this model
is defined as follows

. i
1 if Swaf=T

=+ =]
EJ: 1 —

0 if X wak<T

i=1

Logic Functions
« AND

= The AND function gives the response "true” if both input values are
"true": otherwise the response is "false.” If we represent "true” by

the value |, and "false” by 0, this gives the following four training
input, target output pairs:

OR gate
The threshold on unityY is 2.

ﬂl—-l—-l-—i"-ﬂ

AND NOT

Hnn-
O

@
|
v
—_— o —_—
L —_— L -

- XOR

X1 XOR X3 < (x, AND NoT x;) Or (x> AND NoT x/).

Hxn =

>®11

|0

Q/)]
0 0

= x; AND INOT x>

<2 = X2 AND NOTx;.

Activation or Activity Level

* For example, consider a neuron Y, that receives inputs from neurons
X;, X5, and X; The weights on the connections from X, X,, and X; to
neuron Y are w, to W,, and W;, respectively. The net input, y-in, to
neuron Y is the sum of the weighted signals from neurons X, X,,
andX,,i.e., .

Y = WXy + WXy + Waks,

The activation y of neuron Y is @—\
given by some function of its net "
input, y = f(y-in), e.g., the logistic @ »,%

sigmoid function (an S-shaped

curve) | @_//

flx) =

| + exp(-x)'

Activation or Activity Level Cont.

Now suppose further that neuron Y is connected to neurons Z, and
Z,,with weights v, and v,,respectively. Neuron Y sends its signal y to
each of these units. However, in general, the values received by
neurons Z, andZ, will be different, because each signal is scaled by
the appropriate weight, v, or v, .In a typical net, the activations Z,
and Z, of neurons Z, and Z, would depend on inputs from several or
even many neurons, not just one, as shown inthis simple example.

Architecture

* The basic architecture of the simplest possible neural
networks that perform pattern classification consists of a
layer of input units (as many units as the patterns to be
classified have components) and a single output unit.

Ll Ll

Hebb learning

Donald Hebb, a psychologist at McGill Unive}sizy, designed the first learning law
for artificial neural networks [Hebb, 1949]. His premise was that if two neurons
were active simultaneously, then the strength of the connection between them
should be increased. Refinements were subsequently made to this rather general
statement to allow computer simulations [Rochester, Holland, Haibt & Duda,
1956]. The idea is closely related to the correlation matrix learning developed by
Kohonen (1972) and Anderson (1972) among others. An expanded form of Hebb
learning [McClelland & Rumelhart, 1988] in which units that are simultaneously

off also reinforce the weight on the connection between them will be presented
in Chapters 2 and 3.

2.2.1 Algorithm

Step 0. Initialize all weights:
wi=((1=1ton).
Step 1. For each input training vector and target output pair. s : ¢, do steps
>
:;';:p 2. Set activations for input units:
x;=8 (= 1lton)
Step 3. Set activation for output unit:
y=L1.
Step 4. Adjust the weights for
wi(new) = wi(old) + x;y (i = lton).
Adjust the bias:

b(new) = b(old) + y.

Note that the bias is adjusted exactly like a weight from a ""unit" whose
output signal is always 1. The weight update can also be expressed in vector form

as
w(new) = w(old) ;})

This is often written in terms of the weight change.KW.Das

B

Aw = xy
and
w(new) = w(old) + Aw.

There are several methods of implementing the Hebb rule for leamning. The
foregoing algorithm requires only one pass through the training set: other equiv-
alent methods of finding the weights are described in Section 3.1.1, where the
HebDb rule for pattern association (in which the target is a vector) is presented.

Application

Bias types of inputs are not explicitly used in the original formulation of Hebb
learning. However. they are included in the examples in this section (shown as

a third input component that 1s always 1) because without them. the problems
discussed cannot be solved.

Logic functions
Example 2.5 A Hebb net for the Axp function: binary inputs and rargets

INPUT TARGET
{.-'H X3 1)
(1 1 1) I
(r 0 n 0
0w 1 1) 0
o 0 1) 0

For each trammng mput: target. the weight change is the product of the input
vector and the target value, 1.e.,

For each tramuing mput: target, the weight change is the product of the mput
vector and the target value, i.e.,

Aw, = xt, Aws = xsf, Ab = 1.

Application

Logic functions

Example A Hebb net for the Axp function: binary inputs and targets
INPUT TARGET
(xy x2 1)
a 11 1
1 0 D 0
o 1 D 0
(0 0 1) 0

ﬂhﬂ = Xl,

ﬂ'wl = Xal, Ab = I.

The new weights are the sum of the previous weights and the' weight change. Only
one iteration through the training vectors is required. The weight updates for the
first input are as follows:

INPUT
(xy xz 1)

a 110

INPUT

(xp xz 1)
(1 0 1)
o 1 1)
o 0 1)

TARGET

TARGET

WEIGHT CHANGES
(Aw, Aw, Ab)

(1 L 1
WEIGHT CHANGES
(Awy Awz Ab)
© 0 0)
© 0 0)
o 0 0

WEIGHTS
(wq w; b)
© 0 0
(1 1. 1)

WEIGHTS

(w; wa b)
1 1 1)
(1 1 1)

a1 1

Example 2 A Hebb net for the Axnp function: binaryv inputs bipolar targets

INPUT TARGET
(xy x2 1)
(r 1 1) |
(0L 0 1 -1
o L 1} -1
O 0 D -1
INPUT TARGET WEIGHT CHANGES WEIGHTS
(X1 x3 1) (Awy Aws Ab) (wy; w2 b)

© 0 0
(r 1 1) 1 (1 1 1) (a0 1 1)

INPUT TARGET WEIGHT CHANGES WEIGHTS

(x; 2 1) (Awl Aw> Ab) (wy wz b)
(1 0 - (-1 0 -=1) © 1 0
0 1 1) -1 (0 -1 =1 o 0 =1
© 0 1 —1 (O 0 —1) 0 0 =2)

For (binary input and binary output) and (binary input and
bipolar output) the Final weight Does not achieve all the Targets

Example A Hebb net for the Axp function: bipolar inputs and targets

(x,
(1
(1
(—1
(—1
INPUT
(xy 2 1)
(1 1 1)
(1 -1 1)
(-1 1 1)
(-1 -1 1)

INPUT
Xz 1)
1 1}
-1 1}
l 1)
— 1 1)
TARGET

1

-]

-1

-1

TARGET]

WEIGHT CHANGES
(Awy Aw: A4b)

(1 L 1)

(= 1 1 ~1)
(1 -1 -1
(1 1 _1)

WEIGHTS
(wy W2 b)
0w 0 M
il 1 L}

© 2 0
1 1 =1)

@

2 _’3']

= —

Final Weights

Character Recognition

Ex / classify the two dimensional input pattern (representing letters)
using Hebb. Rule (T . C)

* Kk Ok C I
* *
* * %k kK
T C

Solution

Training Pattern

Pattern Input Target

For the training pair

T: X=]111,-11-1,-11-1,1]7" and Yi=[1] Target

Whew = Wold + X1!_Y1

=[000 ,DDD,DGD,D]T+[111,—11—1,—11—1,1]”[1]
11111,—11—1,—11—1,1]1_
Case 2:

C: Xz=J111,1-1-1,111,1] and Y1 =[-1] Target
Whew = Woig + X2 Y2

={111,11-1,-11-1,1]" +[111,1-1-1,111,-1]" * [-1]
-{111,-11-1,-11-1,12]"+[-1-1-1,-111,-1-1-1,1]

=[000,-220,-20-2,0]

Y=b+3 X W;
-0 +[111,-11-1,-111]*[000,-220,-20-2]
=0+(0+0+0+2+2+0+2+0+2)=8>0

Then the letter is T

Y=b+5 X W,
=0 +[111,1-1-1,111]*[000,-220,-20-2]
=0+(0+0+0-2-2+0-2+0-2=-8<0

Then the letter is C

> Y

T T)

This example illustrates Hebbian leaming with binary and continuous acti-
vation functions of a very simple network. Assume the network shown in
Figure 2.22 with the initial weight vector

_l

needawbeminedusimthcsctofdmehwveamubelow

b3 L

formubimchooccoﬂcammgcoouaMr- I. Since the initial weights
are of nonzero value, the network has apparently been trained before-

hand. Assume first that bipolar binary neurons are used, and thus f(ner) =
sgn (net).

Step 1 Input x, applied to the network results in activation ner’ as below:

1
net' =w'x, =[1 -1 0 05] [-f.s] =3
0

Figure 222 Network for training in Examples 2.4 through 2.6.

The updated weights are
w = w' + sgn(ner')x, = w' +x,
and plugging numenical values we obtain

1 1 2
_ |- -2 | _|-3
v o |*] 15| 7| s
0.5 0 0.5
where the superscript on the right side of the expression denotes the
number of the current adjustment step.
Step 2 This learning step is with x; as input:

1
0.5
-2
-1.3

ner =wi'xy=[2 -3 15 05] = —0.25

The updated weights are
1
-35
45
05

'l‘-tr'"+sp\{n¢r‘]:3=r"~—-:3=

It can be seen that leaming with discrete finer) and ¢ = 1 results in
adding or subtracting the entire input pattern vectors to and from the weight
vector, respectively. In the case of a continuous f(ner), the weight incre-
menting / decrementing vector is scaled down to a fractional value of the
input pattern.

Revisiting the Hebbian leaming example, with continuous bipolar ac-
tivation function finer), using input X, and initial weights w', we obtain
neuron output values and the updated weights for A = | as summarnized in
Step 1. The only difference compared with the previous case is that instead
of f(mer) = sgn(ner), now the neuron’s response is computed from (2.3a).

Step 1

finet') = 0.905
C 1905
~2.81
w = 1.357
0.5

Subsequent training steps result in weight vector adjustment as below:
Step 2
f(nef') = —0.077
1.828
_|-2m
w 1.512
0.616

Step 3
finer') = —0.932

1.828

-3.70

wi= 1 S
-0.783

Comparison of leamning using discrete and continuous activation func-
tions indicates that the weight adjustments are tapered for continuous f(ner)
but are generally in the same direction. an

PERCEPTRON

Architecture

Algorithm

Step 0: Initialize weights and bias .

(For simplicity, set weights and bias to zero.)
Set learning rate a (0 < a<1). (For simplicity, a can be set to 1.)

Step 1: While stopping condition is false, do Steps 2-6 .

—

—> Step 2: For each training pair s:t, do Steps 3-5 .

Step 3: Set activations of input units .
Xi = Si

Step 4: Compute response of output unit .

Y in=b +2Xi*Wi

1 If Yin>86
Y= 0 If -0<Y_in<@
-1 If Y.in<-6
Step 5: Update weights and bias if an error occurred .
If (Y =t)> else>
Wi(new)-Wi(old)+ atXi Wi(new)-Wi(old)
b (new)- b (old)+ at b (new)- b (old)

Step 6: Test stopping .
If no weights changed in Step 2, stop; else: continue.

Application

Example 2.11 :
A Perceptron for the AND function: binary inputs, bipolar targets
take(a=1)and (6=0.2).

Solution :-

+* The first epoch

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xy Xz 1) (wi w3 b)
(0 0 0)
(1 1 1) 0 0 1 (1 1 1) (1 1 1)
(1 0 1) 2 1 —1 (—1 0 —1) 0 1 0)
(0 1 1) 1 1 —1 O -1 —n (0 0 — 1)

(O 0 1) — 1 -1 -1 (0 0 0) (O O —-1)

¢ The second epoch

INPUT NET
{_,l'l X l}
(1 1 1) — 1
INPUT NET
(x, x> 1)
(1 0 1) 1
INPUT NET
(x X2 1)
(O 1 1) 0
INPUT NET
(x1 x2 1)
(0 0 1) -2

ouT

ouT

ouT

WEIGHT
TARGET CHANGES WEIGHTS
(v o b)
(O O — 1)
1 (1 1 1) (1 1)
WEIGHT
TARGET CHANGES WEIGHTS
(w, W b)
(1 1 0)
-1 (—1 0 — 1) (0 1 — 1)
WEIGHT
TARGET CHAMNGES WEIGHTS
(W wo b)
(O 1 — 1)
— 1 (O — 1 — 1) (0 0 —2)
WEIGHTS
TARGET CHANGE WEIGHTS
(w, w» b)
(0 0 —2)
— 1 (0 0 0) (0 L I —2)

The eighth epoch yields

(1
(.
(U
0

1
0
1
0

and the ninth

(1
(1
©
©

Finally, the results for the

1
(a
©
©

o e O e

1
0
1
0

)
D
1))
)

)
1)
b
)

I)
D)
)
1

-1 -1 1
-1 -1 -1
0 0 -1
-4 -1 -1

0 0 1

0 0 -1
-1 -1 -1
-4 -1 -1

tenth e!)och are:

I l
-1 -1
~1 -1
= 1 — 1

(1
0
0
(0

(1
(—1
(0
(0

0
(0
(0
(0

0

T — I — I —

-1)

D Q@ 3 -=3)
0 @ 3 =3)
2 2 —4)
0 @ 2 -4)
N @3 3 =3)
-1 @ 3 -4
0 @ 3 -4
0 2 3 -4
0] @2 3 -4)
0) | (2 3 -=4)
0)] @2 3 -4)
0)| 2 3 =4

ADALINE (Adaptive Linear Neuron) typically uses bipolar (1 or
-1) activations for its input signals and its target output
(although it is not restricted to such values). The ADALINE also
has a bias, which acts like an adjustable weight on a
connection from a unit whose activation is always 1.

Step 0. Initialize weights.
(Small random values are usually used.)
Set learning rate a.
(See comments following hl gorithm.)

Step 1. While stopping condition is false, do Steps 2-6.

Step 2. For each bipolar tramning pair s:t. do Steps 3-5.
Step 3. Set activations of mput units, i = 1, ..., n
Xi — §;.
Step 4. Compute net mput to output wmit:

}'_in =b + EI,'W;'.

Step 5. Update bias and weights.1 = 1, ..., n
b(new) = b(old) + a(t — yin).

winew) = wi(old) + alr — y_in)x;.

Step 6. Test for stopping condition:
If the largest weight change that occurred m Step 2 1s

smaller than a specified tolerance, then stop: otherwise
continue.

An Adaline is a single unit (neuron) that receives input from several units. It also
receives input from a "unit" whose signal is always + 1, in order for the bias weight to
be trained by the same process (the degn:l rule) as is used to train the other weights.

O {1)

APPLICATIONS

After training, an Adaline unit can be used to classify input patterns. If the target
values are bivalent (binary or bipolar), a step function can be applied as the

activation function for the output unit. The following procedure shows the step
function for bipolar targets. the most common case:

Step 0.

Step 1.

Initialize weights
(from Adaline training algorithm given in Section 2.4.2).
For each bipolar input vector x, do Steps 2—4.
Step 2. Set activations of the input units to x.
Step 3. Compute net input to output unit:

}"iﬂ = b + EI;W;.

Step 4| Apply the activation function:

_ 1 ify_in = 0;
Y —1 if y_in < 0.

EXAMPLE

An adaline for the OR_GATE bipolar input and target
with the initial weight (0.1)and the learning rate (0.1)

1 1 1 03
1 1 1 017
1 1 1 008
7
1 1 ., 000
43

0.83

0.91

1.00
43

0.07

0.08

0.09
13

0.10
043

0.07

0.08

0.09
13

0.10
043

0.07

0.08

0.09
13

0.10
043

0.17

0.25

0.16

17

0.26
213

0.17

0.08

0.17

83

0.27
87

0.17

0.25

0.34

43

0.24
39

0.49

0.68
89

0.83
356

1.00
8618
49
E=3.
0210
7849

1 1 1 0.78
473

-1 1 1 0.24
88

1 1 1 0.20
69

1 1 -1 -
0.16

41

0.83
59

0.02
1557

0.07
51

0.07
93

0.08
36

0.02
1557

0.07
51

0.07
93

0.08
36

0.02
1557

0.07
51

0.07
93

0.08
36

0.28
368

0.35
88

0.27
95

0.36
31

0.30
03

0.22
51

0.30
44

0.38

0.26
54

0.34
05

0.41
98

0.33
62

0.04
6470

0.56
4301

0.62
9007
61

0.69
8728
81
E=1.
9849
77

1.08
73

0.30
25

0.28
27

0.26
47

0.69
75

0.71
73

0.73
53

0.06
97

0.07
17

0.07
35

0.00
87

0.06
97

0.07
17

0.07
35

0.00
7621
29

0.48
6506
25

0.51
4519
29

0.54
1259
99
E=1.
5499
0132

1.276 0.276 -

1 1 0.027
6

1 0.338 0.661 0.066
9 1 1

1 0.330 0.669
7 3 0.066

-1 - - 0.067
0.324 (675 5

0.066 1

0.066 0.066
9 9

0.067)
> 0.067

0.17 0.398 0.367 0.076
3 8 2312

0.253 0.464 0.433 0.437

4 9 0532
1

0.161 0.397 0.500 0.447

7 4 9 9624
9

0.262 0.465 0.433 0.456

13 0 3 1651
6

E=1.4
1741

207

YIN| T-YIN AW?2 W1 W2 ERRO
(0.1)| (0.1)

1 1.3939 -0.3939 -0.03939 ; . 0.4256 0.456 0.393 0.155
0.03939 0.0393 2 9 1572

9 1
1 -1 1 1 03634 06366 0.06366 _ 0.0636 0.4893 0.392 0.457 0.405
0.06366 © 6 25695

-1 1 1 1 0.3609 0.6391 -0.06391 0.06391 0.0639 0.4253 0.456 0.521 0.408
1 5 4488

SN R I) _ 0.06397 0.06397 . 0.4893 0.520 0.457 0.409
0.3609 (6397 0.0639 > 2160

. 9

E=1.3

7808

167

E=1.37808167

Algorithm

MRI algorithm only the weights for the hidden

Adalines are adjusted; the weights for the output unit
are fixed.

The MRII algorithm provides a method for adjusting
all weights in the net.

Training Algorithm for Madaline (MRI). The activation function for units
Ly, Lz, and Yis
1 if x = 0;

fx) = {-1 if x < 0

Step 1, While stopping conditon 1 alse, do Steps 28
Step 2. For each bipolar trammg pair, :t, do Steps 3-T
Step3. et activations of mput unis

5=

Step4, Compute net mput to each hidden Adaline
i

2 = by 4 1wy + 1y,
1 = by 4 X0 + YW,

StepS. Determine output of each hidden Adaline
uni;

= f (Ljnl)s
22 = fliin),
Step6. Determine output of net

Jdn = by 20, + 20,

y = flyin,

Step 7. Determine error and update weights:

It t =y, no weight updates are performed.
Otherwise:

If + = 1. then update weights on Zs,

the unit whose net input 1s closest to 0,

b,(new) = by(old) * a(l - z.iny),

wis(new) = wis(old) + a(l = z-ins)x;;

If t = -1, then update weights on all units
Zy that have positive net mput,

bi(new) = by(old) "+ al=1 = zny),

wi(new) = wilold) + a(=1 = zidng)x;.

Step8. Test stopping condition.

f weight changes have stopped (or reached an acceptable
evel), or i a specified maxtmum mumber of weight update
terations (Step 2) have been performed. then stop; other-
WISE contini,

Delta Learning Rule

Coninuous
penepion

Delta Learning Rule

The delta learning rule is only valid for continuous activation +*

functions.
It is a supervised training mode. %*

The single weight w is updated using the following «*

increment:

Aw; = c(d. — 0,)f"(net)x

Where f’(neti) is the derivate of the activation function <
f(neti).

Delta Learning Rule

Continuous
perception

m

/

f’'(neti)

[1 0 -1 1\
| =2 R |1 4 -1

¥l =] 2= 05 x5 = 05 wl=]

] -1 -1 -1 0.5/

¢=0.1and 1= 1. The desired responses for x;, X,, and

X; are d;=-1, d,=-1, d;= 1. Use continues bipolar

2

activation function f(net)= e 1

F'(net)zé (1 — 0i?%

Step1:-

Input is X, desired output is dI :

Net!- wit * X! =[1 -1 0 0.5]

O'=1 (net!) =

+e

e

1
0

-

-2

's.-1 o

- .1 = 0.848 di 0i
A-2.5

We thus obtain updated weight vector

. 1 1 ' '
Finet’) =5 [140Y1==7 [1(0.848)°] = 0.140

Aw! = ¢ (d1—0")*f’(net!) * X!

=0.1*(-1-0.848) (0,140) *

Wh=awl+W! -

W2=Aw! + W=

-0.0258
0.0517

0.0258

~

1
-2
0

'».-1 o

-

-0.0258
0.0517

0.0258

0.974
-0.948

0.526

Step 2 -

Input is X2, desired output is d2 :
(/‘"

""\\
| | 0.974
F (Net2)_ w2 * X2 = -0.348
0.526
| oy ~
O*=1f(net) = T1e r1948

T

« 1.5

CY

0

-0.5
-1

b -

— .4 =-0.750 di 0i

We thus obtain updated weight vector

f(pel) = [14077)
AWZ = ¢ (d2— 02) * f'(nef?) * X2

=0.1*(-1 +0.750) 0.218 *

WH=aw!+W! _

W3 = A2 + W2=

5.45*1073
- /

‘\ll.

0
1.5

05
1

. -

~N
0

-8.175*1073

2.725*1073

1 | |
==>[1<- 0750)"] = 0218

=-1.948

~
0
-8.175*1073
2.725*1073
5.45*1073
s N -
0.974 0.974
-0.948 _ | -0.956
0 - 1 0.002
- 0.526 0.531
o .J _

otep 3 :-

Input is X3, desired output is d3 :

F (Net3). wi * X3=

f’f"
0.974

-0.956
0.002

2_

0.531

0%=1 (net’) =~

+e *2.46

._\T

J

-1

1
0.5

-0.5
b -

-4 =-0.842 diz 0i

We thus obtain updated weight vector

= -2.46

| . . | |
F(nef®) =5 [1-(0%)?] = == [1~ 0.842)] = 0.145

AW =c (42~ 0%) *f'(nef®) * X* _

=01*(1+0.842)%0.145*

WHi=Awi+W!

W4 =Aw3 + W3 =

-0.026
0.026
0.0133
-0.0133

0.5
0.5
- -

1
1

s

0.974
-0.956
0.002

0.531

-0.026

0.026
0.
-0.0133

0133

0.974
-0.929
0.016
| 0.505

Backpropagation

Example 1: Suppose you have Bp-ANN with 2-inputs, 2-hidden,
1-output with sigmoid function and the following weights, trace

with 1-iteration, where 0=0.9 ,1=045,x=(1,0), and T=1

X2 £2

9
0_f

Y1

1. Forward phase:

Zmml=x1 V11+x2 V21=1%0.1+0%0.75=0.1

1
E—ﬂ.l

= 0.524

Zl=f(Zinl)—1+

Zm2=x1 V12+x2 V22=1*-0.3+0%0.2= -0.3

Z2=f(Zin2)= ~___=0.426

te (03

Yinl=Z1 wll+Z2 w21=0.524*0.3+0.426%0.5= 0.37

Y1=f(Y1)= — = 0.59

+e—(0.37)

2. Backward phase

On=yk(1-yk)*(Tk-yk)

0 21=0.59*(1-0.59)*(1-0.59)=0. 099

0 17=21%(1-27)*> 02 Wik

0 11= Z1*(1-z1)*> 02 wll=0.524*%(1-0.524)*(0.099%0.3)=0.0074

5 15=72(1-72)* & »w21=0.426*(1-0.426)*(0.099*0.5)= 0.012

3. Update weights phase

Wik(new)=n* o 2k*z)*+u|wjk (old)]

Wll=n* o6 21*zl+ a*[wll]
=(.45%0.099*0.524+0.9*%0.3 = 0.293

W2Il=n%* 0 21*z2+ a*[wl12]
=0.45%0.099%0.426+0.9%0.5 = 0.468

Vij(new)=n* o 11*x1+ a*[vi(old)]

Vil=m*o 11*x1+ a [vl]]
=0.45*%0.0074*1+0.9*%0.1=0.0933

V12=n* 0 12*x1+ a*|v12]

V12=n* 0 12*x1+ a*[v12]
=0.45%0.012*%1+0.9*-0.3=-0.2646

V21=n*o 11*x2+ a*[v21]
=0.45*%0.0074*0+0.9%0.75 =0.675

V22=n%* 0 12*x2+ a|v22]
=0.45*%0.012*0+0.9%0.2=0.18

V-[0.0933 —02646] (9505 g 46

0.675 0.18

Example 2: Suppose you have Bp-ANN with 2-inputs, 2-hidden, 2-output
with Hyperbolic function and the following weights, trace with 1-

iteration, where 0= 0.82 ,1=0.60,x=(1,0). and T,=1
enet . e—net
03 0.5 f(net) = 02 0.3 |
V=011 -0.4 enel 4 g7l W=10.15 0.76
X1

1. Forward phase:

Z1-in=x1% v11 + x2* v21

yi= e 901 _ 0001 y1=-_0.009

Z1-in=1*%0.3 +0* 0.11 =0.3 p—0.01 L ,001
71= ED.E _ E—I}.S 71=0.29 . .
Y2-in=z1*w12 + z2*w22
E’D'B + E_D'3

Y2-in=0.29% 0.3 + 0.46* 0.76 =0.43

Z2-in=x1*v12 + x2%v22
Y2= 043 _ o043 Y2=0.40

Z2-in=1% 0.5 +0% -0.4=0.5

0.43 —0.43
e + e
7= 95 —p7 05 [72=0.46

e 0.5 + e —0.5

Y1-in=z1*wll + z2* w21

Y1-in=0.29% 0.2 + 0.46* -0.15=-0.01

2. Backward phase:

oyl =yl(1-y1)* (1-y1)

= 0.009(1-0.009)*(1-0.009)= -0. 009

0 y2 =y2(1-y2)* (I-y2)

= 0.40(1-0.40)*(1-0.40) = |0.144
& z1 = z1(1-z1)*[(3 y1*W11)+ (8 y2*W12)]

= 0.29(1-0.29)*[(-0.009*0.2)+(0.144* 0.3)]=| 0.006

& 22= 72(1-22)*[(3 y1* w21)* (3 y2* w22)]

= 0.46(1-0.46)*[(-0.009% -0.15)+(0.144* 0.76)]= | 0.027)

3. Update weights phase:

Wll=n*ov1*zl +0*wll.qa

=(0.60%-0.009%0.29)+ (0.82%0.2)= |0.16

Wi12=n*ov2*z1 +0*wW12.ua
=(0.60%0.144%0.29) + (0.82%0.3)=

W21=17*8y1*22 +0*W21a1a

0.271

=(0.60%-0.009% 0.46)+ (0.82%-0.15)=_-0.125

W22=n%0oy2*z22 +0*wW22.1

=(0.60*0.144*0.46)+ (0.82%0.76)=

0.662

.-'-.-_

70.16 0271

Whew—

\-0.125 0.662

Vil=n*o0zl1*x1 +a*vllaq

=(0.60%0.006%1)+(0.82%0.3)=

0.249

V12=n%0z2*x1 +0*v12.4

=(0.60%0.027*1)+(0.82%0.5)=10.426

V21=m*0z1*x2 +a*v21.a
=(0.60%0.006%0)+(0.82%0.11)=
V22=n*022%x2 +0*v22,u

=(0.60%0.027%0)+(0.82* -0.4)=

0.09

-0.32

View—

0.249

._\h- _

0.09

I
0.426

0.32
-

Genetic Algorithms

Genetic algorithms work on two types of spaces alternatively:
1- coding space. in other word (genotype space)
2- solutionspace, in other word(phenotype space)
Genetic operators are: (crossover and mutation)
(Evolution and selection)

¢ Crossover and mutation work on genotype space.
While evolution and selection work on phenotype space.

e The selectionis thelink between chromosomes and the
performance of decoded solutions.

¢ The mapping from genotype space to phenotype space has a
considerable influence on the performance of genetic algorithms.

e The genetic algorithms provide a directed random search in
complex landscapes.

There are two importantissues with respect to search strategies:
1- Exploration (investigate new and unknown areas in search space)
2- Exploitation (makeuse of knowledge of solutions previously found
in search space to help in find better solutions).

Genetic Algorithms

Genetic Algorithms (or simply GAs) are powerful and widely applicable
stochastic search and optimization methods based on the concepts of
natural selection and natural evaluation.

GAs work on a population of individuals represents candidate
solutions to the optimization problem. These mdividual are consists of a
strings (called chromosomes) of genes. The genes are a practical allele
(gene could be a bit. an integer number. a real value or an alphabet
character.....etc depending on the nature of the problem). GAs applying
the principles of survival of the fittest . selection . reproduction .
crossover (recombining) . and mutation on these individuals to get .
hopefully . a new butter individuals (new solutions) .

GAs are applied for those problems which either can not be
formulated i exact and accurate mathematical forms and may contain
noisy or mregular data or it take so much time to solve or it 15 simply

impossible to solve by the traditional computational methods.

How Genetic Algorithins Work

Genetic algorithm maintains a population of individuals. say P(t).
for generation t. Each individual represents a potential solution to the
problem at hand. Each individual 1s evaluated to give some measure of its
fitness. Some individuals undergo stochastic transformations by means of
genetic operations to form new mdividuals. There are two type of
transformation:-

1) Mutation, which creates new individuals by making changes in a single
individual.
2) Crossover. which creates new individuals by combining parts from two

individuals.

The new individuals, called offSpring C(t). are then evaluated. A
new population is formed by selecting the more fit individuals from the

parent population and offspring population.

The general structure of the Genetic algorithms 1s

Begin

t=0:
Initialize P(f):
Evaluate P(t):
While (not termination condition) do
Begin
{
Apply crossover and mutation to P(t) to yield C(t):
Evaluate C(t):
Select P(t+1) from P(t) and C(t):
t=t+1:

}

End

)

End

The flowchart explains how genetic algorithms work is showing in the

t=0
[
Initialize P(t)
I
Evaluate P(t)

figure

*

Crossover P(t)

|
Mutation P(t)

[
Evaluate Cir)

|
Select P{t+1) from P(t) and C(t)

I
t=t+1

No i

/Jthu}
‘-\l Yes

Best individual

¢ e D

Encoding

How to encode the solutions of the problem into chromosomes 1s a
key 1ssue when using genetic algorithms.

One outstanding problem associated with encoding 1s that some
individuals correspond to infeasible or illegal solutions to a given
problem. This mav become very severe for constrained optimization
problems and combinatorial optimization problems.

It must be distinguished between two concepts: mfeasibility and
illegality. as shown 1n figure (2).

Infeasibility refers to the phenomenon that a solution decoded from
chromosome lies outside the feasible region of given problem. Penalty
methods can be used handle infeasible chromosomes [19]. One of these
methods 1s by force genetic algorithms to approach optimal form both

sides of feasible and infeasible regions.

Illegality refers to the phenomenon that a chromosome does not
represent a solution to a given problem. Repair techniques are usually

adopted to convert an 1llegal chromosome to legal one.

Coding Space Solution Space

Figure (2) Infeasibility and 1llegality.

Various encoding methods have been created for particular
problems to provide effective implementation of genetic algorithms.
According to what kind of symbol 1s used as the alleles of a gene. the

encoding methods can be classified as follows:

1) Binary encoding
2) Real-number encoding

3) Integer or literal permutation encoding

Binarv Encoding

Binary encoding (1.e.. the bit strings) are the most common
encoding used for several of reasons. One 1s historical: in their earlier
work. Holland and his students concentrated on such encodings and
genetic algorithms practices have tended to follow this lead. Another
reason for that was because much of existing GAs theories 1s based on the

assumption of using binary encoding.

In spite of all that. bmary encoding for function optimization
problems 1s know to severe drawbacks due to the existence of Hamming
cliffs. pairs of encoding having a large Hamming distance (The Hamming
distance between ftwo Dbit strings 1s defined as the number of
corresponding positions in these bit strings where the bits have a different
value) while belonging to points of minimal distance i phenotype space.
For example., the pawr 01111111111 and 10000000000 belongs to
neighbormng pomts m phenotype space but have maximum Hammuing
distance 1 genotype space. To cross the Hamnung cliff, all bits have to
be changed simultaneously. The probability that crossover and mutation

will occur can be very small. In this sense. the bmary code doses not

preserve the locality of points in the phenotype space.

Real Number Encoding
Real number encoding is best used for function optimization

problems. It has been widely confirmed that real number encoding
perform better than binary encoding for function optimization and
constrained optimizations problems. In real number encoding. the
structure of genotype space i1s identical to that of the phenotype.
Therefore, it 1s easy to form effective genetic operators by borrowing

useful techniques from conventional methods.

Integer or Literal Permutation Encoding

Integer or literal permutation encoding 1s best used for
combinational optimization problems because the essence of this kind of

problems 1s to search for the best permutation or combination of items

subject to constrains.

Genetic Algorithms Operators

There are two basic genetic algorithms operators which are
crossover and mutation. These two operators are work together to explore
and exploit the search space by creating new variants 1in the
chromosomes. There are many empirical studies on a comparison
between crossover and mutation. It 1s confirmed that mutation operator

play the same important role as that of the crossover.

1 Crossover

One of the unique aspects of the work involving genetic algorithms
(GAs) 1s the important role that Crossover (recombination) plays in the
design and implementation of robust evolutionary systems. In most GAs.
individuals are represented by fixed-length strings and crossover operates
on pairs of individuals (parents) to produce new strings (offspring) by

exchanging segments from the parents’ strings.

1 Single Point Crossover

A commonly used method for crossover i1s called single point
crossover. In this method. a single point crossover position (called cut-
point) 1s chosen at random (e.g.. between the 4th and 5th variables) and
the parts of two parents after the crossover position are exchanged to

form two offspring [1. 24]. as shown 1n figure (3).

Single

point
Crossover

Offspring 1

Parent 1
Parent 2 Offspring 2

Figure (3) Single point crossover.

2 Multi Point Crossover

Multi-point crossover 1s a generalization of single point crossover.
introducing a higher number of cut-points. In this case multi positions are
chosen at random and the segments between them are exchanged [1. 24].

as shown 1n figure (4).

Multi
point
CrOSsOVer

Parent 1 Offspring 1

Offspring 2

Figure (4) Mult1 point crossover.

3 Uniform Crossover

Uniform crossover does not use cut-points, but sumply uses a
global parameter to indicate the likelihood that each variable should be

exchanged between two parents . as shown in figure (5).

Uniform

Crossover
Parent 1 Ofispring 1
Parent 2 Offspring 2

Figure (5) Uniform crossover.

2 Mutation
Mutation 1s a common operator used to help preserve diversity in

the population by finding new points in the search pace to evaluate. When
a chromosome 1s chosen for mutation. a random change i1s made to the
values of some locations in the chromosome.

A commonly used method for mutation is called single point
mutation. Though. a special mutation types used for varies problem kinds
and encoding methods.

1 Single Point Mutation

Single gene (chromosome or even individual) is randomly selected
to be mutated and its value 1s changed depending on the encoding type

used. as shown in figure (6).

Single point mutation

Parent Offspring

Figure (6) Single point mutation.

2 Multi Point Mutation

Multi genes (chromosomes or even individuals) are randomly
selected to be mutated and there values are changed depending on the

encoding tvpe used. as shown 1n fiegure (7).

Multi point mutation

=T amman,

Offspring

Parent

Figure (7) Multi point mutation.

Selection

Selection 1s the process of determining the number of times a
particular individual 1s chosen for reproduction and. thus. the number of
offsprmg that an individual will produce. The principle behind genetic
algorithms 1s essentially Darwinian natural selection.

Selection provides the driving force in genetic algorithms. With too
much force. genetic search will terminate prematurely. While with too
little force. evolutionary progress will be slower than necessary.

Typically, a lower selection pressure 1s indicated at the start of
genetic search mn favor of a wide exploration of the search space. while a
higher selection pressure 1s recommended at the end to narrow the search
space. In this way. the selection directs the genetic search toward
promising regions in the search space and that will improve the
performance of genetic algorithms. Many selection methods have been

proposed, examined and compared. The most common types are :

Type of selection

1) Roulette wheel selection
2) Rank selection
3) Tournament selection

4) Steady state selection

5) Elitism

1 Roulette Wheel Selection

Roulette wheel selection 1s most comimon selection method used 1n
genetic algorithms for selecting potentially useful individuals (solutions)

for crossover and mutation.

In roulette wheel selection. as mn all selection methods. possible
solutions are assigned a fitness by the fitness function. This fitness level
1s used to associate a probability of selection with each individual. While
candidate solutions with a higher fitness will be less likely to be
eliminated. there 1s sfill a chance that they may be. With roulette wheel
selection there 1s a chance some weaker solutions may survive the
selection process: this 1s an advantage. as though a solution may be weak,
1t may mclude some component which could prove useful following the

recombination process.

The analogy to a roulette wheel can be envisaged by imagining a
roulette wheel in which each candidate solution represents a pocket on
the wheel: the size of the pockets are proportionate to the probability of
selection of the solution. Selecting N individual from the population 1s
equivalent to playing N games on the roulette wheel. as each candidate 1s

drawn independently. as shown in figure (8).

H1stind.
12nd ind.

B 3rd ind.
B 4thind.

Figure (8) Roulette wheel selection.

2 Rank Selection

In ranking selection. the mdividuals i the population are sorted
from best to worst according to their fitness values. Each individual 1n the
population 1s assigned a numerical rank based on fitness. and selection 1s
based on this ranking rather than differences in fitness. The advantage of
this method 1s that it can prevent very fit individuals from gaining
dominance early at the expense of less fit ones. which would reduce the
population's genetic diversity and muight hinder attempts to find an
acceptable solution. The disadvantage of this method 1s that it required
sorting the entire population by rank which 1s a potentially tume
consuming procedure. Rank selection effect 1s shown 1n figure (9) (a and

b).

Z{stind.
C 2ndind.
2 3rd ind.
B dthind,
B athind,

Figure (9) Rank selection effect. (a) Before ranking. (b) After ranking.

3 Tournament Selection

This method randomly chooses a set of individual and picks out the
best mdividual for reproduction. The number of individual in the set 1s
called the tournament size. A common tournament size 1s 2, this 1s called
binary tournament.

By adjusting tournament size. the selection pressure can be made
arbitrarily large or small. For example. using large Tournament size has
the effect of increasing the selection pressure. since below average
individuals are less likely to win a tournament while above average
individuals are more likely to win it.

4 Steadv State Selection

The steady state selection will eliminate the worst of individuals in
each generation. It work as follow: the offspring of the individuals
selected from each generation go back into the pre-existing population,

replacing some of the less fit members of the previous generation .

(zenetic Algorithms Parameters

1-population size 2-crossover rate 3-mutation rate

1-population size
population size dictates the number of individuals in the population.

Larger population sizes increase the amount of variation present in the
initial population at the expense of requiring more fitness evaluations. It
1s found that the best population size is both application dependent and
related to the mdividual size (number of chromosomes within). A good
population of individuals contains a diverse selection of potential

building blocks resulting in better exploration .

If the population loses diversity the population is said to have
“premature convergence” and little exploration 1s being done. For larger
individuals and challenging optimization problems. larger population
sizes are needed to maintain diversity (higher diversity can also be
achieved through higher mutation rates and uniform crossover) and hence

better exploration. Many researchers suggest population sizes between 25

and 100 individual. while others suggest that it must be very much larger

(1000 individual or more).

2 Crossover Rate

Crossover rate determunes the probability that crossover will occur.
The crossover will generate new individuals in the population by
combining parts of existing individuals. The crossover rate 1s usually high
and “application dependent . Many researchers suggest crossover rate to

be between 0.6 and (.95 .

3 Mutation Rate

Mutation rate determunes the probabality that a mutation will occur.
Mutation 1s employed to give new mnformation to the population (uncover
new chromosomes) and also prevents the population from becoming
saturated with similar chromosomes, simply said to avoid premature
convergence. Large mutation rates increase the probability that good
schemata will be destroyed. but increase population diversity. The best
mutation rate i1s “application dependent’. For most applications, mutation
rate 15 between 0.001 and 0.1 [16.36]. while for automated circuut design

problems. it 15 usually between 0.3 and 0.8.

How Crossover and Mutation Work

1 Binary Encoding

Single
point
1 (0|11 1|1 PCrossover [1 (O |1 [0 |0 |1

Parent 1 @ Offspring 1

(a)

1) Crossover

Mult:

point
1[I'1111C1'0550‘-'H1111[]1’

0 [11/{1 |0 |0 |1 001|011
Parent 2 Offspring 2
(b)
Uniform 1
Crossover
10111 1' 1 (11 (0f1]1

Parent 1 |=: } Offspring 1

| (c)

2) Mutation
The single point and mult1 point can implement 1n binary encoding
as explained 1n section (3.2) before, the effect of mutation 1s shown in the

figure (11) (a and b).

Single point mutation

s
STififofifo) C=)(ofi o [ofi]o

Parent Offspring

Multi point mutation

nnnono D=

Parent

Figure (11) Explanation of mutation effect on binary string. (a) Single

point mutation. (b) Mult1 pomnt mutation.

2 Real Number Encoding

1) Crossover
Crossover in real number encoding has the same effect as in binary

encoding. the single pomnt. multt pomnt, and uniform crossover in real

number encoding is shown i figure (12)(ab and c).

Single
point
12021 154 6.1} 1.4 JJCrosos
Parent 1 @ Offspring 1

33)s52015022) 2 3352054061014
Offspring 2

Parent 2

Multi

point
12021f54F61)14 Cmm%

Offspring 1

Parent 1

Parent 2 Offspring 2

Uniform

Crossover

Parent 1 Offspring 1

33f0s52f15[22f 2 33021)15)61} 2 |
Offspring 2

Parent 2

2) Mutation

In this type of encoding. there is several ways to implement
mutation. This done, usually. by adding (or subtract) a random number to

(or from) the mutated gene. but in another cases gene might by replaced

by a new wvalue generated randomly within the used real number

Iimitation. as shown in figure (13) (a and b).

Single point mutation

1.2 2.1 5.4 p6.1 1.4 ? 1.2121(44|61)] 14

Parent Offspning
(a)

Mult: point mutation

1.4 > 2.2

Figure (13) Explanation of the mutation effect on the real number string.

(a) Single point mutation. (b) Multi pomnt mutation.

Integer or Literal Permutation Encodine

1) Crossover

Unlike the bmnary and real value encoding, this type has a special
crossover rule, for single point crossover the crossover 1s done as follow:
first copy a substring from first parent till crossover point to the first
offspring, then copy all the symbols that not contents in that substring
from the second parent, do the same to second parent to produce the

second offspring. The same procedure can be done m multi point

crossover while umiform crossover 1s not usually used because 1t gives

illegal offspring . The single point crossover 1s shown 1n figure (14).

Siﬂgle
136245 oo [1]3]6[4]5]2
Parent 1 Offspring 1
314f1)5]2]6) 31401[6[2]5
Parent 2 Offspring 2
]

Figure (14) Explanation of single point crossover effect on Integer

permutation encoding string.

2) Mutation

A special type of mutation 1s used. called reorder mutation, 1n
which a pair of genes will select randomly and swap there contents. The

mutation effect 15 shown n figure (13) (a and b).

Single point mutation

| }253

Offspring

Mult: point mutation

HH&WU@QE

Parent Offspring

Figure (15) Explanation of the mutation effect on the Integer permutation

encoding string. (a) Single point mutation. (b) Multi point mutation.

Application of Genetic Algorithms

1) Optimization.

2) Automatic Programming.

3) Machine and robot learning.

4) Economic models.

5) Immune system models.

6) Ecological models.

7) Population genetics models.

8) Interactions between evolution and learning

Questions and Answers
Q1: Explain type of Activation Function?

Answer:

(1) Identity function: 1@
fix)=x forallx

x

Figure 1.7 Identity function.

(i1) Binary step function (with threshold 8):

1 ifx=6
f“"{u ifx <8

fiz)

<] x

Figure 1.8 Binary step function.

(iii] Bmary sigmoid:
|
1 + exp(—ox)’

f1ix) = af(x) [1 = flx)],

As 15 shown m Section 6.2 3_ the logistic sigmoid function can be scaled to
have any range of values that 1s appropriate for a given problem. The most com-
mon range 15 from — 1to 1; we call this sigmoid the bipelar sigmoid It 15 illustrated
m Figure 1.10for o = 1.

a

flx) =

fx)

Figure 1.9 Binary sigmoid. Steepness parameters a = 1 and a = 3.

-/
| +¢

1

fx)

—mrEEErTTEE e Eee-- O g e =

[~ m=] I ———

Figure 1.10 Bipolar sigmoid.
(iv) Bipolar sigmoid:

Z

glxy = 2f(x) -1 = 1+ exp(—ax) !

1 — exp(—ox)
1 + exp(—ox)

ﬂﬂ=%“+ﬂﬂm—gm1

The bipolar sigmoid 1s closely related to the hyperbolic tangent function.
which 1s also often used as the activation function when the desired range of
output values 1s between —1 and 1. We illustrate the correspondence between
the two for a = 1. We have

ﬂﬂ=§“+ﬂﬂm—EML

The bipolar sigmod 1s closely related to the hyperbolic tangent function
which 1s also often used as the activation function when the desired range of
output values 1s between —1 and 1. We illustrate the correspondence between
the two for a = 1. We have

1 — exp(—x)

glx) .= I + expl(—x).

The hyperbolic _taﬂgent 15
explx) — exp{—=x)
explx) + .expl(—x)

| = exp(—2x)
I + exp(—2x)

hix) =

Q2: Design AND function using ANN
Answer:

X1 X2
1 1
@ Bk 1 0
0 1
@ o | 0 0
Q3: Design OR function using ANN
Answer:
OR gate
The threshold on unitY is 2.
- o
()—

Q4: Design AND NOT function using ANN

Answer:
AND NOT
nin-=y
B T
>@ X
@ PEY 01 0
00 0
Q5: Design XOR function ¥OR

using ANN ,
x1 XOR x3 <> (x; AND NOT x;) Or (x5 AND NoT X)).

Answer: @\ 2 . nX oy
’ >® ||
" [0
QD/ 2 3 0 1
00

Zy = x3 AN NOT X2

CD et - oD

Z> = Xx2 AND NOT x,;.

Q6: Hebb rule AND function binary input and target
Q7: Hebb rule AND function binary input and Bipolar target
Q8: Hebb rule AND function bipolar input and target
Q9: Hebb rule OR function binary input and target
Q10: Hebb rule OR function binary input and Bipolar target
Q11: Hebb rule OR function bipolar input and target

Q12: training Hebb rule AND function to find truth table
Q13: Explain the algorithm of Hebb rule

Q13: Explain the algorithm of perceptron rule

Answer Q
Example 2.5 A Hebb net for the Axp function: binary inputs and targets

INPUT TARGET
(xy x2 1)

(1 1 1) |

(1 0 1) 0

0 1 D 0

© 0 1 0
INPUT TARGET WEIGHT CHANGES WEIGHTS
(xy x3 1) (Aw, Aw, Ab) (wy wy b)
© 0 0
(1 11 1 (1 L 1 a 1.1
1 0 1 0 0 0 0) a 1 1
© 1 1) 0 0 0 0) (a 1L 1)
© 0 1 0 o 0 0) a 1

Answer Q

Example 2 A Hebb net for the Anp function: binary inputs bipolar targets

INPUT TARGET
(xy x2 1)
(1 1 1) 1
a0 0 1) -1
0 L -1
O 0 0 -1
INPUT TARGET WEIGHT CHANGES WEIGHTS
(X1 x3 1) (Awy Aws Ab) (wy, w2 b)

0 0 0
(r 1 1) 1 (1 1 1) (a0 1t 1)

INPUT TARGET WEIGHT CHANGES WEIGHTS

(x; 2 1) (Awl Aw> Ab) (wy wz b)
(1 0 - (-1 0 -=1) © 1 0
0 1 1) -1 (0 -1 =1 o 0 =1
© 0 1 —1 (O 0 —1) 0 0 =2)

For (binary input and binary output) and (binary input and
bipolar output) the Final weight Does not achieve all the Targets

Answer Q

Example A Hebb net for the Axp function: bipolar inputs and targets

(x
(1

(1
(=1
(—1

INPUT

(x; x> 1)

(1 1 1
(1 -1 1)
(-1 1 1)
(-1 -1 1)

INPUT
Xz 1)
1 1}
-1 1}
l 1)
— 1 1)
TARGET

TARGET]

WEIGHT CHANGES
(Awy Aw: A4b)

(1 1 1)

(= 1 1 1)
(1 -1 -1
(1 1 _1)

WEIGHTS
(wy W2 b)
0w 0 M
il 1 L}
© 2 0
a1 -1

e 2 -2

= —

Final Weights

Answer Q

INPUT

(xy x2 1)

a 11
r o 1
© 1 1
© 0 1

INPUT

(xy xx 1)

a1 1)
(r 0 1
O 1 1
© 0 1

TARGET

— I — I — I

TARGET

="
-1

WEIGHT CHANGES
(AWI AWI &b)
(1 |
() 0 0)
© 0 0)
O 0 0)

WEIGHT CHANGES
(Awy Aws Ab)

(1 1 1)
(-1 o0 -=1)
(0 =4 =1
(0 0 i)

WEIGHTS

(w)
0

(1
(1
(1
(1

w; b)
0 0)
1. 1)
1 1)
L 1)
1 1)

WEIGHTS

(w, wz b)
0O 0 0
(1 1L 1)

(0
0
(0

1 0)
i =)
0 -2)

INFUT
(x; x2 1)

(1 N
(r =11
(-1 1 1)
(-1 -1 1)

TARGET

WEIGHT CHANGES
[fh Wy A Wa :lﬂ'.f

(1 L 1)

(= 11 -
(1 -1 -1
(1 1 —1)

WEIGHTS

(wy Wi b)
0 0 0)
(0 L 1
© 2 0
(1 1 =1)

(2

2 =2)

Final Weights

Choose the suitable choice for the following statements

1. The areas in which neural networks are currently being applied are: ---—-----
a. speech Recognition b. searching c. control problems [d.Jboth a&c
2 . In neuron input paths called -========--
[@] dendrites b. synapses c. weights d.axon

g, mmmmmm——- is the junction between the (axon) of the neuron and the dendrites of the
other neuron

[@alsynapse b. dendrites c. weight d. activation function
4. Information processing occurs at many simple elements called ===-===----
a. weight b. path] neuron d. axon

9. Each neuron applies an action

6. A Neural network is characterized by: ==--====-==--

a. Training Learning Algorithm b. Activation function c. architecture [.]

all a,b,c
7. One of ANN properties is
a. serial [b. Fault tolerance c. activation function d. supervision

8. There are =---- types of learning in which the weights organize themselves
according to the task to be learnt, these types are .)

a. 3,supervised, unsupervised, activated b.3, self learned ,activated,
supervised c. 3,unsupervised, self learned, activated [d.] 3, supervised,

unsupervised, self learned

9. In the unsupervised learning, the correct final vector is Nnot ==-==---- , but instead
the ====e=-- are changed through random numbers
a. learned, weight b. |specified, weights c. activated, weights

d. changed, weights

10. In the supervised learning, at every step the system is informed about the ------
- output vector. The =----- are changed according to a formula

a.exact, weights b. next, weights c. only, weights d. nearly, weights
11. Neural nets are often classified as

a. single layer, double layer b. single layer, triple layer [cl single layer,

multi layer d. single layer, all layer

12. In determining the number of layers, the input units are ===--=====--- as a layer

a. hot specified [b] not counted c. hot determined d. not
countered
13. units are between the input units and the output units in the --------
----- net.

[@.Jhidden, multi layer b. hidden, double layer c. hidden, triple layer, d.
hidden, single layer

14. the hard limiter activation function S ======ssszsaea- A e —

a. binary, tri-polar bi-polar, tri-polar [c.]binary, bi-polar d. binary,
single polar
15. the input to binary hard limits is & while in the bipolaris &

_ 1,0,1,-1 b.0,1,1/2,-1/2 c.0,1,2,-2 d.1,1,0,1

Example2 — Delta learning rule

Perform two training steps of neural network, using the delta learning
rule for A =1and c=0.25. Train the network using the following
data pairs

) 2+ L))

The initial weights are W, = [1 0 1]' and f(net) is bipolar continuous
activation function.

Solution

F(net) = bipolar activation function =

2

F'(net) = 4[1-(0i)3)]
Net1= XT"W1=[20-1]*[101] =1
01 = f(net1) = 0.47

1 + exp(—Ax)

=1

Since Sgn(0O1) not equal d+(-1) the correction is necessary

F'(net:)=1/2(1-0%) = %(1- (0.47)9) = 0.39
W2=W + ¢(di-Oi) F'(net1)*X1

W2=[1 0 1] + 0.25(-1-0.47)"0.39 * [2 0 -1] = [1 0 1] + (- 0.14) * [2 0 -1]
=[101]+ [-0.28 0 0.14] W2=[0.720 1.14]

Net:= Xa"Wz=[1-2-1] *[0.72 0 1.14]= -0.42

02= f(net2) = -0.2

Since Sgn(02) not equal dz2(1) the correction is necessary

F'(netz)=1/2(1-07) = % (1- (-0.2)?) = 0.48

Wa=W: + ¢(d2-02) F’(net2)*X2

W,=[0.72 0 1.14] +0.25(1+0.2) * 0.48 *[1 -2 -1]
W.=[0.72 0 1.14] +[1.44 -2.88 -1.44]
W,=[2.16 -2.88 -0.3]

Aial) cilya) 530 (o Aliad
1. GA works on two types of spaces -------- & ---mmeee-

Genotype& phenotype

2. The--------- is the link between chromosomes and the performance
decoded solutions Selection
3. GA provides -------- search in complex landscapes

Random

4. There are two important issues with respect to search strategies-----
& -------- Exploration& Exploitation

5. Infeasibility refers to the phenomenon that a solution decoded from

chromosome lies----------- the feasible region of given problem

outside

6. Genetic operators -------- 8 =-=-meee-- work on genotype space

Crossover& Mutation

7. Genetic operators -------- & ----meeee- work on phenotype space

Evolution& Selection

8. To cross the Hamming cliffs in --------- all bits have to be -----------

Binary encoding, changed simultaneously

9. In ——-- the structure of genotype space IS -——— to that in
phenotype.

Real number encoding, Identical

10. Integer or literal permutation encoding is best for —————-

Combinational optimization

What are the important 1ssues with respect to search strategies i Genetic Algonithms?

® There are two important issues with respect to search strategies:: exploration
(investigate new and unknown areas mn search space) and exploitation (make
use of knowledge of solutions previously found in search space to help i find
better solutions).

What are Genetic Algonithms? Where GAs work?

P Genetic Algonithms (or simply GAs) are powerful and widely applicable stochastic
search and optimization methods based on the concepts of natural selection and
natural evaluation.

GAs work on a population of individuals represents candidate solutions to the
optimuzation problem. These individual are consists of a strings (called
chromosomes) of genes.

Explain with diagram infeasibility and illegality?

@ Infeasibility refers to the phenomenon that a solution decoded from chromosome
lies outside the feasible region of given problem. Penalty methods can be used
handle infeasible chromosomes. One of these methods 1s by force genetic
algonithms to approach optimal form both sides of feasible and infeasible
regions.

§ Ilegality refers to the phenomenon that a chromosome does not represent a solution
to a given problem. Repair techniques are usually adopted to convert an 1llegal
chromosome to legal one.

~ Coding Space

Tutorial Sheet of Genetic Algorithm

Part A: Crossover and Mutation
Q1: Apply single crossover of 6" point and mutation of 3 point on the following

population :
Parent Pattern X 2X-1
Pl 00000110
P2 00000010
P3 00001000
P4 00001001
PS5 00000110
P6 00001111

Solution:
1. Calculate the both value of X and 2X-1 from the above Pattern

Parent Pattern X 2X-1
Pl 00000110 6 11
P2 00000010 2 3

P3 00001000 8 15
P4 00001001 9 17
P5 00000110 § 11
Po6 00001111 15 29

2. After crossover 6™ point

Children Pattern X 2X-1
Child 1 00000010 2 3
Child 2 00000110 6 11
Child 3 00001001 9 17
Child 4 00001000 8 15
Child 5 00000111 7 13
Child 6 00001110 14 27

3. Apply Mutation 3™ point

Children | Pattern X 2X-1
Child 1 00000010 2 3
Child 2 00000110 6 11
Child 3 00001001 9 17
Child 4 00001000 8 15
Child 5 00000111 7 13
Child 6 00001110 14 27

4. After Mutation 3™ point

Children Pattern X 2X-1
Child 1 00100010 34 67
Child 2 00100110 38 75
Child 3 00101001 41 81
Child 4 00101000 40 79
Child 5 00100111 3 77
Child 6 00101110 46 01

Q,: For the population below with the fitness function Y= A+B+C+D-30, apply the
following:

1. Single crossover of 4" point
2. Mutation of 4™ and 1% points
3. Repeat No 2 with Mutation of 3" point

Parent Pattern

Pl 112:05:07.15]
P2 01:08:20.26]
P3 05:10:13.20]
P4 07:13:09.11]
Solution:

Calculate the value of Y(Evaluation) from the above Pattern

Parent Pattermn Evaluation
Y= A+B+C+D-30
Pl [12:05:07.15] 12+5+7+15-30=9
P2 [01:08:20,26] 25
P3 [05:10:13.20] 18
P4 [07:13:09.11 10
1. After crossover 4% point
Children Pattern Evaluation
Y= A+B+C+D-30
Child 1 [12:05:07.26] 20
Child 2 [01:08:20,15] 14
Child 3 [05:10:13,11 9
Child 4 [07:13:09.20] 19

2. After Mutation of 4™ and 1% points

4™ in Ch,
1% in Chy
Randomly Ch,, Ch,

Children Pattern Evaluation
Y= A+B+C+D-30
Child 1 112:05:07.26] 2
Child 2 01:08:20,07])
Child 3 05:10;13,11] 9
Child 4 115:13:09,20] 27

3. HW

Part B: Selection: Roulette Wheel Selection
Qs: Apply roulette wheel selection for the following population:

Parent Pattern X 2X-1
Pl 00000110
P2 00000010
P3 00001000
P4 00001001
P5 00000110
Po6 00001111

Randomly values

1. 0.2

2. 0.01

3. 0.8

4. 0.21

5. 0.11

6. 0.65

Solution:
Calculate the both value of X and 2X-1 from the Pattern

Parent Pattern X 2X-1
Pl 00000110 6 11
P2 00000010 2 3

P3 00001000 8 15
P4 00001001 9 17
P5 00000110 6 11
Po6 00001111 15 29

1. Roulette Selection

Parent | Pattern X F-ou= | Fitness Fitness Probability Randomly | New
2X-1 | Evaluation p-Part _ _ Fitness values Populati
[]_ 1 All Total Fitness on
1+f,]bj
Pl 00000110 | 6|11 1/1+11=0.083 0.083/0.5544=0.15 0.15 0.2 P2
2 00000010 | 2|3 1/1+3=0.25 0.25/0.5544=0.45 0.15+0.45 | 0.01 Pl
=0.6
P3 00001000 | 8| 15 0.0625 0.11 0.71 0.8 P4
P4 00001001 | 9| 17 0.055 0.09 0.8 0.21 P2
P5 00000110 | 6|11 0.0714 0.13 0.93 0.11 Pl
P6 00001111 1|29 0.0333 0.06 0.98=1 0.65 P3
5
Total Fitness
=(.5552
Hint:

1. Objective function=f(x) =F obj
2. Fitness of each individual = Fitness[] = (1 / (1+F obj[])
3. Fitness probability P[1] = Fitness[] / Total

Q,: For the following population below, apply the following:

Roulette wheel selection

Single Crossover over 5t point

Mutation of 6™ point

Repeat No(3) to make Mutations of 1% point on Fourth pattern and 3™ point on
Five pattern

W

Randomly values
0.2

0.01
0.8

0.21
0.11
0.65

Ok whN =

Solution:
Calculate the both value of X and 2X-1 from the above Pattern

Parent Pattern X 2X-1
Pl 00000110) 11
P2 00000010 2 3

P3 00001000 8 15
P4 00001001 0 17
P5 00000110) 11
P6 00001111 15 29

1. Roulette Selection

Parent | Pattern X | F-0bj= | Fitness[]= ! Fitness Probability p[Randomly New
2X-1 LH b F% values Population
Pl 00000110 |6 |11 1/1+11=0.083 | 0.083/0.5544=0.15 |0.15 0.2 P2
P2 00000010 |2 |3 1/1+3=0.25 0.25/0.5544=0.45 | 0.15+0. |0.01 Pl
45=0.6
P3 00001000 |8 |15 0.0625 0.11 0.71 0.8 P4
P4 00001001 9 |17 0.055 0.09 0.3 0.21 P2
P5 00000110 |6 |11 0.0714 0.13 0.93 0.11 Pl
P6 00001111 |1 |29 0.0333 0.06 0.98=1 |0.65 3
5

Total=0.5552

Hint:
1. Objective function=f(x) =F obj
2. Fitness of each individual = Fitmess[] = (1 / (1+F _obj[])
3. Fitness probability P[1] = Fitness[] / Total

2. Single Crossover over 5% point

New Population

Parent | Pattern X | 2X-1
Pl 00000010 [2 |3

P2 00000110 |16 |11
P3 00001001 |9 17
P4 00000010 | 2 3

P53 00000110 |6 11
P6 00001000 | 8 15

o
L=

After Crossover over 5™ point

Children Pattern X 2X-1
Child 1 00000110 § 11
Child 2 00000010 2 3
Child 3 00000010 2 3
Child 4 00001010 10 19
Child 5 00001000 8 15
Child 6 00000110 6 11

3. After Mutation of 6™ point

Children Pattern X [2X-]
Child 1 00000010 2 11
Child 2 00000110 6 3
Child 3 00000110 6 3
Child 4 00001110 14 |19
Child 5 00001100 12 |15
Child 6 00000010 2 11

4. HW

Qs: For the following population below with the function Y= A+B+C+D-30, apply the
following:

1. Roulette wheel selection
2. Single Crossover over 4" point
3. Mutation for 4" and1™ point

Randomly values

1. 0.1

2. 0.7

3. 0.3

4. 0.5
Parent Pattern
Pl 12:05:07,15]
P2 01:08:20,26]
P3 105:10:13,20]
P4 07:13:09.11]

Solution: Calculate the value of Y(Evaluation) from the above Pattern

Parent Pattern Evaluation

Y= A+B+C+D-30
Pl 12:05:07,15] 12+5+7+15-30=9
P2 01:08:20.26] 25
P3 05:10:13,20] 18
P4 07:13:09,11] 10

1. Roulette Selection

Parent | Pattern F-ooi= ¥= | Fitness[]= | Fitness Probability Randomly | New
A+B+C+D 1 []= Part values population
230 1+fob; P All
Pl [12;05;07,15] | 9 0.1 0.355 0.355 0.1 Pl
P2 [01:08:20,26] | 25 0.038 0.135 0.49 0.7 P4
P3 [05;10;13,20] | 18 0.053 0.188 0.678 0.3 P1
P4 [07:13:09,11] | 10 0.09 0.32 1 0.5 P3
Total
Fitness =
0.2819

The new population will be:

Parent Pattern

Pl [12;05;07,15]

P2 [07;13;09,11]

P3 [12;05;07,15]

P4 [05;10;13,20]
Hint:

1. Objective function= f(x) = F obj
2. Fitness of each individual = Fitness[] = (1 / (1+F_obj[])
3. Fitness probability P[1] = Fitness[] / Total

2. After Single Crossover 4™ point

Children Pattern

Child 1 [12:;05;07,11]
Child 2 [07:13;09,15]
Child 3 [12:05;07, 20]
Child 4 [05:10;13,15]

. Mutation for 4™ and1* point
By assuming the Mutation Rate= Population size X rate; rate=0.4 (Given)

(s

= 4x0.4=2

Choose randomly c[2], c¢[4]

Point 4,1

Children | Pattern
Child 1 12;05;07,11]
Child 2 07:13;09,15]
Child 3 12;05;07, 20]
Child 4 05:10;13,15]
After Mutation

Children Pattern
Child 1 12;05;07,11]
Child 2 07;13;09,05]
Child 3 12;05:07, 20]
Child 4 15;10;13,15]

The new population can be represented as Roulette Selection (H.W)

Parent | Pattemn Fon= Y= | Fitness[] | Fitness Probability Randomly | New
A+B+C+D- | __ 1 []= Part population
30 L4 All

Pl 12;05;07,11] 0.1 P1

P2 [[07;13;09,05 YRR

P3 |[12;05;07,20 03 Pl

P4 15:10:03,15) 0.5 P3

Total=
Hint:

1. Objective function= f(x) = F obj

2. Fitness of each individual = Fitmess[] = (1 / (1+F _obj[])
3. Fitness probability P[1] = Fitness[] / Total

Qs:H.W: Suppose a genetic algorithm uses populations as in pattern below with fitness
function of mdividual x: f(x)=a+2b+3 c+4d

X; =[a;b;c;d] =[12;05;23;08]
X, = [a;b;c;d] = [02;21;18;03]
X3 = [a;b;c;d] = [10;04:13;14]
x4 = [a;b;c;d] = [20;01;10;06]

1. Calculate the objective function of each individual
2. Compute the fitness of each mdividual

3. Calculate the fitness probability of each mdividual
4. Apply Single Crossover of 2nd point

5. Apply Mutation for Ist and3rd point

Hint:
1. Objective function=1(x) = F ob;j
2. Fitness of each individual = Fitness[] = (1 / (1+F oby[])
3. Fitness probability P[1] = Fitness[] / Total

Part C: Questions and Answers

Q;: What are the important 1ssues with respect to search strategies in Genetic Algorithms?

Answer:
There are two 1mportant 1ssues with respect to search strategies:
1. Exploration (investigate new and unknown areas in search space)

2. Exploitation (make use of knowledge of solutions previously found in search
space).

Q,: What are Genetic Algorithms? Where GAs work?

Answer:

Genetic Algorithms (or simply GAs) are powerful and widely applicable stochastic
search and optimization methods based on the concepts of natural selection and natural
evaluation.

GAs work on a population of individuals represents candidate solutions to the
optimization problem.

Q;: State the Encoding methods? Explain each.

Answer:

Encoding methods can be classified as follows:
1) Binary encoding

2) Real-number encoding

3) Integer or literal permutation encoding
Q4: What are the two requirements should a problem satisfy 1n order to be suitable for

solving 1t by a GA?

Answer:
1. The fitness function can be well-defined.
2. Solutions should be decomposable into steps (building blocks) which could be then

encoded as chromosomes.

Qs: What 1s the general structure of the Genetic Algorithms?

Answer:

The general structure of the Genetic algorithms 1s as follow:
Begin

{

t=0;

Initialize P(t);

Evaluate P(t);

While (not termination condition) do

Begin

{

Apply crossover and mutation to P(t) to yield C(t);
Evaluate C(t);

Select P(t+1) from P(t) and C(t);

t=t+1;

}

End

}
End

Q;: Based on the flowchart explains how genetic algorithms work?

Qs: List Six Applications of Genetic Algorithms

Answer:

1. Optimization

2. Automatic Programming

3. Machine and robot learning
4. Economic models

5. Immune system models

6. Population genetics models

Qo: Mention the most Advantages and Limitations of Genetic Algorithm
The advantages of genetic algorithm includes,

1. Parallelism

2. Liability

3. Solution space 1s wider

4. The fitness landscape 1s complex
5. Easy to discover global optimum

The limitation of genetic algorithm mcludes,

1. The problem of 1dentifying fitness function

2. Definition of representation for the problem

3. Premature convergence occurs

4. The problem of choosing the various parameters like the size of the population,
Mutation rate, cross over rate, the selection method and its strength.

5. Cannot use gradients

Q0. State the types of crossover and give only one example for any type.
Answer:

1. Single Point Crossover

2. Multi Point Crossover

3. Uniform Crossover

Example: Single Point Crossover
Single

point
1 /0 |1 |1 |1 I‘C‘mssover 1 /0 (1[0 [0]|1

Parent 1 @> Oftspring 1
L J

O |1 (1 /(0 0|1 O 1|11 |1

Q. State the types of mutation and give only one example for any type

Answer:
1. Single Point Mutation

2. Multi Point Mutation
Example: Single Point Mutation

Single point mutation

A
ojrjrjojujo. ojrjofojujo.

Parent Offspring

Q1. Choose the suitable words for the following point:
1. GA works on two types of spaces &

2. The Is the link between chromosomes and the performance

decoded solutions.

3. GA provides search in complex landscapes

. There are two important issues with respect to search strategies

. Infeasibility refers to the phenomenon that a solution decoded from

chromosomelies the feasible region of given problem
. Geneticoperators & . work on genotype space
. To cross the Hamming cliffsin all bits have to be
Genetic operators & . work on phenotype space
In . the structure of genotype spaceis to that in
phenotype

10. Integer or literal permutation encoding is bestfor

il Aallall aiead LT 2a

