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The Chain Rule
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A special rule, the chain rule, exists for differentiating a function of another function. This unit
illustrates this rule.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

e explain what is meant by a function of a function
e state the chain rule

e differentiate a function of a function
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1. Introduction

In this unit we learn how to differentiate a ‘function of a function’. We first explain what is
meant by this term and then learn about the Chain Rule which is the technique used to perform
the differentiation.

2. A function of a function

Consider the expression cos z°. Immediately we note that this is different from the straightforward
cosine function, cosz. We are finding the cosine of 22, not simply the cosine of . We call such
an expression a ‘function of a function’.

Suppose, in general, that we have two functions, f(x) and g(z). Then

y = f(g(x))
is a function of a function. In our case, the function f is the cosine function and the function g

is the square function. We could identify them more mathematically by saying that

f(z) = cosx g(z) = 2?

so that
f(g(x)) = f(2*) = cosz?

Now let's have a look at another example. Suppose this time that f is the square function and
g is the cosine function. That is,

then
flg(@)) = f(cosx) = (cos )’
We often write (cosz)? as cos?z. So cos? z is also a function of a function.

In the following section we learn how to differentiate such a function.

3. The chain rule

. . . . . _.d
In order to differentiate a function of a function, y = f(g(z)), that is to find d—y we need to do
i
two things:

1. Substitute u = g(z). This gives us

y = f(u)
Next we need to use a formula that is known as the Chain Rule.
2. Chain Rule
dy _dy  du
dr du = dz
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Q Key Point
Chain rule:

To differentiate y = f(g(z)), let u = g(x). Then y = f(u) and

dy _dy  du
de  du = dz

Example
Suppose we want to differentiate y = cos 2.
Let u = 22 so that y = cosu.

It follows immediately that

du 5 dy )
— = 42 — = —SInu
dz du
The chain rule says
dy dy " du
de  du = dz
and so
dy
— = —sinu X2
o sinu T
= —2xsinz?
Example

2

Suppose we want to differentiate y = cos? x = (cos x)?.

Let u = cosx so that y = u?

It follows that

du ) dy 5
— = —sinzx — = 2u
dx du
Then
dy _ dy du
de  du = dx
= 2uX —sinx
= —2coszsinx
Example

Suppose we wish to differentiate y = (2z — 5)°.

Now it might be tempting to say ‘surely we could just multiply out the brackets’. To multiply
out the brackets would take a long time and there are lots of opportunities for making mistakes.
So let us treat this as a function of a function.
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Let u = 22 — 5 so that y = u'%. It follows that

du
=7 9
dx
Then
dy
dz

= 10u°

dy
v dz
10u? x 2

20(2z — 5)?

4. Some examples involving trigonometric functions

In this section we consider a trigonometric example and develop it further to a more general

case.

Example
Suppose we wish to differentiate y = sin 5.
Let u = Hx so that y = sinu. Differentiating
du _
dx
From the chain rule

dx

dy
— = COSUu

du

dyxdu

du dx

cosuU X H

5 cos dx

Notice how the 5 has appeared at the front, - and it does so because the derivative of 5x was 5.
So the question is, could we do this with any number that appeared in front of the z, be it 5 or

6 or 1, 0.5 or for that matter n ?

So let’s have a look at another example.
Example
Suppose we want to differentiate y = sin nx.

Let u = nx so that y = sinu. Differentiating

du
P n
Quoting the formula again:
dy
o
So
dy
o -

dy
— = COSU
du

%du

duxa

COSU XN

n cosnx

So the n's have behaved in exactly the same way that the 5's behaved in the previous example.
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% Key Point

: d
if y =sinnx then Y ncosna
dx

d _ .
For example, suppose y = sin 6 then d—y = 6 cos 6 Just by using the standard result.
x

Similar results follow by differentiating the cosine function:

q Key Point

: d .
if y = cosnx then W nsinna
dx

. 1 d 1 1
So, for example, if y = cos §x then é = —3 sin éx.

5. A simple technique for differentiating directly

In this section we develop, through examples, a further result.
Example
Suppose we want to differentiate y = e’

Let v = 23 so that y = e*. Differentiating

du 2 dy U
1= 3x v e
Quoting the formula again:
dy dy " du
de  du " dz
So
d
ﬁ = ¥ x 322
= 32%"

We will now explore how this relates to a general case, that of differentiating y = f(g(z)).
To differentiate y = f(g(x)), we let u = g(x) so that y = f(u).
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The chain rule states

dy dy " du
de  du ™ dzx
In what follows it will be convenient to reverse the order of the terms on the right:
dy du " dy
de  dz = du

which, in terms of f and g we can write as

W _ D gha)) x L (1(a((@))

This gives us a simple technique which, with some practice, enables us to apply the chain rule
directly

% Key Point

(i) given y = f(g(x)), identify the functions f(u) and g(x) where u = g(z).
(i) differentiate g and multiply by the derivative of f

where it is understood that the argument of fis u = g(x).

Example
To differentiate y = tan 2 we apply these two stages:
(i) first identify f(u) and g(x): f(u) =tanu and g(x) = 22

d : L . .
(i) differentiate g(x): d—g = 2. Multiply by the derivative of f(u), which is sec? u to give
T

d
& = 2xsec? 12

dx
Example
To differentiate y = e!+o°,
(i) first identify f(u) and g(x): f(u) =e* and g(z) =1+ 2.
d L o .
(i) differentiate g(x): d—g = 2z. Multiply by the derivative of f(u), which is " to give
i

dy _
doz

9 el
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You should be able to verify the remaining examples purely by inspection. Try it!

Example
y = sin(z+¢°)
dy
< = 1 Z x
. (1 +¢e%) cos(z + €)
Example
y = tan(z? +sinx)
d
Yo (22 + cos x). sec?(z”* + sin )
dx
Example
y = (2-2°)°
dy 4 5\8
— = —=bx". 9(2 —
e x". 9(2—27)
= —450%(2 — 2°)®
Example
y = In(z+sinz)
dy 1
A R
dz (14 cos) r +sinx
1l +cosx
 z4sinz
Exercises

1. Find the derivative of each of the following:
a) (Bz—7"'? b) sin(br+2) c) In(2x—1) d) >3

1
e) Vvbhr—3 f) (6z+5)°3 g) G2 h) cos(1— 4x)
2. Find the derivative of each of the following:
a) In(sinz) b) sin(lnz) c¢) e % d) cos(e™™)
1 1
i 5f) V14 a2 o
€) (sinw+cosw) ) 22 9) cos T 2+ 2x+1
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3. Find the derivative of each of the following:

a) In(sin®z) b) sin’(lnz) c) +/cos(3z—1) d) [1+cos(z*— 1)]3/2
Answers
2
Lo a) 368z -7 b) 5cos(5r+2) ¢ ) e
e) 5 f) 10(6x +5)%3 g) 1 h) 4sin(1 — 4z)
2v/bx — 3 (3—x)°
1
2 a) BT _ cotx b) cos(inz) c) sinxe ¥
sin x -
d) e *sin(e™® e) 3(cosx —sinz)(sinz +cosx)? f
) e sin () ) 3 X P
) sinw . h) —2(z +1) -2
I osryg  anEeeCcT (22 + 22+ 1) (z+1)3
3. 2) 2?osx ~ 9otz b) 2sin(In z) cos(In x)
sin x x
_3si 1
c) 3sin(3r — 1) d) —3xsin(z? —1)[1 + cos (z* — 1)]1/2
2y/cos(3z — 1)
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Double integrals

Notice: this material must not be used as a substitute for attending
the lectures



0.1 What is a double integral?

Recall that a single integral is something of the form

/abf(x) dx

A double integral is something of the form

//Rf(fv’y)dfcdy

where R is called the region of integration and is a region in the (z,y) plane. The
double integral gives us the volume under the surface z = f(z,y), just as a single
integral gives the area under a curve.

0.2 Evaluation of double integrals

To evaluate a double integral we do it in stages, starting from the inside and working
out, using our knowledge of the methods for single integrals. The easiest kind of
region R to work with is a rectangle. To evaluate

[ flay)dedy

proceed as follows:
e work out the limits of integration if they are not already known
e work out the inner integral for a typical y

e work out the outer integral

0.3 Example

Evaluate

2 3
/ / (14 8zy)dx dy
Y

=1 Jx=0

Solution. In this example the “inner integral” is ;’:0(1 + 8zy) dx with y treated as a
constant.

2 3
integral = / / (1 + 8xy) dx dy
y T

=0

work out treating y as constant




36y2]°

= {3y+ y}
2 | _

y=1

= (6+72)— (3+18)
— 57

0.4 Example

Evaluate
w/2 rl
/ ysinx dy dz
o Jo

w/2 1
integral = / ( / ysinx dy) dx
0 0

2

w/2 1
= / [y sin x} dx
0 2 =0

Solution.

0.5 Example

Find the volume of the solid bounded above by the plane z = 4 — x — y and below
by the rectangle R = {(x,y): 0<ax <1 0<y <2}
Solution. The volume under any surface z = f(z,y) and above a region R is given by

V://Rf(x,y)dacdy

In our case

2 /1
V = //(4—x—y)dxdy
0Jo
2 1

= /0 [4x—%:p2—ymL:O dy:/OQ(ZL—

2

_ {?—ﬂ —(7-2-(0)=5

y=0

—y)dy

N [—=

The double integrals in the above examples are the easiest types to evaluate because
they are examples in which all four limits of integration are constants. This happens
when the region of integration is rectangular in shape. In non-rectangular regions
of integration the limits are not all constant so we have to get used to dealing with
non-constant limits. We do this in the next few examples.



0.6 Example

Evaluate

Solution.

2 rx
integral = / , vz dy dx
0Jx

32256 128
15 24 15
0.7 Example

Evaluate

L x2 1 Y
/ / —cos = dy dx
w/2J0 X x

Solution. Recall from elementary calculus the integral [ cosmydy = - sinmy for m
independent of y. Using this result,

2

. T |1 sin% e
integral = / — dx
/2 | X l
X y:O

_ s . d N 7'r_ — 1
/Tr/gsmx z = [—cosT|;_,
0.8 Example
Evaluate i v
Vi

// "NV da dy

1 Jo
Solution.

4 ex/\/g r=\/y
integral = / [ ] dy
1

V) o
= [Wie-vidy=(c—1) [ 4"y
y3/2 4 9
— (e—1) {%L_l = Z(e—1)(E-1)
= e



0.9 Evaluating the limits of integration

When evaluating double integrals it is very common not to be told the limits of
integration but simply told that the integral is to be taken over a certain specified
region R in the (x,y) plane. In this case you need to work out the limits of integration
for yourself. Great care has to be taken in carrying out this task. The integration
can in principle be done in two ways: (i) integrating first with respect to 2 and then
with respect to y, or (ii) first with respect to y and then with respect to z. The
limits of integration in the two approaches will in general be quite different, but both
approaches must yield the same answer. Sometimes one way round is considerably
harder than the other, and in some integrals one way works fine while the other leads
to an integral that cannot be evaluated using the simple methods you have been
taught. There are no simple rules for deciding which order to do the integration in.

0.10 Example

Evaluate

// B—z—y)dA [dA means dzdy or dydx]
D

where D is the triangle in the (x,y) plane bounded by the z-axis and the lines y = x
and x = 1.
Solution. A good diagram is essential.

Method 1 : do the integration with respect to z first. In this approach we select a typical
y value which is (for the moment) considered fixed, and we draw a horizontal
line across the region D; this horizontal line intersects the y axis at the typical
y value. Find out the values of = (they will depend on y) where the horizontal
line enters and leaves the region D (in this problem it enters at x = y and
leaves at = 1). These values of x will be the limits of integration for the inner
integral. Then you determine what values y has to range between so that the
horizontal line sweeps the entire region D (in this case y has to go from 0 to 1).
This determines the limits of integration for the outer integral, the integral with
respect to y. For this particular problem the integral becomes

//D(B—J:—y)dA = /Ol/yl(?)—x—y)dxdy

1 2 =1
= / [3x—x——y:ﬂ} dy
0 2 iy
! 1 ? 2
= /0 ((3—§—y)—<3y—5—y)>dy
175 3 5y B!
= ——4 —2)d = | =2 — 7
/0(2 LA [2 y*z}_
y=0
5 1
2 +2



Method 2 : do the integration with respect to y first and then z. In this approach we
select a “typical 2”7 and draw a vertical line across the region D at that value
of .

Vertical line enters D at y = 0 and leaves at y = x. We then need to let x
go from 0 to 1 so that the vertical line sweeps the entire region. The integral
becomes

//D(S—J:—y)dA = /(]1/0x(3—a:—y)dydx
— /01[3y—3:y—y;rzdx

Note that Methods 1 and 2 give the same answer. If they don’t it means something
is wrong.

0.11 Example

Evaluate

//J)(4x+2)dA

where D is the region enclosed by the curves y = 22 and y = 2x.
Solution. Again we will carry out the integration both ways, z first then y, and then
vice versa, to ensure the same answer is obtained by both methods.

Method 1 : We do the integration first with respect to x and then with respect to y. We
shall need to know where the two curves y = z? and y = 2z intersect. They
intersect when 22 = 2z, i.e. when x = 0, 2. So they intersect at the points (0,0)
and (2,4).

For a typical y, the horizontal line will enter D at x = y/2 and leave at x = |/y.
Then we need to let y go from 0 to 4 so that the horizontal line sweeps the
entire region. Thus

//[)(4x+2) dA = /(J4/x:f(4x+2) dx dy
- /(;4 2 +2a] 7y = /04 <(2y +2v/y) — (y; + y)) dy

4 2 2 9,3/2 3
_ o U g [ 2 T
/0<y+y 2 ) YT e T 6,




Method 2 : Integrate first with respect to y and then x, i.e. draw a vertical line across D
at a typical = value. Such a line enters D at y = 22 and leaves at y = 22. The
integral becomes

2 r2x
/ (dx +2)dA = / (4z 4 2) dy dx
D
= /0[4:cy+2y]y % d

_ /0 ((82% + 42) — (42° + 22%)) da

2
= /(6x2—4x3+4x)d:c:[23:3—:644-2562]2:8
0

The example we have just done shows that it is sometimes easier to do it one way
than the other. The next example shows that sometimes the difference in effort is
more considerable. There is no general rule saying that one way is always easier than
the other; it depends on the individual integral.

0.12 Example

Evaluate

[ @y =y aa

where D is the region consisting of the square {(z,y) : -1 <2z <0, 0 <y <1}
together with the triangle {(z,y): * <y <1, 0 <z <1}

Method 1 : (easy). integrate with respect to z first. A diagram will show that x goes
from —1 to y, and then y goes from 0 to 1. The integral becomes

//D(xy—yg)dA = // 3 dx dy

r=—1
Ly 4
- /0 ((5—9)—(%y+y3)) dy
1 y3 A . y4 y5 y2 1 23
— _—— = —_ = d = |- = — — —_ —_——
/0(2y2yy 8 5 4], 40

Method 2 : (harder). It is necessary to break the region of integration D into two sub-
regions D; (the square part) and Dj (triangular part). The integral over D is

given by
//D(xy—y3)dA://Dl(ggy_y3)dA+//DQ(xy_y3)dA



which is the analogy of the formula [ f(z)dz = [° f(x)dz + [f f(z)dz for
single integrals. Thus

0 1 1 ,1
//D(fvy—f)dfl = /_1/0 (xy—y3)dydx+/ z(:vy—y?’)dydx

o [z ¢4 ey ]

/_1[7‘2 A ey B

Lo [ (G-D-(5-2) o

In the next example the integration can only be done one way round.

0.13 Example

Evaluate

J1,7

where D is the triangle {(x,y): 0 <y <z, 0 <z <7}
Solution. Let’s try doing the integration first with respect to x and then y. This gives

// Slndi:/ﬂ:/ﬂ'Sln.dedy
D 0Jy T

but we cannot proceed because we cannot find an indefinite integral for sinx/z. So,
let’s try doing it the other way. We then have

// sm:p _ /Tf/ft Sinxdydx
D oJo =z

x

= / [Sm%y} dwz/ sinz dx

= [—coszl]p=1—(-1)=2

0.14 Example

Find the volume of the tetrahedron that lies in the first octant and is bounded by the
three coordinate planes and the plane z =5 — 2x — y.

Solution. The given plane intersects the coordinate axes at the points (3,0, 0), (0,5,0)
and (0,0,5). Thus, we need to work out the double integral

/D(5—2:c—y)clA



where D is the triangle in the (z,y) plane with vertices (z,y) = (0,0), (2,0) and
(0,5). It is a good idea to draw another diagram at this stage showing just the region

D in the (z,y) plane. Note that the equation of the line joining the points (2,0) and
(0,5) is y = =22 + 5. Then:
(5— y)/2
volume = // (6—2z—y)dA = // 5—2r—y)dxdy
= / 5:1:—35 — } _5 y)/Qdy
5 — 5—y
= —= | d
L) - 03 (5]
5_5y ¥
= ———=+=]d
< 1 2 1)
_ [25_@ _w y_} _1%5
14 T, 12
0.15 Changing variables in a double integral
We know how to change variables in a single integral:
/ f(z)dx = / f(zx — du
where A and B are the new limits of integration.
For double integrals the rule is more complicated. Suppose we have
// fx,y)dedy
D
and want to change the variables to w and v given by = = z(u,v), y = y(u,v). The
change of variables formula is
[ fyydrdy = [ [ ftu,v)y0u )] dudo (0.1

where J is the Jacobian, given by

Ooxrdy Ox 0y

- oudv  Ovou

and D* is the new region of integration, in the (u,v) plane.

0.16 Transforming a double integral into polars

A very commonly used substitution is conversion into polars. This substitution is
particularly suitable when the region of integration D is a circle or an annulus (i.e.
region between two concentric circles). Polar coordinates r and 6 are defined by

r=rcosf, y=rsind



The variables u and v in the general description above are r and # in the polar
coordinates context and the Jacobian for polar coordinates is

, ey ocdy
- oro9 00 or
(cosB)(rcosf) — (—rsinf)(sinh)

= 7(cos’f +sin*0) =r

So |J| = r and the change of variables rule (0.1) becomes

//Df(ft,y)dxdy://D* f(rcos@,rsind)rdrdd

0.17 Example

Use polar coordinates to evaluate

// xy dx dy
D

where D is the portion of the circle centre 0, radius 1, that lies in the first quadrant.
Solution. For the portion in the first quadrant we need 0 <r <1 and 0 < 0 < 7/2.
These inequalities give us the limits of integration in the r and 6 variables, and these
limits will all be constants.

With z = rcosf, y = rsin g the integral becomes

w/2 rl
// rzydrdy = / / 2 cos O sin @ r dr df
D o Jo

= / {— cos 0 sin 19] do
0 4

r=0

/2 1 ) /2 1 )
= / fsmecosﬁdez/ — sin 26 df
o 4 o 8

1 _00829 A
8

2 1o

0.18 Example

Evaluate

// e~ @) gy dy
D

where D is the region between the two circles 22 4+ y? = 1 and 22 + y? = 4.

Solution. It is not feasible to attempt this integral by any method other than trans-
forming into polars.

Let x = rcosf, y =rsinf. In terms of r and # the region D between the two circles
is described by 1 <r <2, 0 <6 < 27, and so the integral becomes

g 5, 9 2r 2 5
// e T ) dedy = / / e " rdrdf
D o J1

10
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0.19 Example: integrating e~

The function e~ has no elementary antiderivative. But we can evaluate [0 e dx
by using the theory of double integrals.

([ra) = () ([ o)
= (L) (e i)
= /_o:o eV’ /_O:O e da dy
= /_O:J_O:O e~ @) da dy

Now transform to polar coordinates x = r cos 6, y = rsin 6. The region of integration
is the whole (z,y) plane. In polar variables this is given by 0 < r < 0o, 0 < 6 < 27.

Thus
oo 2 oo oo

([Lerta) = [ ey
o 2 ozo 9
= / / e " rdrdf
0 0
2 _

_ 1 _p2]T=®
- /0 |: 26 }r:O d9

27r1d(9
[

) 5 2
(/ e " dac) =7

/OO e dy = V.

The above integral is very important in numerous applications.

We have shown that

Hence

0.20 Other substitutions

So far we have only illustrated how to convert a double integral into polars. We
will now illustrate some examples of double integrals that can be evaluated by other
substitutions. Unlike single integrals, for a double integral the choice of substitution
is often dictated not only by what we have in the integrand but also by the shape of
the region of integration.
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Double Integrals

Mass and Static Moments of a Lamina

Suppose we have a lamina which occupies a region R in the zy-plane and is made of non-
homogeneous material. Its density at a point (z, y) in the region R is p (z, y) . The total mass of the

lamina is expressed through the double integral as follows:

m://p(zc,y)dA.
R

The static moment of the lamina about the z-axis is given by the formula

https://www.math24.net/physical-applications-double-integrals/ 1/6
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M, = //yp (z,y) dA.
R

Similarly, the static moment of the lamina about the y-axis is

M, — //mp(w,y) dA.
R

The coordinates of the center of mass of a lamina occupying the region R in the xy-plane with

density function p (z, y) are described by the formulas

M, 1 dA_£pr(x,y)dA
x—ﬁ_ﬁé/ﬂw(w,y) = lf%fp(m,y)dA’

[ yp (z,y) dA

M, 1 ) i
i m{/y’“ A e gaa
R

T
m

y:

When the mass density of the lamina is p (z,y) = 1 for all (z, y) in the region R, the center of mass

is defined only by the shape of the region and is called the centroid of R.

Moments of Inertia of a Lamina

The moment of inertia of a lamina about the z-axis is defined by the formula

I, = //y2p (z,y) dA.
R

Similarly, the moment of inertia of a lamina about the y-axis is given by

I, = //:132p(:1:,y) dA.
R

The polar moment of inertia is

Iy = // (z* +v%) p (z,y) dA.
R
Charge of a Plate

https://www.math24.net/physical-applications-double-integrals/
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Suppose electrical charge is distributed over a region which has area R in the zy-plane and its
charge density is defined by the function o (z, y). Then the total charge @ of the plate is defined by

the expression

Q://a(a:,y)dA.
R

Average of a Function

We give here the formula for calculation of the average value of a distributed function. Let f (z, y)
be a continuous function over a closed region R in the zy-plane. The average value u of the

function f (z, y) in the region R is given by the formula

uz%//f(w,y)dfl,
R

where S = [[ dA is the area of the region of integration R.
R

Solved Problems

Click or tap a problem to see the solution.

Example 1

Find the centroid of the lamina cut by the parabolas y?> = z and y = 22.

Example 2

Calculate the moments of inertia of the triangle bounded by the straight linesz +y =1, x = 0,
y = 0 (Figure 2) and having density p (z,y) = zy.

Example 3

Electric charge is distributed over the disk z% 4 y? = 1 so that its charge density is o (z,y) =
1+ 2%+ 92 (Kl / m2) . Calculate the total charge of the disk.

Example 1.

Find the centroid of the lamina cut by the parabolas y?> = z and y = 22.
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Solution.

The lamina has the form shown in Figure 1.

YA

xY

Figure 1.

Since it is homogeneous, we suppose that the density p (z,y) = 1. The mass of the lamina is

1] Vz 1
m://dA:/ /dy da::/ /\/w—ac
R 0 72 0 0
1 3 1
/ ! )d (22 SN\ 2 1 1
TTTE)E= T3 T3 )| T3 3" 3
0 0

o= [[ o /fd o /[( )] _/ i
27 %), -2l 5)
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Thus, the coordinates of the center of mass are

3 3
oM _w _ 9 M % _ 9
m L 207" m T 1 "
3 3
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Example 2.

Calculate the moments of inertia of the triangle bounded by the straight linesx +y =1, x = 0,

y = 0 (Figure 2) and having density p (x,y) = Xy.

Solution.
YA
1
y=1-x
R
0 1 X
Figure 2.

The moment of inertia about the x-axis is
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1T1—=x I 1—=x
L=J y’p(x,y)dxdy =] [f yzxydy]dxf b y3dy]><dx

0 0 0 0
! 4 (1=x 1 1

=] [(YT)| ]xdx = %f (1—x)"xdx = %f (1 —4x +6x% — 4x> +x*)xdx

0 0 0 0

|

1 1 x* 4%  ex? 45 x5 |
=— —4x% +6x° — 4x* +x0)dx = — (=— — + —~ +

4f (x —4x° + 6x X' +x7)dx 4(2 3 1 5 c )O

0

1 4 3 4 1
(-t ==+ —=)= —.
2 3 2 5

120

A —
N =

Similarly, we can find the moment of inertia about the y-axis:

I]1x 1] 1—=x
Iy = ff xzp(x,y)dxdyZI [f xzxydy]dxf lf ydy]x3dx
0 0 0 0
1 1—x 1 1
y? 3 1 23 1 2\ o3
=] ()] 1¢%dx==] (1-x"xPdx==] (1-2x+x?)x’dx
27, 2 2
0 0 0
1
LR SNPRP R D . S 12
Rl A R A S
0
:L
120°
Example 3.

Electric charge is distributed over the disk x> +y? = 1 so that its charge density is 6 (x,y) =

1 +x2 +y? (KI/m”). Calculate the total charge of the disk.

Solution.

In polar coordinates, the region occupied by the disk is defined by the set {(r,0)| 0 <r <1,
0 <0 <2m} . The total charge is

2n 1 1
2 4

Q=J[ o(x,y)dxdy=] doJ (1+r*)rdr=2n] (r+r3)dr=2n(%+%)
R 0 0 0

0

1 1 31
= JR— —|'— JR— = o— .
2n ( >t ) > (K1)

‘ Page 1

Page 2 1
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