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Chapter 1

Introduction

VHDL is a description language for digital electronic circuits that is used in di�erent levels of abstraction.
The VHDL acronym stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description
Language. This means that VHDL can be used to accelerate the design process.

It is very important to point out that VHDL is NOT a programming language. Therefore, knowing
its syntax does not necessarily mean being able to designing digital circuits with it. VHDL is an HDL
(Hardware Description Language), which allows describing both asynchronous and synchronous circuits.
For this purpose, we shall:

• Think in terms of gates and �ip-�ops, not in variables or functions.

• Avoid combinatorial loops and conditional clocks.

• Know which part of the circuit is combinatorial and which one is sequential.

Why to use an HDL?

• To discover problems and faults in the design before actually implementing it in hardware.

• The complexity of an electronic system grows exponentially. For this reason, it is very convenient
to build a prototype of the circuit previously to its manufacturing process.

• It makes easy for a team of developers to work together.

In particular, VHDL allows not only describing the structure of the circuit (description from more
simple subcircuits), but also the speci�cation of the functionality of a circuit using directives, in a similar
way as most standard programming languages do.

The most important aim of an HDL is to be able to simulate the logical behavior of a circuit by means
of a description language that has many similarities with software description languages.

Digital circuits described in VHDL can be simulated using simulation tools that reproduce the oper-
ation of the involved circuit. For this purpose, developers use a set of rules standardized by the IEEE,
which explain the syntax of the language, as well as how to simulate it. In addition, there are many
tools that transform a VHDL code into a downloadable �le that can be used to program a recon�gurable
device. This process is named synthesis. The way a given tool carries out the synthesis process is very
particular, and it greatly di�ers from what other synthesis tools do.
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2 Chapter 1. Introduction

For XilinxTMusers: In this manual we will use the free synthesis tool provided by
XilinxTM(Xilinx ISE Web Pack), which can be obtained through the following URL:
http://www.xilinx.com/support/download/index.htm All the examples in this manual that

may include any coding that is speci�c from the XilinxTMtool will be highlighted in a box like this
one.

TIP: Throughout this manual, boxes like this one will be used to better highlight tips for an
e�cient programming in VHDL. These tips are a set of basic rules that make the simulation results
independent of the programming style. Hence, these rules make the developed code synthesizable,
so it can be easily implemented in any platform.

Webs and news related to VHDL programming and its simulation and synthesis tools:

www.edacafe.com: Web page dedicated to spread news related to the world of circuit design. It
has a forum of VHDL programming (troubleshooting, free tools ...).

www.eda.org/vasg/: �Welcome to the VHDL Analysis and Standardization Group (VASG). The
purpose of this web site is to enhance the services and communications between members of the VASG
and users of VHDL. We've provided a number of resources here to help you research the current and
past activities of the VASG and report language bugs, LRM ambiguities, and suggest improvements to
VHDL..."

www.cadence.com: �Cadence Design Systems is the world's largest supplier of EDA technologies
and engineering services. Cadence helps its customers break through their challenges by providing a new
generation of electronic design solutions that speed advanced IC and system designs to volume..."

www.xilinx.com: �In the world of digital electronic systems, there are three basic kinds of devices:
memory, microprocessors, and logic. Memory devices store random information such as the contents of
a spreadsheet or database. Microprocessors execute software instructions to perform a wide variety of
tasks such as running a word processing program or video game. Logic devices provide speci�c functions,
including device-to-device interfacing, data communication, signal processing, data display, timing and
control operations, and almost every other function a system must perform."



Chapter 2

Basic Elements of VHDL

A digital system is basically described by its inputs and its outputs, as well as how these outputs are
obtained from the inputs.

The VHDL code of any circuit is divided into two separate parts: On the one hand, the entity

speci�es the input and output ports of the circuit. On the other hand, the architecture describes the
behavior of that circuit. An architecture must be associated with an entity. It is also possible to
associate several architectures to the same entity, so the programmer can select one of the available
ones. This point is explained below in Chapter 2, Section 2.3.

For XilinxTMusers: The IEEE library and the following three packets (whose meaning is explained
below) appear by default in any source VHDL code created with the XilinxTMISE tool.

1 l i b r a r y IEEE ;
use IEEE . std_logic_1164 . a l l ;

3 use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

2.1 Entity

An entity is an abstraction of a circuit, either from a complex electronic system or a single logic gate.
An entity externally describes the I/O interface of the circuit.

The ports of an entity can be inputs (in), outputs (out), input-outputs (inout) or buffer. The
input ports can only be read, and they cannot be modi�ed inside the architecture. On the other
hand, the output ports can only be written, but not read. In case an output port needs to be read
(for instance, to make a decision about its value) or an input port needs to be written, they must be
instantiated as an inout or a buffer port. However, in this course we will try to avoid these situations,
so the utilization of inout and buffer ports are beyond the learning outcomes of this course.

The interface described by an entity may also include a set of generic values that are used to declare
properties and constants of the circuits, independently of its architecture. Generics can have multiple
uses: On the one hand, they can be used to de�ne delays in signals and clock cycles (these de�nitions
will not be taken into account at the synthesis level, as explained later throughout this manual). On the
other hand, generics can also be used as constants that will be used inside the architecture. These

3



4 Chapter 2. Basic Elements of VHDL

constants help to make the code more understandable, portable and maintainable. For instance, the
length of a register (in number of bits) can be de�ned by means of a generic parameter. This means
that another VHDL code can instantiate this register several times, even if this code instantiates registers
with di�erent number of bits. Generic parameters are not necessary. Hence, a circuit that does not need
them, it simply does not instantiate any generic statement in the entity declaration.

The example below shows a description of the entity of a circuit. This circuit has two N-bit inputs
(A and B) and a single output (Y). Thus, in this case the entity description includes a generic statement
de�ning a parameter named N whose value is set to 8. This parameter is also used in the declaration of
the circuit inputs.

en t i t y F i s
2 g ene r i c (N: natura l := 8) ;

port (A, B: in b i t_vector (N−1 downto 0) ; Y: out b i t ) ;
4 end F ;

2.2 Architecture

The pairs entity-architecture are used in VHDL to completely describe the operation of a circuit. An
architecture de�nes how the circuit operates, by including a set of inner signals, functions, procedures,
functions... and its description can be either structural or behavioral (details about this will be given in
Chapter 3.4).

The code below shows an example of an architecture. The association between this architecture
and the entity it refers to is made in the �rst line (architecture arch_name of entity_name is).
Next, the code must include the signals, customized types, and components (whose I/O is known) that
will be used inside the architecture.

a r c h i t e c t u r e arch_name o f entity_name i s
2 −− a r c h i t e c t u r e d e c l a r a t i o n s :

−− types
4 −− s i g n a l s

−− components
6 begin

−− concurrent statements
8 −− c ond i t i o na l statements

−− components
10

proce s s ( s e n s i t i v i t y l i s t ) begin
12 −− code

end proce s s ;
14 end arch_name ;

The begin and the end reserved words mark the boundaries of the VHDL code that will actually
describe the operation of the circuit. As shown in the example, this code may include: concurrent and
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conditional statements, components and processes. Chapter 3 will get into deeper details about these
statements.

It is also possible to de�ne several architectures for the same entity. This is better explained in
Chapter 9, Section ??.

2.3 VHDL objects

VHDL source codes can include objects. There are three types of objects:

• Constant: Objects that have an initial value that is assigned before the simulation. This value shall
never be modi�ed during the synthesis or the operation of the circuit. They can be declared before
the begin of an architecture, and/or before the begin of a process. A constant declaration
MUST assign a value to it.

constant i d e n t i f i e r : type := value ;

• Variable: Objects that take a single value that can change during the simulation/execution by
means of an assignment statement. Variables are usually used as indexes, mainly in loops, or to take
values that allow to model other components. Variables DO NOT represent physical connections
or memory elements. They can be declared before the begin of an architecture, and/or before
the begin of a process. A variable declaration MAY or MAY NOT assign a value to it.

1 va r i ab l e i d e n t i f i e r : type [ := value ] ;

The assignment of a value to a variable is done by means of the operator :=

1 name_variable := value ;
i := 10 ;

• Signal: Objects that represent memory elements or connections between subcircuits. Contrarily to
constants and variables, signals can be synthesized. In other words, a signal in a VHDL source code
can be physically translated into a memory element (�ip-�op, register...) in the �nal circuit. They
must be declared before the begin of the architecture. The ports of an entity are implicitly
declared as signals upon declaration, since they represent physical connections in the circuit.

s i g n a l i d e n t i f i e r : type ;

The assignment of a value to a signal is done by means of the operator <=

1 name_signal <= value ;
A <= 10 ;

TIP: If the developed VHDL code only uses constant and signal objects, it will not show any
malign e�ect in the operation of the circuit (see Chapter 9, Sections 9.1 and 9.2). In addition, the
obtained code will be easily portable to any other tool. For this reason, unless otherwise stated, all
the objects referenced in this manual will be signals.
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2.4 VHDL types

In the previous de�nitions, as well as in the de�nition of the entity ports , it is necessary to de�ne the
type of the object. VHDL allows to use prede�ned types, as well as other user-de�ned ones.

2.4.1 Prede�ned types

The most commonly used prede�ned types are the following ones:

• bit: It only admits the values 0 and 1. In order to make an assignment between the object and its
value, the latter must be written between single quotes ('0' or '1').

• bit_vector (range): The range, always written between brackets, indicates the number of bits
of the bit_vector, which is an array of 0's and 1's. For an n-bit bit_vector, its range must be
written in the format N-1 downto 0. The bit located to the far left is the most signi�cant one
(Most Signi�cant Bit, or MSB), whereas the bit located to the far right is the least signi�cant one
(Least Signi�cant Bit or LSB). In order to make an assignment between the object and its value,
the latter must be written between quotation marks (i.e., �0011�).

• boolean: It only can take the values true or false.

• character: It can take any ASCII value.

• string: Any chain consisting of ASCII characters.

• integer range: Any integer number within the range, which in this case is not written between
brackets. For instance, 0 to MAX. The range is optional.

• natural range: Any natural number within the range. The range is optional.

• positive range: Any positive number within the range. The range is optional.

• real range: Any real number within the range. The range is optional.

• std_logic: Type prede�ned in the IEEE 1164 standard. This type represents a multivalued logic
comprising 9 di�erent possible values. The most commonly used ones are: '0', '1', 'Z' (for high
impedance), 'X' (for uninitialized) and 'U' (for unde�ned), among others. In order to make an
assignment between the object and its value, the latter must be written between single quotes ('0',
'1', 'X', ...).

• std_logic_vector (range): It represents a vector of elements of type std_logic. Its assignment
and de�nition rules are the same ones as the std_logic ones.

For XilinxTMusers: For XilinxTMISE, all the ports of the entity must be of type std_logic or
std_logic_vector. The reason is that these two types allow simulating a circuit realistically. For
instance, when a signal is instantiated but never initialized in the VHDL code, it will always take
the 'U' (unde�ned) value. In addition, XilinxTMISE translates natural and integer signals into
std_logic_vector with the number of bits needed for its complete representation.

In order to use the type std_logic, it is necessary to include the following library:



VHDL types 2.4 7

use i e e e . std_logic_1164 . a l l ;

In order to use the pre-de�ned arithmetic and logic functions:

1 use i e e e . s td_log i c_ar i th . a l l ;

For vectors that are represented as unsigned binary:

1 use i e e e . std_logic_unsigned . a l l ;

For vectors that are represented as signed binary:

1 use i e e e . std_logic_unsigned . a l l ;

For vectors that are represented in 2's complement:

1 use i e e e . s td_log ic_s igned . a l l ;

TIP: It is strongly recommended to always use the std_logic_vector type independently of the
operations that will be made on the involved objects. They can be used as integers or naturals
thanks to the ieee.std_logic_arith.all and ieee.std_logic_unsigned.all libraries. De�ning
all the signals in the code as std_logic or std_logic_vector does not complicate the �nal VHDL
code and helps a los in its integration with XilinxTMISE.

2.4.2 User-de�ned types

An enumerated type is a data type that comprises a number of user-de�ned values. Enumerated types
are used mainly for the de�nition of �nite state machines.

1 type name i s ( value1 , value2 , . . . ) ;

Assuming that A has been de�ned as an enumerated type, the assignment will be as follows: A <=

valuei; where valuei must be one of the enumerated values in the type de�nition.

Enumerated types are sorted according to their values. Typically, synthesis tools automatically code
the enumerated values in such a way that they can fe further synthesized. For that purpose, they usually
select an ascending sequence or a coding that minimizes the circuit or that maximizes its operating
frequency. It may also be possible to directly type the coding by means of ad-hoc directives.

A composed type is a data type comprised by elements of other data types. Composed types can be
either arrays and records.

• An array is a data object that comprises a set of elements of the same type.

1 type name i s array ( range ) o f type ;
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The assignment of a value on a position of the array is done by means of integer numbers (see
examples at Subsection 2.4.3).

• A record is a data object that comprises a set of elements of di�erent types.

1 type name i s record
element1 : data_type1 ;

3 element2 : data_type2 ;
end record ;

The assignment of a value on an element from a record is done by means of a dot (see examples
at Chapter 4, Subsection 4.2.3).

Once de�ned the composed and/or enumerated data type, any signal in the design can be declared of
belonging to this new type and this will be done by using the operator de�ned for signals <=.

2.4.3 Examples

This subsection presents some examples showing how to de�ne and to assign values to signals and vari-
ables.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Two dashes are used to in t roduce comments in the VHDL code

−− Examples o f d e f i n i t i o n s and ass ignments
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

constant DATA_WIDTH: i n t e g e r := 8 ;
6 s i g n a l CTRL: b i t_vector (7 downto 0) ;

v a r i a b l e SIG1 , SIG2 : i n t e g e r range 0 to 15 ;
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type c o l o r i s ( red , yel low , blue ) ;
10 s i g n a l BMP: c o l o r ;

BMP <= red ;
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type word i s array (0 to 15) o f s td_log ic_vector (7 downto 0) ;
14 s i g n a l w: word ;

−− w( i n t e g e r / natura l ) <= vecto r o f b i t s ;
16 w(0) <= "00111110" ;

w(1) <= "00011010" ;
18 . . .

w(15) <= "11111110" ;
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type matrix i s array (0 to 15) (7 downto 0) o f s td_log i c ;
22 s i g n a l m: matrix ;

m(2) (5 ) <=`1 ';
24 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type s e t i s r ecord
26 word : std_log ic_vector (0 to 15) ;

va lue : i n t e g e r range −256 to 256 ;
28 end record ;

s i g n a l data : s e t ;
30 data . va lue <= 176 ;
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2.4.4 Operators

Operators can be used to build a wide variety of expressions that allow to calculate data and/or to assign
them to signals or variables.

• +, -, *, /, mod, rem: Arithmetic operations.

• +, -: Sign change.

• &: Concatenation.

• and, or, nand, nor, xor: Logical operations.

• :=: Value assignment to constants and variables.

• <=: Value assignment to signals.

−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Assignment examples

−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 y <= (x and z ) or d (0 ) ;

y (1 ) <= x and not z ;
6 y <= x1 & x2 ; −− y = "x1x2"

c := 27 + r ;
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−





Chapter 3

Basic Structure of a Source File in
VHDL

As previously pointed out, the VHDL code modeling a digital circuit is composed of two parts: an entity

and one or several architectures. The latter contains the statements describing the behavior of the
circuit.

a r c h i t e c t u r e c i r c u i t o f name i s
2 −− s i g n a l s

begin
4 −− concurrent statements ( ass ignment statements to s i g n a l s )

p roce s s ( s e n s i t i v i t y l i s t ) begin
6 −− c ond i t i o na l statements ( ass ignment statements to

v a r i a b l e s )
end proce s s ;

8 end a r c h i t e c t u r e c i r c u i t ;

Inside the architecture, we can �nd:

• Types and intermediate signals needed to describe its behavior.

• Assignment statements to signals, as well as other concurrent statements.

• Processes, which may contain conditional and/or assignment statements to variables.

3.1 Concurrent statements

Concurrent statements are a kind of assignment statements to signals whose operation depends on a set
of conditions. Two kinds of concurrent statements exist:

3.1.1 WHEN-ELSE

11
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signal_to_modify <= value_1 when condit ion_1 e l s e
2 value_2 when condit ion_2 e l s e

. . .
4 value_n when condition_n e l s e

de fau l t_value ;

This statement modi�es the value of a given signal depending on a set of conditions, being the
assigned values and the conditions independent among each other. The order in which the conditions are
sorted determines their preference with respect to the others. In other words, in the previous de�nition, if
condition_i is true, then value_i will be assigned to signal_to_modify, even if any other condition_j
is also true (j>i).

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Examples WHEN−ELSE

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
C <= "00" when A=B e l s e

5 "01" when A < B e l s e
"10" ;

7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
C <= "00" when A=B e l s e

9 "01" when D = "00" e l s e
"10" ;

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.1.2 WITH-SELECT-WHEN

1 with s i gna l_cond i t i on s e l e c t
signal_to_modify <= value_1 when value_1_signal_condit ion ,

3 value_2 when value_2_signal_condit ion ,
. . .

5 value_n when value_n_signal_condit ion ,
de fau l t_value when othe r s ;

This statement is less general than when-else one. It modi�es the value of a signal, depending on
the values that signal_condition may have.

−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Example WITH−SELECT−WHEN

−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 with input s e l e c t

output <= "00" when "0001" ,
6 "01" when "0010" ,

"10" when "0100" ,
8 "11" when othe r s ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

From the point of view of the hardware, these two statements give as a result pure combinatorial
hardware; in other words, logic gates, multiplexers, decoders...

TIP: A good VHDL programmer should be used to use these two kinds of sequential state-
ments, since it will avoid having many problems associated to the if-then-else statements inside
processes (explained in Section 3.3).
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3.2 Conditional statements

These statements are assignment statements to variables that may or may not be based on a condition.
As previously pointed out, they MUST be placed inside a process. The following conditional statements
exist in VHDL:

3.2.1 IF-THEN-ELSE

1 proce s s ( s e n s i t i v i t y l i s t )
begin

3 i f condit ion_1 then
−− ass ignments

5 e l s i f condit ion_2 then
−− ass ignments

7 e l s e
−− ass ignments

9 end i f ;
end proce s s ;

−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Example IF−THEN−ELSE

−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( cont ro l , A, B)

begin
6 i f c on t r o l = "00" then

output <= A + B;
8 e l s i f c on t r o l = "11" then

output <= A − B;
10 e l s e

output <= A;
12 end i f ;

end proce s s ;
14 −−−−−−−−−−−−−−−−−−−−−−−−−

It is possible to chain as many if-then-else statements as desired, as in software description lan-
guages, such as Pascal, C, Java...

TIP: if-then-else statements should always have an else. In addition, as explained in Section
3.3, it is convenient to assign values to the same signals in each one of the branches of the statement,
even if the value of some signals should be a don't care.

3.2.2 CASE-WHEN

proce s s ( s e n s i t i v i t y l i s t )
2 begin

case s i gna l_cond i t i on i s
4 when value_condition_1 => −− ass ignments

. . .
6 when value_condition_n => −− ass ignments

when othe r s => −− ass ignments
8 end case ;

end proce s s ;
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In this case, assignments may also be if-then-else statements. The when others clause must
appear in the statement, but it is not necessary to write any assignment associated to it.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example CASE−WHEN

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s ( cont ro l , A, B)

5 begin
case c on t r o l i s

7 when "00" => r e s u l t <= A+B;
when "11" => r e s u l t <= A−B;

9 when othe r s => r e s u l t <= A;
end case ;

11 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As in other software programming languages, several types of loops are possible:

3.2.3 FOR-LOOP

proce s s ( s e n s i t i v i t y l i s t )
2 begin

f o r var_loop in range loop
4 −− ass ignments

end loop ;
6 end proce s s ;

The range can be de�ned as 0 to N or as N downto 0.

−−−−−−−−−−−−−−−−−−−−
2 −− Example FOR−LOOP

−−−−−−−−−−−−−−−−−−−−
4 proce s s (A)

begin
6 f o r i in 0 to 7 loop

B( i +1) <= A( i ) ;
8 end loop ;

end proce s s ;
10 −−−−−−−−−−−−−−−−−−−−

3.2.4 WHILE-LOOP

proce s s ( s e n s i t i v i t y l i s t )
2 begin

whi l e cond i t i on loop
4 −− ass ignments

end loop ;
6 end proce s s ;

−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Example WHILE−LOOP

−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s (A)
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va r i ab l e i : na tura l := 0 ;
6 begin

whi l e i < 7 loop
8 B( i +1) <= A( i ) ;

i := i +1;
10 end loop ;

end proce s s ;
12 −−−−−−−−−−−−−−−−−−−−−−−−−

For XilinxTMusers: For loops are supported as long as the index range is static (0 to N or N

downto 0, where N is a constant) and the loop body does not contain any wait statement. In
general, while loops are not supported.

3.3 Process statement

VHDL presents a particular structure named process that de�nes the limits of a code that will be
simulated (or executed) if and only if any of the signals included in its sensitivity list has been modi�ed
in a previous simulation step.

A process features the following structure:

proce s s ( s e n s i t i v i t y_ l i s t )
2 −− Assignments to v a r i a b l e s

−− This i s op t i ona l and , in genera l , not recommended
4 begin

−− Condi t iona l statements
6 −− Assignments to v a r i a b l e s or to s i g n a l s

end proce s s ;

Process statements are VERY used in VHDL programming, since, for software programmers, it is
very easy to code the behavior of a hardware circuit as if it was a software program. However, this is an
important drawback for beginners, since the software-like description of the behavior of the circuit may
not actually synthesize into hardware. For this reason, a number of good coding practices exist, which
are directly related with the properties of the process statement. One should be VERY aware of them
in order to code a hardware circuit that simulates and synthesizes correctly.

Property I

Statements existing inside a process only run in the instant 0 of simulation OR if any of the signals of
the sensitivity list changes.

Problem: The result of the simulation of the circuit may be unexpected due to the �malign e�ect�
of the sensitivity list.

Solution: The sensitivity list MUST include all the signals that are read inside the process.

(signal_written <= signal_read).

Let us explain this point by means of an example (Figures 3.1 and 3.2). In this example, no value is
assigned to C until the instant 10 ns, although B changes at 5 ns. This happens because the code inside
the process is not executed unless A changes (this happens at 10 ns). However, at the hardware level,
one would expect C to take the value of A as soon as B changes to 1 (at 5 ns). Thus, following the solution
proposed above, the correct code should be as follows:
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1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Ef f e c t in the s e n s i t i v i t y l i s t (1 )

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s (A)

5 begin
i f B= '1 ' then

7 C <= A;
end i f ;

9 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

t (ns) 0 5 10

A 0 0 1

B 0 1 1

C U U 1

(b) Table of transitions

Figure 3.1: Example for Property I of processes (1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Ef f e c t in the s e n s i t i v i t y l i s t (2 )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s (A, B)

begin
6 i f B = '1 ' then

C <= A;
8 end i f ;

end proce s s ;
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

t (ns) 0 5 10

A 0 0 1

B 0 1 1

C U 0 1

(b) Table of transitions

Figure 3.2: Example for Property I of processes (2)

Property II

Assignments to signals made inside a process have memory.

Problem: If, in a given simulation step, a process is executed and as a consequence, a signal S is
modi�ed; and if in a subsequent simulation step, the process is again executed but S is not modi�ed
inside the code of the process, then C will conserve the value assigned in the �rst process execution.
This may lead to an expected behavior because of the �malign e�ect� of the process memory.

Solution: Conditional statements inside processes MUST assign a value to the same set of signals
in any of the branches of the statements. In addition, unless it is strictly forbidden at the design level
(see Chapter 5), all the conditions MUST have their corresponding else branch.

This is explained in the examples of Figures 3.3, 3.4 and 3.5. The �rst code includes an else branch,
which means that there is a by-default value for C (in this example, at 5 ns). However, the second code
does not include this else branch. Hence, at 5 ns, both for Case_1 and Case_2, the value of C di�ers in
both codes ("00" vs. "10" and "00" vs. "11", respectively). The reason is that processes have memory
and in this case, the input combination A = "11"; B = "10" does not match any branch in the second
code. Hence, the value for C at 5 ns ("10" for Case_1 and "11" for Case_2) is the same one as in the
previous simulation step (i.e., at 0 ns, see the table in Figure 3.4b). In addition, note that, for the code
in Figure 3.3a, the output value for C is "00" in both Case_1 and Case_2 at 5 ns (in both cases, A =
"11" and B = "10"). This is correct; however, this is not true for Case_2.

The code in Figure 3.5 is another example of an incomplete conditional statement. in this case, two
di�erent values at 5 ns are obtained for C and D in Case_3 and Case_4, even though the input values are
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−−−−−−−−−−−−−−−−−−−−−−−
2 −− Condi t iona l complete

−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( a , b )

begin
6 i f a = b then

c <= a or b ;
8 e l s i f a < b then

c <= b ;
10 e l s e

c <= "00" ;
12 end i f ;

end proce s s ;
14 −−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

Case_1

t (ns) 0 5 10

A 01 11 11

B 10 10 11

C 10 00 11

Case_2

A 01 11 11

B 11 10 11

C 11 00 11

(b) Table of transitions

Figure 3.3: Example for Property II of processes (1)

−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Condi t iona l incomplete

−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( a , b )

begin
6 i f a = b then

c <= a or b ;
8 e l s i f a < b then

c <= b ;
10 end i f ;

end proce s s ;
12 −−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

Case_3

t (ns) 0 5 10

A 01 11 11

B 10 10 11

C 10 00 11

Case_4

A 01 11 11

B 11 10 11

C 11 11 11

(b) Table of transitions

Figure 3.4: Example for Property II of processes (2)

exactly the same in both cases (A = "10"; B = "10"). This shows us that it is EXTREMELY important
to make sure that not only the if-then-else statement has else branch, but also that the very same set
of signals are assigned in all the branches. In this case, the problem arises because the if branch assigns
a value to C, but not to D; whereas the elsif assigns a value to D, but not to C.

Property III

All the statements inside a process run in parallel, in a similar way as the statements outside a process

do. However, if inside a process a signal is given a value at two di�erent points, the �nal result will be
the one of the last assignment, similarly as what happens in software programming languages. This may
turn problematic and not synthesizable if not properly coded.

Solution: It is convenient to double-check that a signal is not assigned twice in the same process

(this can be done in two di�erent branches of an if-then-else statement).

In the following example, at 0 ns and at 10 ns, two values are assigned to C. When the process

�nishes, C takes the last assigned value, the one in the if and elsif branches, respectively. At 5 ns, C
is assigned only one value "00", which is its �nal value.
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−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Condi t iona l incomplete ?

−−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( a , b )

begin
6 i f a = b then

c <= a or b ;
8 e l s i f a < b then

d <= b ;
10 e l s e

c <= "00" ;
12 d <= "11" ;

end i f ;
14 end proce s s ;

−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

Case_3

t (ns) 0 5 10

A 01 10 11

B 10 10 10

C UU 10 00

D 10 10 11

Case_4

A 01 10 11

B 00 10 10

C 00 10 00

D 11 11 11

(b) Table of transitions

Figure 3.5: Example for Property II of processes (3)

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example o f p a r a l l e l execut ion

3 −− o f VHDL statements
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 proce s s ( a , b)
begin

7 c <= "00" ;
i f a = b then

9 c <= a or b ;
e l s i f a < b then

11 c <= b ;
end i f ;

13 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

t (ns) 0 5 10

A 01 11 01

B 10 10 11

C 10 00 11

(b) Table of transitions

Figure 3.6: Example for Property III of processes

Property IV

All process statements run in parallel.

Problem: In two processes P1 and P2 modify the same signal, then it is impossible to know its
actual value. (The one assigned by P1 or P2?).

Solution: One should always double-check that a signal is not modi�ed in two or more di�erent
processes. In that case, a possible solution is to merge the involved processes.

Property V

The values of all the signals that are modi�ed inside a process are not updated until the whole process
�nishes.

Problem: If the sensitivity list is not correctly coded, the update of a signal may be postponed one
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or several simulation events. This can be observed in the example of Figure 3.7, where only A is included
in the sensitivity list. The example in Figure 3.8 does not present this problem any more.

Solution: As in Property IV, always double-check that a signal is not modi�ed in two or more di�erent
processes.

−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Wrong s e n s i t i v i t y l i s t

−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s (A)

begin
6 B <= A;

C <= B;
8 end proce s s ;

(a) Example code

t (ns) 0 5 10

A 0 1 0

B 0 1 0

C U 0 1

(b) Table of transitions

Figure 3.7: Example for Property V of processes (1)

−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− S e n s i t i v i t y l i s t OK

−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s (A, C)

begin
6 C <= A;

B <= C;
8 end proce s s ;

(a) Example code

t (ns) 0 5 10

A 0 1 0

B 0 1 0

C 0 1 0

(b) Table of transitions

Figure 3.8: Example for Property V of processes (2)

3.4 Structural description

This description is used to create an architecture that instantiates other entities that have already
been de�ned elsewhere. This makes possible to build hierarchical descriptions of circuits, which improves
their reusability and scalability.

In order to do this, such an architecture must declare the entities that will be instantiated as
components, and add as many instances of these components as needed in the body of the architecture,
as the following code illustrates. Structural descriptions are very useful in bottom-up hierarchical designs.

a r c h i t e c t u r e c i r c u i t o f name i s
2 component s ub c i r c u i t

port ( . . . ) ;
4 end component ;

6 −− s i g n a l s
. . .

8 begin
−− " chip_i " i s the name o f the in s t ance dec l a r ed in t h i s code

10 −− " s ub c i r c u i t " i s the name o f the component that i s used
chip_i : s u b c i r c u i t port map ( . . . ) ;
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12 −− This can be combined with behav io ra l d e s c r i p t i o n s
end c i r c u i t ;

The architecture may add as many instances of the same component as needed. The only restriction
that VHDL imposes is that each one of the component instances must be given a di�erent name in the
body of the architecture.

Figure 3.9: Example of a structural description of an entity

The code below is an example of a structural description of the circuit depicted in Figure 3.9. Note
that, in order to make the interconnections needed between the output of a component and the input of
another one, intermediate signals are needed.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example s t r u c t u r a l d e s c r i p t i o n

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l i b r a r y IEEE ;

5 use IEEE . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;

7 use i e e e . std_logic_unsigned . a l l ;

9 en t i t y F i s
port (A, B: in s td_log i c ; Y: out s td_log i c ) ;

11 end F ;

13 a r c h i t e c t u r e s t r u c t u r a l o f F i s

15 component G
port (Ag , Bg : in s td_log i c ; Yg : out s td_log i c ) ;

17 end component ;
component H

19 port (Ah, Bh : in s td_log i c ; Yh : out s td_log i c ) ;
end component ;

21 component I
port (Ag , Bg : in s td_log i c ; Yg : out s td_log i c ) ;

23 end component ;
s i g n a l YA, YB, Yout : s td_log i c ;

25

begin
27 mod_G: G port map (A, B, YA) ;

mod_H: H port map (A, B, YB) ;
29 mod_I : I port map (YA, YB, Yi ) ;

Y <= Yout ;
31 end s t r u c t u r a l ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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IMPORTANT: In this example, note that the Y intermediate signals are needed, whereas no
intermediate signal is needed in order to connect the inputs of the entity F (A and B) and the
inputs of components mod_G and mod_H.

Structural descriptions of circuits can also be made by means of generate statements. These state-
ments are used to automatically create an array of instances of the same component and/or other con-
current statements. The syntax of the generate statement is as follows:

f o r index in range generate
2 −− range can be 0 to N or N downto 0 ; N being a constant

−− concurrent statements
4 −− component i n s t an c e s

end generate ;

The two following examples show how generate instances are instantiated and used in a VHDL code:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example GENERATE 1

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l a , b : s td_log ic_vector (0 to 7)

5 . . .
gen1 : f o r i in 0 to 7 generate

7 a ( i ) <= not b( i ) ;
end generate gen1 ;

9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example GENERATE 2

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
component s ub c i r c u i t

5 port ( x : in s td_log i c ; y : out s td_log i c ) ;
end component comp

7 . . .
s i g n a l a , b : s td_log ic_vector (0 to 7) ;

9 . . .
gen2 : f o r i in 0 to 7 generate

11 u : s ub c i r c u i t port map( a ( i ) , b ( i ) ) ;
end generate gen2 ;

13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Component instantiatons in generate statements can also include conditions, as long as they are
referred to the index of the for in the generate statement. The following code shows an example of this:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example GENERATE 3

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l a , b : s td_log ic_vector (0 to 7)

5 . . .
loop_1 : f o r i in 0 to 7 generate

7 cond i t i on : i f i > 0 generate
a ( i ) <= b( i −1) ;

9 end generate cond i t i on ;
end generate loop_1 ;

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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This example assigns the values of the vector b to the vector a, by left-shifting them 1 position.
However, it does not assign any value to a(0), since in that case, the condition in the generate statement
is not met.

However, the following code (which is NOT correct), the generated hardware depends on the value of
b(i), which is not known at design time. Since the actual value of the b vector depends on the execution of
the circuit at any point of time, it is not possible to generate any hardware with this generate statement.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example GENERATE 4

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l a , b : s td_log ic_vector (0 to 7)

5 . . .
loop_1 : f o r i in 0 to 7 generate

7 cond i t i on : i f b ( i ) = '0 ' generate
a ( i ) <= b( i −1) ;

9 end generate cond i t i on ;
end generate buc le ;

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.5 Examples

2:1 multiplexer

A possible entity description for this module would be as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Entity d e c l a r a t i o n f o r a 2 :1 MUX

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y mux2 i s

5 port (D0 , D1 , S0 : in s td_log i c ; O out s td_log i c ) ;
end mux2 ;

7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table 3.1: Truth table of a 2:1 multiplexer

S0 O

0 D0

1 D1

Table 3.1 summarizes the operation of a 2:1 multiplexer, which can be coded in VHDL as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Behaviora l VHDL code f o r a 2 :1 MUX (1)

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a r c h i t e c t u r e behavioral_1 o f mux2 i s

5 begin
O <= D1 when ( S0 = '1 ' ) e l s e D0 ;

7 end behavioral_1 ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

or as follows:
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Behaviora l VHDL code f o r a 2 :1 MUX (2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 a r c h i t e c t u r e behavioral_2 o f mux2 i s

begin
6 mul t ip l exe r : p roc e s s (D0 ,D1 , S0 )

i f ( S0 = '1 ' ) then
8 O <= D1 ;

e l s e
10 O <= D0 ;

end i f ;
12 end proce s s ;

end behavioral_2 ;
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

However, we also know that the operation of this circuit is equivalent to the truth table of the circuit
depicted in Figure 3.10.

Figure 3.10: Structural description of a multiplexer

Which is equivalent to the following structural code:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− St ru c tu r a l VHDL code f o r a 2 :1 MUX

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 a r c h i t e c t u r e s t r u c t u r a l o f mux2 i s

6 −− component d e c l a r a t i o n s
component AND2

8 port ( I0 , I1 : in s td_log i c ; O: out s td_log i c ) ;
end component ;

10 component OR2
port ( I0 , I1 : in s td_log i c ; O: out s td_log i c ) ;

12 end component ;
component INV

14 port ( I0 , I1 : in s td_log i c ; O: out s td_log i c ) ;
end component ;

16

−− s i g n a l d e c l a r a t i o n s
18 s i g n a l S1 , S2 , S3 : s td_log i c ;

20 begin
U1 : INV port map (S0 , S1 ) ;

22 U2 : AND2 port map (D0 , S1 , S2 ) ;
U3 : AND2 port map (S0 ,D1 , S3 ) ;

24 U4 : OR2 port map (S2 , S3 ,O) ;
end s t r u c t u r a l ;

26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



24 Chapter 3. Basic Structure of a Source File in VHDL

Or the following behavioral code:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Hybrid s t r u c t u r a l / behav io ra l VHDL code f o r a 2 :1 MUX

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 a r c h i t e c t u r e mixed o f mux2 i s

s i g n a l S1 , S2 : s td_log i c ;
6 begin

S1 <= D0 and not S0 ;
8 S2 <= D1 and S0 ;

O <= S1 or S2 ;
10 end mixed ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Simulation of a VHDL Code

Typically, simulation tools used for VHDL programming follow a discrete event time model for simulating
circuits described in this language. This means that these simulators model the operation of a system as
a discrete sequence of events in time. Events occur each time any signal changes its value. This marks
a potential change of state in the circuit. Between two consecutive events, no change in the system
is assumed to occur. Thus, the simulation can directly jump in time from one event to the next one,
independently of the time elapsed between them (i.e., just a few picoseconds or several seconds).

4.1 Steps of simulation

VHDL simulations comprise three steps:

• Step 0: All the signals are initialized and the time count is set to 0.

• Step 1: All the transitions scheduled for that time are carried out.

• Step 2: All the signals that are modi�ed as a consequence of transitions occurring at instant = t
are written down in the list of events and scheduled for instant = t+ δ, where δ is in�nitesimal.

Steps 1 and 2 are repeated as many times as necessary until no more transitions exist. As previously
stated, the values assigned to signals remain constant from one event to the following one.

The examples in Figures 4.1, 4.2 and 4.3 illustrate these three simulation steps. On the one hand,
Examples 1 and 2 simulate two concurrent assignments that are placed outside a process, where A takes
value '0' at 0 ns, and '1' at 5 ns.

1 B <= A;
C <= B;

(a) Example code

t (ns) 0 0+δ

N
o
m
o
re

ch
a
n
ge
s

5 5+δ

N
o
m
o
re

ch
a
n
ge
s

A 0 0 1 1

B U 0 0 1

C U 0 0 1

(b) Table of transitions

Figure 4.1: Example 1: Simulation steps in VHDL

25
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C <= B;
2 B <= A;

(a) Example code

t (ns) 0 0+δ 0+2δ

N
o
m
o
re

ch
a
n
ge
s

5 5+δ 5+2δ

N
o
m
o
re

ch
a
n
ge
s

A 0 0 0 1 1 1

B U 0 0 0 1 1

C U U 0 0 0 1

(b) Table of transitions

Figure 4.2: Example 2: Simulation steps in VHDL

On the other hand, in the following example, the two assignments are made inside a process with a
sensitivity list:

proce s s (A)
2 begin

B <= A;
4 C <= B;

end proce s s ;

(a) Example code

t (ns) 0 0+δ

N
o
m
o
re

ch
a
n
ge
s

5 5+δ

N
o
m
o
re

ch
a
n
ge
s

A 0 0 1 1

B U 0 0 1

C U U U 0

(b) Table of transitions

Figure 4.3: Example 3: Simulation steps in VHDL

In this case, we can observe that the output value at the end of the simulation in Figure 4.3b di�ers
from what was obtained in Figures 4.1b and 4.2b (B='1' and C='0'). Let us analyze in detail what
is happening in this example: At 0 ns, the process is executed, B is assigned the value of A, and C is
assigned the value that B had before the process execution (which is 'U' or �unde�ned�). At 0 + δ,
A does not change, hence the process is not executed again and all the signals keep their values. The
simulation is resumed at 5 ns, when A changes (from '0' to '1'). Hence, the process is executed again
and as a consequence, B is assigned the value of A, and C is assigned the value that B had before this
new process execution (which is '0'). In this new simulation step (5+ δ), A does not change, hence the
process is not executed again and the signal values do not change. Figures 4.4 and 4.5 show what could
be seen in any VHDL simulator. Note that δ is in�nitesimal and therefore, not visible in the simulation.

Figure 4.4: Simulation results for Examples 1 and 2

Obviously, the simulation result obtained in the table of Figure 4.5 is incorrect. This can be easily
solved by adding B to the sensitivity list of the process.

4.2 Simulation statements

VHDL features the wait statement, which stops the simulation of the code until a condition is met. A
process must include a wait statement if it does not have any sensitivity list. In addition, it is also
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Figure 4.5: Simulation results for Example 3

possible to generate sequential hardware by using wait statements. Chapter 5 makes a deeper discussion
about this. There are three types of wait statements:

• wait on list_of_signals; The simulation stops until any signal in the list_of_signals is
modi�ed.

• wait for time; The simulation stops for the time speci�ed in the time variable.

• wait until condition; The simulation stops until the condition is met.

The following code illustrates the operation of the wait statement. In this example, C cannot be
updated unless A is '1', which occurs at 5 ns.

1 proce s s
begin

3 B <= A;
wait u n t i l A = ' 1 ' ;

5 C <= B;
end proce s s

(a) Example code

t (ns) 0 0+δ

N
o
m
o
re

ch
a
n
ge
s

5 5+δ 5+2δ

N
o
m
o
re

ch
a
n
ge
s

A 0 0 1 1 1

B U 0 0 1 1

C U U 0 0 1

(b) Table of transitions

Figure 4.6: Example: Operation of the wait statement

4.3 Simulation templates in VHDL

Many simulation and synthesis tools include a graphical user interface (GUI) to help to set the stimuli
to the circuit inputs in order to check if the design works correctly. However, for large circuits and/or
large test benches, it is much more practical to create a testbench directly using VHDL.

Figure 4.7: RTL description of a simulation template for testbenches in VHDL

Either if the testbench has been created by using the GUI or it has directly typed, the �nal result will
be a VHDL �le containing an entity without any inputs or outputs, and that instantiates two process

and a component, as indicated in Figure 4.7. The latter actually instantiates the circuit under test.
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It is important to know what a VHDL testbench �le looks like. First of all, it must include the
following libraries:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− L i b r a r i e s to be added in a VHDL testbench

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 l i b r a r y IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;
6 use IEEE .STD_LOGIC_ARITH.ALL;

use IEEE .STD_LOGIC_UNSIGNED.ALL;
8 use IEEE .STD_LOGIC_TEXTIO.ALL;

use STD.TEXTIO.ALL;
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Next, an entity without any inputs or outputs must be created:

en t i t y s imu la t i on i s
2 end s imu la t i on ;

Next, the architecture is described, which includes the processes and the components of the circuit
under test (if any), as described above. A possible template to instantiate the circuit under test and the
process to set stimuli to its input signals could be as follows:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Template f o r VHDL testbench a r c h i t e c t u r e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 a r c h i t e c t u r e testbench_arch o f s imu la t i on i s

6 component c i r c u i t
port ( input : in s td_log i c ; . . . ; output : out s td_log i c ) ;

8 end component ;

10 −− Inte rmed iate s i gna l s , with the same name and type than
−− those o f the c i r c u i t under t e s t

12 s i g n a l input : s td_log i c := ' 0 ' ;
. . .

14 s i g n a l output : s td_log i c ;
−− Output s i g n a l s are not i n i t i a l i z e d

16

begin
18

UUT : c i r c u i t port map ( input , . . . , output ) ;
20

proce s s
22 begin

wait f o r 200 ns ;
24 input <= ' 1 ' ;

. . .
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wait f o r 100 ns ; −− Total : 300 ns
28 input <= ' 0 ' ;

. . .
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wait f o r T ns ; −− Total : 300 + T ns
32 input <= ' 1 ' ;

. . .
34 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wait f o r . . .
36 . . .
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 wait f o r 100 ns ;

end proce s s ;
40 end testbench_arch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The �rst wait of the code (wait for 200 ns;) keeps the input signal to its initial value ('0') for the
�rst 200 ns. Then, the following statements are executed, among which the assignment input <= '1'.
The second wait (wait for 100 ns;) keeps this new value for another 100 ns.

The following code is another example, which simulation result is depicted in Figure 4.8.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example f o r the input s t imu l i p roc e s s in a VHDL testbench

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s

5 begin
wait f o r 5 ns ;

7 A <= '1 ' ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 wait f o r 5 ns ; −− Total : 10 ns
A <= ' 0 ' ;

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wait f o r 10 ns ; −− Total : 20 ns

13 A <= '1 ' ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 wait f o r 5 ns ; −− Total : 25 ns
A <= ' 0 ' ;

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wait f o r 10 ns ;

19 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4.8: Example of a signal simulation, whose values are set manually

The second process included in the VHDL template de�nes the clock signal very easily:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Template f o r the proce s s that d e f i n e s the c l o ck

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s

begin
6 wait f o r 10 ns ;

CLOCK_LOOP : loop
8 c l k <= ' 0 ' ;

wait f o r time_low ns ;
10 c l k <= ' 1 ' ;

wait f o r time_high ns ;
12 end loop CLOCK_LOOP;

end proce s s ;
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Through the loop statement, this process generates a signal (clk) whose value is set to '0' and to
'1' alternatively, according to the times speci�ed in the time_low and time_high constants. The �rst
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wait statement keeps the initial value of clk for the �rst 10 ns. Then, the second wait indicates the time
that clk is set to its low value ('0'). Finally, the last wait indicates the time that clk is set to its high
value ('1'). This sequence is repeated forever. Note that this is possible thanks to the loop statement.
Actually, this is a slight variation with respect to the for-loop and while-loop ones statements, already
described in Chapter 3, Section 3.2. In this case, since the loop statement does not have any condition,
it never stops iterating. In other words, it will iterate until the �nal execution of the testbench.



Chapter 5

Description of Sequential Logic

As previously explained in Chapter 3, Section 3.3, one of the most important properties of processes is
their ability to keep the values assigned to signals inside them, as long as the process is not executed
again or a subsequent execution of that process does not assign any other value to that signal (see
Property II in Chapter 3, Section 3.3). For this reason, processes can be used to describe sequential logic.

IMPORTANT: Processes being used to described sequential logic DOES NOT mean that the
statements comprised in that process run sequentially.

5.1 Sequential hardware

Processes can be used in order to describe �ip-�ops and registers. To this end, the 'event attribute can
be used on the clock signal as follows:

i f ( c lk ' event and c l k = '1 ') then . . .

The 'event attribute on a signal returns true if that signal has just been modi�ed, and it returns
false otherwise. The previous if-then statement checks if there has been any modi�cation on the clk

signal, and if its new value is '1'. Thus, it recognizes a rising edge in the clock signal. Using this concept,
a D �ip-�op can be described as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D Flip−Flop

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y D_FF i s

5 port (d , c l k : in b i t ; q : out b i t ) ;
end D_FF;

7 a r c h i t e c t u r e ARCH of D_FF i s
begin

9 proce s s ( c lk , d )
begin

11 i f ( c lk ' event and c l k = '1 ' ) then q <= d ; end i f ;
end proce s s ;

13 end ARCH;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31
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However, typically a D �ip-�op has also a reset signal. In case this signal was asynchronous, it could
be implemented as follows:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− D Flip−Flop with asynchronous r e s e t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 en t i t y D_FF_SReset i s

port (d , c lk , r e s e t : in b i t ; q : out b i t ) ;
6 end D_FF_SReset ;

8 a r c h i t e c t u r e ARCH_ASYN of D_FF_SReset i s
begin

10 proce s s ( c lk , r e s e t , d )
begin

12 i f ( r e s e t = '1 ' ) then q <= ' 0 ' ;
e l s i f c l k = '1 ' and clk ' event then q <= d ;

14 end i f ;
end proce s s ;

16 end ARCH_ASYN;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As this code shows, the process runs if there is any change in the clk, reset or d signals, as indicated
in its sensitivity list. Then, the if-then statement checks if the reset signal has been set to '1'. In that
case, the output value of the FF is set to '0'. Otherwise, the clk signal is checked in a similar way as in
the D flip-flop example.

Finally, a possible code for a D �ip-�op with synchronous reset could be as follows:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D Flip−Flop with synchronous r e s e t

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a r c h i t e c t u r e ARCH_SYN of D_FF_ASReset i s

5 begin
proce s s ( c lk , r e s e t , d )

7 begin
i f c l k = '1 ' and clk ' event then

9 q <= d ;
i f ( r e s e t = '1 ' ) then q <= ' 0 ' ;

11 end i f ;
end i f ;

13 end proce s s ;
end ARCH_SYN;

15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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For XilinxTMusers: In general, in order to create sequential hardware with the expected behavior,
the following rules must be ful�lled:

• An if-then statement used to detect a clock edge cannot have an else branch. Otherwise,
the else branch would always run, except the precise moments when the clock signal changes.

• In if-then-elsif statements, the edge in a clock signal can only be detected in the last
branch of the if-then-elsif sentence (which MUST NOT have an else branch).

• An if-then statement used to detect a clock edge can have as many chained if-else state-
ments as necessary.

• A process can only have one edge detection. Otherwise, it would mean that the speci�ed
hardware would be sensible to several clock signals. This is far beyond the objectives of this
course.

These ideas are illustrated by means of the examples depicted in Figures 5.1, 5.2 and 5.3. The
di�erence between the codes in Figures 5.1a and 5.2a is the order in the assignment of values to a, b and
c. In Figure 5.1a, this assignment would be done as in any other software description language. However,
in Figure 5.2a, one could think that the assignments are incorrect. In order to understand the results,
one should remember Properties IV and V, already described in Chapter 3, Section 3.3:

Property IV: All process statements run in parallel. Hence, the order in which the assignments
appear in the code is not relevant to the �nal result. This explains why, for Figures 5.1b and 5.2b, the
values of the outputs b and c are the same ('1' and '0' at 5 ns; '1' and '1' at 10 ns) in both cases.

Property V: The values of all the signals that are modi�ed inside a process are not updated until the
whole process �nishes. This explains why the value of c is not updated at 5 ns, but at 10 ns.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example 1

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
proce s s ( c lk , a , b , r e s e t )

5 begin
i f r e s e t = '1 ' then

7 b <= ' 0 ' ;
c <= ' 0 ' ;

9 e l s i f c lk ' event and c l k = '1 ' then
b <= a ;

11 c <= b ;
end i f ;

13 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

clk edge 0 ns 5 ns 10 ns

reset 1 0 0

a 1 1 1

b 0 1 1

c 0 0 1

(b) Table of transitions

Figure 5.1: Example 1: Sequential hardware description

Finally, in the code of Figure 5.3a, b and c are directly assigned the value of a. As a consequence,
both signals are updated simultaneously.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Example 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( c lk , a , b , r e s e t )

begin
6 i f r e s e t = '1 ' then

b <= ' 0 ' ;
8 c <= ' 0 ' ;

e l s i f c lk ' event and c l k = '1 ' then
10 c <= b ;

b <= a ;
12 end i f ;

end proce s s ;
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

clk edge 0 ns 5 ns 10 ns

reset 1 0 0

a 1 1 1

b 0 1 1

c 0 0 1

(b) Table of transitions

Figure 5.2: Example 2: Sequential hardware description

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Example 3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 proce s s ( c lk , a , b , r e s e t )

begin
6 i f r e s e t = '1 ' then

b <= ' 0 ' ;
8 c <= ' 0 ' ;

e l s i f c lk ' event and c l k = '1 ' then
10 c <= a ;

b <= a ;
12 end i f ;

end proce s s ;
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Example code

clk edge 0 ns 5 ns 10 ns

reset 1 0 0

a 1 1 1

b 0 1 1

c 0 1 1

(b) Table of transitions

Figure 5.3: Example 3: Sequential hardware description

5.2 Counters

One of the most common components of digital circuits are counters. A �possible� way of describing a
counter would be by means of the following code. However, it does not work as a counter. WHY?

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Counter : Wrong code

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 en t i t y contador i s

port ( r e s e t : in s td_log i c ; n : out std_log ic_vector (3 downto 0) ) ;
6 end contador ;

8 a r c h i t e c t u r e arch o f contador i s
s i g n a l in t e rmed ia t e : s td_log ic_vector (3 downto 0) ;

10 begin

12 proce s s ( r e s e t , i n t e rmed ia t e )
begin
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14 i f ( r e s e t = '1 ' ) then
in te rmed ia t e <= "000" ;

16 e l s e
in t e rmed ia t e <= inte rmed ia t e + 1 ;

18 end i f ;
end proce s s ;

20 n <= inte rmed ia te ;

22 end arch ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a) Scheme for a feedback counter

t (ns) 0 0+δ

_
N
o
m
o
re

_
ch
a
n
ge
s 5 5+δ 5+2δ 5+3δ 5+4δ ...

reset 0 0 0 0 0 0 0 0

intermediate U 0 0000 0001 0010 0011 0100 ...

(b) Table of transitions

Figure 5.4: Example of a badly coded counter

The reason is simple: The code above does not manage the update of the output signal in a controlled
way (i.e., following a clock signal). This means that the inferred circuit from that code would look like
as in Figure 5.4a. This is not a sequential circuit, but a combinatorial one, which implementation makes
no sense whatsoever. A behavioral simulation of this circuit would not make any sense either. This is
illustrated in Figure 5.4b, where the counter never stops iterating after its input has been set to '1' (in
this example, this is assumed to happen at 5 ns).

As we already know, a counter is a sequential circuit that is controlled by means of a clock signal.
This makes possible to generate an ascending or descending sequence whose values are generated each
new clock cycle. Therefore, a VHDL code for a counter must include clock edge recognition (for instance,
with the 'event attribute).

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example o f a mod−8 counter

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y counter i s

5 port ( r e s e t , c l k : in s td_log i c ; n : out std_log ic_vector (3 downto 0) ) ;
end counter ;

7

a r c h i t e c t u r e arch o f counter i s
9 s i g n a l in t e rmed ia t e : s td_log ic_vector (3 downto 0) ;

begin
11

proce s s ( r e s e t , c lk , i n t e rmed ia te )
13 begin

i f ( r e s e t = '1 ' ) then
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15 i n t e rmed ia t e <= "000" ;
e l s i f c lk ' event and c l k = '1 ' then

17 i n t e rmed ia t e <= inte rmed ia t e + 1 ;
end i f ;

19 end proce s s ;
n <= inte rmed ia te ;

21

end arch ;
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The signal intermediate is de�ned as a std_logic_vector(3 downto 0). By applying the rules of
the IEEE standard, we have "1111� + '1' = "0000". Thus, the code above implements an ascending
count that is follows the sequence [0...15] and then, it starts over again.

For XilinxTMusers: XilinxTMtools need VHDL descriptions of circuits to include a reset signal.
It can be either asynchronous (as in the previous example) or synchronous. This makes possible
to design counters that are updated until they reach a given maximum value and then they are
initialized to 0; or counters that stay in that maximum value; or counters that start from a given
value that can be previously loaded using a load signal. All these functionalities can be described
by using if-then-else statements inside the elsif clk'event and clk = '1' then... branch.

Thus, the following example describes a generic counter that, once it reaches a maximum value, is
re-initialized and starts over again.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Example o f a counter that i s re− i n i t i a l i z e d a f t e r reach ing a maximum value

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y counter i s

5 g ene r i c (maximum: natura l := max ; N: natura l := 8) ;
port ( r e s e t , c l k : in s td_log i c ; n : out std_log ic_vector (N−1 downto 0) ) ;

7 end counter ;

9 a r c h i t e c t u r e arch o f counter i s
s i g n a l in t e rmed ia t e : s td_log ic_vector (N−1 downto 0) ;

11 begin

13 proce s s ( r e s e t , c lk , i n t e rmed ia te )
begin

15 i f ( r e s e t = '1 ' )
in t e rmed ia t e <= "000" ;

17 e l s i f c lk ' event and c l k = '1 ' then
i f i n t e rmed ia t e < max

19 i n t e rmed ia t e <= inte rmed ia t e + 1 ;
e l s e

21 −− This statement s e t s a l l the b i t s in " in t e rmed ia t e " to 0
in te rmed ia t e <= ( othe r s =>'0 ') ;

23 end i f ;
end i f ;

25 end proce s s ;

27 n <= inte rmed ia t e ;

29 end arch ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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5.3 Examples

5.3.1 8-bit register

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− 8−b i t r e g i s t e r : behav io ra l d e s c r i p t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 en t i t y r eg i s t e r_8 i s

port ( c lk , r e s e t : in b i t ;
6 A: in bi t_vector (7 downto 0) ;

B: out b i t_vector (7 downto 0) ) ;
8 end r eg i s t e r_8 ;

10 a r c h i t e c t u r e behav io ra l o f r eg i s t e r_8 i s
begin

12

proce s s ( c lk , r e s e t )
14 begin

i f r e s e t = '1 ' then B <= "00000000" ;
16 e l s i f ( c lk ' event and c l k = '1 ') then B <= A;

end i f ;
18 end proce s s ;

20 end behav io ra l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5.3.2 8-bit register built using 1-bit �ip-�ops

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 8−b i t r e g i s t e r : s t r u c t u r a l d e s c r i p t i o n

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y FF i s

5 port ( c lk , r e s e t , C: in b i t ; D: out b i t ) ;
end FF;

7

a r c h i t e c t u r e arch o f FF i s
9 begin

proce s s ( c lk , r e s e t )
11 begin

i f r e s e t = '1 ' then D <= ' 0 ' ;
13 e l s i f ( c lk ' event and c l k = '1 ') then D <= C;

end i f ;
15 end proce s s ;

end arch ;
17

en t i t y r eg i s t e r_8 i s
19 port ( c lk , r e s e t : in b i t ;

A: in b i t_vector (7 downto 0) ;
21 B: out b i t_vector (7 downto 0) ) ;

end r eg i s t e r_8 ;
23

a r c h i t e c t u r e s t r u c t u r a l o f r eg i s t e r_8 i s
25

component FF
27 port ( c lk , r e s e t , c : in b i t ; d : out b i t ) ;

end component FF;
29 s i g n a l F : b i t_vector (7 downto 0) ;
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31 begin
gen : f o r i in 0 to 7 generate

33 u : FF port map( clk , r e s e t , A( i ) , F( i ) ) ;
end generate gen ;

35 B <= F;
end s t r u c t u r a l ;

37 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Chapter 6

Design of a Finite State Machine
(FSM)

VHDL allows to describe �nite state machines (FSMs) at the algorithmic level. This makes possible to
easily coding the operation of any FSM without having to actually write the state transition and the
output functions.

The register transfer level description of a FSM looks like as indicated in Figure 6.1. There are many
ways of describing FSMs in VHDL. The one proposed in this chapter is valid to any synthesis tool that
works with this programming language.

Figure 6.1: RTL description of a �nite state machine (FSM)

First of all, one must de�ne an enumerated type including all the identi�ers of the states. It is practical
to select representative names for the states. The synthesis tool will be able to assign a binary code to
each one of them.

1 type STATES i s (up , down , stop , . . . ) ;

Next, the body of the architecture must de�ne the state transition function (F) and the output
function (G); as well as the ability to change from one state to the following one. For this purpose, two
processes are de�ned:

• The �rst one codes F and G functions. In other words, depending on the current state, it speci�es
the new values of the state and the output(s).

• The second one is a sequential process that models the �ip-�ops for the state. Hence, its only
objective is to update the current state of the FSM.
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Let us illustrate this in greater detail by means of an example. Let a FSM be a sequence recognizer
that detects the sequence "001" that comes through a serial input E. It is assumed that E is synchronized
with a clock signal. This sequence recognizer can be implemented as the Moore machine depicted in
Figure 6.2 with the following four states:

• S1: Wait for the �rst '0' in the sequence.

• S2: Wait for the second '0' in the sequence.

• S3: Wait for the '1' in the sequence.

• S4: Activate the output signal.

Figure 6.2: Example Moore machine for a FSM

Thus, for the VHDL implementation, the �rst step is to de�ne an enumerated type that comprises
the 4 states involved:

1 type STATES i s (S1 , S2 , S3 , S4 ) ;
s i g n a l STATE, NEXT_STATE: STATES;

Next, a couple of processes must determine the value of the next state (NEXT_STATE) and the output
(O), depending on the value of current state (STATE) and the input (E). This is illustrated by means of the
code below. On the one hand, the SYNCHRONOUS process implements the transition of the FSM from its
current state to its next state each clock cycle. On the other hand, the COMBINATORIAL process de�nes
both the next state depending on the current state and the value of the FSM input E, as well as the value
of the output O, which in this case, only depends on the current state.

l i b r a r y IEEE ;
2 use IEEE . std_logic_1164 . a l l ;

4 en t i t y FSM i s
port ( r e s e t , E, c l k : in b i t ; O:

out b i t ) ;
6 end FSM;

8 a r c h i t e c t u r e ARCH of FSM i s
type STATES i s (S1 , S2 , S3 , S4 ) ;

10 s i g n a l STATE, NEXT_STATE: STATES;
begin

12

SYNCHRONOUS: proce s s ( c lk , r e s e t )
14 begin

i f r e s e t = '1 ' then
16 STATE <= S1 ;
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e l s i f c lk ' event and c l k = '1 '
then

18 STATE <= NEXT_STATE;
end i f ;

20 end proce s s SYNCHRONOUS;

22 COMBINATORIAL: p roce s s (STATE,E)
begin

24 case STATE i s
when S1 =>

26 O <= '0 ' ;
i f (E= '0 ') then

28 NEXT_STATE <= S2 ;
e l s e

30 NEXT_STATE <= S1 ;
end i f ;

32 when S2 =>
O <= '0 ' ;

34 i f (E= '0 ') then
NEXT_STATE <= S3 ;

36 e l s e
NEXT_STATE <= S1 ;

38 end i f ;
when S3 =>

40 O <= '0 ' ;
i f (E= '0 ') then

42 NEXT_STATE <= S3 ;
e l s e

44 NEXT_STATE <= S4 ;
end i f ;

46 when S4 =>
O <= '1 ' ;

48 i f (E= '0 ') then
NEXT_STATE <= S2 ;

50 e l s e
NEXT_STATE <= S1 ;

52 end i f ;
end case ;

54 end proce s s COMBINATORIAL;
end ARCH;

For XilinxTMusers: XilinxTMmight not be able to recognize a FSM. In this case, it may delete
many intermediate signals and group conditions. If we want XilinxTMto recognize the FSM, the
following two rules must be ful�lled:

• The state machine must include a reset so it can be initialized.

• The combinatorial process must ALWAYS assign a value to NEXT_STATE (even if this may seem
redundant).





Chapter 7

Functions, Procedures and Packages

VHDL supports two kinds of subprograms (functions and procedures) that greatly help to improve
the description, scalability and reusability of the code. A number of these subprograms can be gathered
under a common structure named package, as shown in the code below:

1 package p i s
func t i on fname ( input_s igna l s ) r e turn type ;

3 procedure pname ( input_s igna l s ; output_s igna l s ) ;
end p ;

5

package body p i s
7 . . .

end p ;

7.1 Functions

They are used to carry out punctual calculations and they return a value instantly.

• They cannot modify their input parameters.

• They cannot modify signals or variables externally declared to the function.

• They always return a value whose type has been speci�ed in the function declaration.

• Their execution time is 0. Hence, they cannot contain any wait statement.

The syntax of functions is as follows:

f unc t i on i d e n t i f i e r ( . . . ) r e turn type
2 −− S igna l s , v a r i a b l e s

begin
4 −− Function body

−− I t can use any VHDL statement
6 r e turn value ;

end func t i on i d e n t i f i e r ;
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7.2 Procedures

Procedures constitute another way to describe small circuits.

• They can exchange data bidirectionally with the outside world.

• They can contain wait statements.

• They can assign values to signals.

• They are de�ned in the declarations zone of the architecture.

1 procedure name( parameters )
−− s i gna l s , v a r i a b l e s

3 begin
−− body o f the procedure

5 end procedure name ;

7.3 Examples

The package pf the code below includes various functions for converting data from vector to natural

and viceversa, as well as a procedure to add vectors.

1 l i b r a r y IEEE ;
use IEEE . std_logic_1164 . a l l ;

3

package ar i th_opera t i ons i s
5 f unc t i on vector_to_natural ( v : in std_log ic_vector ) re turn natura l ;

f unc t i on natural_to_vector ( nat : in natura l ; l ength : in natura l )
7 r e turn std_log ic_vector ;

procedure vector_add (v1 , v2 : in std_log ic_vector ; vo : out std_log ic_vector ) ;
9 end ar i th_operat i ons ;

11 package body ar i th_operat i ons i s

13 f unc t i on vector_to_natural ( v : in std_log ic_vector ) re turn natura l i s
v a r i a b l e aux : natura l :=0;

15 begin
f o r i in v ' range loop

17 i f v ( i ) = '1 ' then
aux := aux + (2∗∗ i ) ;

19 end i f ;
end loop ;

21 r e turn aux ;
end vector_to_natural ;

23

f unc t i on natural_to_vector ( nat : in natura l ; l ength : in natura l )
25 r e turn std_log ic_vector i s

v a r i a b l e v : s td_log ic_vector ( length−1 downto 0) ;
27 va r i ab l e quot ient , aux , i , remainder : natura l ;

begin
29 aux:= nat ;

i :=0;
31 whi le ( aux/=0) and ( i<length ) loop

quot i ent := aux /2 ;
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33 remainder := aux mod 2 ;
i f remainder=0 then v ( i ) := '0 ' ; e l s e v ( i ) := '1 ' ;

35 end i f ;
i := i +1;

37 aux := quot i ent ;
end loop ;

39 f o r j in i to length−1 loop
v ( j ) := '0 ' ;

41 end loop ;
re turn v ;

43 end natural_to_vector ;

45 procedure vector_add (v1 , v2 : in std_log ic_vector ; vo : out std_log ic_vector ) i s
v a r i a b l e sum , long : natura l ;

47 begin
long :=v1 ' l ength ;

49 sum:= vector_to_natural ( v1 ) + vector_to_natural ( v2 ) ;
v_result := natural_to_vector (sum , long ) ;

51 end vector_add ;
end ar i th_operat i ons ;

53 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l i b r a r y IEEE ;

55 use IEEE . std_logic_1164 . a l l ;
use work . a r i th_operat i ons . a l l ; −− The packet must be inc luded in order to use i t

57

en t i t y sum i s
59 port ( v1 , v2 : in std_log ic_vector ; v_result : out std_log ic_vector ) ;

end sum ;
61

a r c h i t e c t u r e beh o f sum i s begin
63 p1 : p roce s s ( v1 , v2 )

v a r i a b l e sum_var : natura l ;
65 begin

vector_addu (v1 , v2 , sum) ;
67 v_result<= sum_var ;

end proce s s p1 ;
69 end beh ;
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Design of a RAM Memory

By reusing all the concepts that have been described throughout this document, we can now design a kind
of memory that is very common in digital circuits design and computer architecture: a RAM memory
with synchronous write and asynchronous read:

1 l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;

3 use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

5

−− RAM memory with 32 8−b i t words
7 en t i t y ram i s

port ( addr : in std_log ic_vector (4 downto 0) ;
9 we , c l k : in s td_log i c ;

data_i : in std_log ic_vector (7 downto 0) ;
11 data_o : out std_log ic_vector (7 downto 0) ) ;

end ram ;
13

a r c h i t e c t u r e archx i o f ram i s
15 type ram_table i s array (0 to 31) o f s td_log ic_vector (7 downto 0) ;

s i g n a l rammemory : ram_table ;
17

begin
19 proce s s (we , c lk , addr )

begin
21 i f c lk ' event and c l k = '1 ' then

i f we = '1 ' then
23 rammemory( conv_integer ( addr ) ) <= data_i ;

end i f ;
25 end i f ;

end proce s s ;
27 data_o <= rammemory( conv_integer ( addr ) ) ;

end archx i ;

For XilinxTMusers: XilinxTMrecognizes the previous code as a memory, but it not synthesizes
that code using the memory blocks that typically exist in FPGAs for that purpose (Block RAMs or
BRAMs). In order to achieve this, one can either directly instantiate BRAMs by means of speci�c
primitives provided by XilinxTM, or to code a generic synchronous memory with read and write

ports, as well as enable, write and read signals, as in the code below.
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The conv_integer function is de�ned in the packet ieee.std_logic_unsigned.all. It converts a
binary vector to an integer value. Note that, in VHDL, the access index to the vectors are integer values.

l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;

use i e e e . s td_log i c_ar i th . a l l ;
4 use i e e e . std_logic_unsigned . a l l ;

6 en t i t y SRAM i s g ene r i c (w: i n t e g e r := 4 ; −− word width
d : i n t e g e r := 4 ; −− number o f words

8 a : i n t e g e r := 2) ; −− address width
port ( Clock : in s td_log i c ;

10 Enable : in s td_log i c ;
Read : in s td_log i c ;

12 Write : in s td_log i c ;
Read_Addr : in std_log ic_vector ( a−1 downto 0) ;

14 Write_Addr : in std_log ic_vector ( a−1 downto 0) ;
Data_in : in std_log ic_vector (w−1 downto 0) ;

16 Data_out : out std_log ic_vector (w−1 downto 0)
) ;

18 end SRAM;

20 a r c h i t e c t u r e behav io ra l o f SRAM i s
−− We use an array to s t o r e the memory va lues

22 type ram_type i s array (0 to d−1) o f s td_log ic_vector (w−1 downto 0) ;
s i g n a l tmp_ram : ram_type ;

24 begin

26 −− Read
proce s s ( Clock , Read )

28 begin
i f ( Clock ' event and Clock = '1 ' ) then

30 i f Enable = '1 ' then
i f Read = '1 ' then

32 Data_out <= tmp_ram( conv_integer (Read_Addr) ) ;
e l s e

34 Data_out <= (Data_out ' range => 'Z ' ) ; −− Al l b i t s o f Data_out are s e t to 'Z '
end i f ;

36 end i f ;
end i f ;

38 end proce s s ;

40 −− Write
p roce s s ( Clock , Write )

42 begin
i f ( Clock ' event and Clock = '1 ' ) then

44 i f Enable = '1 ' then
i f Write = '1 ' then tmp_ram( conv_integer (Write_Addr ) ) <= Data_in ;

46 end i f ;
end i f ;

48 end i f ;
end proce s s ;

50 end behav io ra l ;
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Appendixes

9.1 Discussion about using signals vs. variables

Signals are used to connect di�erent components in a circuit, whereas variables are used inside process
to compute certain values. The following example illustrates this point:

en t i t y sig_var i s
2 port (d1 , d2 , d3 : in s td_log i c ; res1 , r e s2 : out s td_log i c ) ;

end sig_var ;
4

a r c h i t e c t u r e behv o f s ig_var i s
6 s i g n a l s ig_s1 : s td_log i c ;

begin
8

proc1 : p roce s s (d1 , d2 , d3 )
10 va r i ab l e var_s1 : s td_log i c ;

begin
12 var_s1 := d1 and d2 ;

r e s1 <= var_s1 xor d3 ;
14 end proce s s ;

16 proc2 : p roce s s (d1 , d2 , d3 )
begin

18 s ig_s1 <= d1 and d2 ;
r e s2 <= sig_s1 xor d3 ;

20 end proce s s ;
end behv ;

One could think that both process should return exactly the same result, since the operations that
are carried out are exactly the same.

However, this is not true. Let us take a look at the simulation in Figure 9.1.

Why is res2 set to '1' later than res1? The reason is that the variable var_s1 and the signal res1
are updated in the same simulation step in proc1, whereas the signals sig_s1 and res2 need several
simulation steps in proc2 for the update of these two signals, respectively.

When d1=1, d2=1 and d3=0, the process proc1 updates var_s1 to its new value (which is '0'),
and this new value is taken in the same simulation step to update res1. Therefore, res1 is
automatically set to 1. However, in proc2, at this same instant of time, sig_s1 is set to 1, but nothing
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Figure 9.1: Simulation example showing the di�erence between the update of signals and variables

happens to res2 at that simulation step. Since a change in sig_s1 does not trigger the execution of the
process proc2 (note that sig_s1 is not in the sensitivity list of this process), res2 remains unchanged
until a new modi�cation of d1, d2 or d3. The next simulation step (occurring when d1=0, d2=0 and
d3=1) does not trigger the change of res2 either. The following one (when d1=0, d2=0 and d3=1) does
trigger the modi�cation of res2 from 0 to 1. The problem in this case is that this modi�cation comes
too late.

As previously hinted, looking at the code of both proc1 and proc2, one would expect the behavior
obtained for proc1 in both cases. Hence, proc2 returns a wrong simulation result. Does this mean that
we should better using variables inside processes instead of signals, in order to guarantee a proper and
immediate update? NOT AT ALL. What we should do is to double-check the sensitivity list of proc2
and to realize that the signal sig_s1, which is updated in that process, is missing in that sensitivity
list. If added, the simulation result of proc2 will be exactly the same as that of proc1. This is closely
related with what is explained in Section 9.2.

9.2 Discussion about the e�ect of incorrectly coding the sensitiv-

ity list in a process

For XilinxTMusers: When implementing a circuit, XilinxTMdoes not take into account the sensi-
tivity list of a process whatsoever. This means that, if the VHDL code is not properly written, the
simulation and the �nal implementation results will di�er. Thus, it is very important to remember
that the sensitivity list of a process MUST include all the signals that are read inside
it.

The code below and the simulation in Figure 9.2 illustrate this point:

1 l i b r a r y IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;

3 use IEEE .STD_LOGIC_ARITH.ALL;
use IEEE .STD_LOGIC_UNSIGNED.ALL;

5

en t i t y das i s
7 port ( din , s e l , c l k : in s td_log i c ; dout : out s td_log i c ) ;

end das ;
9

a r c h i t e c t u r e Behaviora l o f das i s
11 s i g n a l A, B, C: s td_log i c ;

begin
13

Type_C: proce s s ( c l k )
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15 begin
dout <= not C;

17 end proce s s Type_C;

19 Type_B: proce s s ( c l k )
begin

21 i f c lk ' event and c l k = '1 ' then B <= not din ;
end i f ;

23 end proce s s Type_B;

25 Type_A: proce s s ( c l k )
begin

27 A <= not din ;
end proce s s Type_A;

29

C<=A when ( s e l = '0 ') e l s e B;
31

end Behaviora l ;

Figure 9.2: Simulation example that illustrates the e�ect of an incomplete sensitivity list


