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Chapter 1

Signals and Systems

1.1 INTRODUCTION

The concept and theory of signals and systems are needed in almost all electrical
engineering fields and in many other engineering and scientific disciplines as well. In this
chapter we introduce the mathematical description and representation of signals and
systems and their classifications. We also define several important basic signals essential to
our studies.

1.2 SIGNALS AND CLASSIFICATION OF SIGNALS

A signal is a function representing a physical quantity or variable, and typically it
contains information about the behavior or nature of the phenomenon. For instance, in a
RC circuit the signal may represent the voltage across the capacitor or the current flowing
in the resistor. Mathematically, a signal is represented as a function of an independent
variable . Usually ¢ represents time. Thus, a signal is denoted by x(¢).

A. Continuous-Time and Discrete-Time Signals:

A signal x(r) is a continuous-time signal if ¢ is a continuous variable. If ¢ is a discrete
variable, that is, x(¢) is defined at discrete times, then x(¢) is a discrete-time signal. Since a
discrete-time signal is defined at discrete times, a discrete-time signal is often identified as
a sequence of numbers, denoted by {x,} or x[n], where n = integer. Illustrations of a
continuous-time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-1.

x(1) x[n]

\\/ i

0 t 5-4-3-2-1 01234156 n

(a) (b
Fig. 1-1 Graphical representation of (a) continuous-time and (b) discrete-time signals.

A discrete-time signal x[n] may represent a phenomenon for which the independent
variable is inherently discrete. For instance, the daily closing stock market average is by its
nature a signal that evolves at discrete points in time (that is, at the close of each day). On
the other hand a discrete-time signal x[n] may be obtained by sampling a continuous-time

1



2 SIGNALS AND SYSTEMS [CHAP. 1

signal x(t) such as
x(to), x(t)), ..., x(2,),...
or in a shorter form as

x[0], x[1],..., x[n],...
or Xy Xpyeons Xpyeen

where we understand that
x, =x[n] =x(1,)
and x,’s are called samples and the time interval between them is called the sampling
interval. When the sampling intervals are equal (uniform sampling), then
x, =x[n] =x(nT)
where the constant 7, is the sampling interval.
A discrete-time signal x[n] can be defined in two ways:

1. We can specify a rule for calculating the nth value of the sequence. For example,

n

nl =y — (3) n>0
x[n] =x, ho
or P ={L4 5 (1))

2. We can also explicitly list the values of the sequence. For example, the sequence
shown in Fig. 1-1(b) can be written as

{x,}) =(...,0,0,1,2,2,1,0,1,0,2,0,0,...)
or {x,}=11,2,2,1,0,1,0,2)

We use the arrow to denote the n =0 term. We shall use the convention that if no
arrow is indicated, then the first term corresponds to n =0 and all the values of the
sequence are zero for n < 0.

The sum and product of two sequences are defined as follows:
{c.) ={a,} +{b} >c,=a,+b,
{c.) ={a,}{b,} —c,=a,b,

{c,}=ala,} —cC,=aa, a = constant

B. Analog and Digital Signals:

If a continuous-time signal x(¢) can take on any value in the continuous interval (a, b),
where @ may be — and b may be +x, then the continuous-time signal x(¢) is called an
analog signal. If a discrete-time signal x[n] can take on only a finite number of distinct
values, then we call this signal a digital signal.

C. Real and Complex Signals:

A signal x(¢) is a real signal if its value is a real number, and a signal x(¢) is a complex
signal if its value is a complex number. A general complex signal x(¢) is a function of the
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form
x(8) =x,(1) +jx,(1) (1.1)

where x,(¢) and x,(¢) are real signals and j=vV—1.
Note that in Eq. (1.1) t represents either a continuous or a discrete variable.

D. Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any
given time. Thus, a deterministic signal can be modeled by a known function of time ¢.
Random signals are those signals that take random values at any given time and must be
characterized statistically. Random signals will not be discussed in this text.

E. Even and Odd Signals:

A signal x(¢) or x[n] is referred to as an even signal if

x(—t)=x(1)

1.2
x[-n] =x[n] (72
A signal x(¢) or x[n] is referred to as an odd signal if
x(—t)=—x(t
(=1) (1) (1.3)
x[—n] = —x[n]
Examples of even and odd signals are shown in Fig. 1-2.
x(1) x{n]
0 r> 432101234 n
(@) )
x(t) x[n]
- & -3 -2 -l l I I - -
0 : -4 l l l 123 4 4

() (@)
Fig. 1-2 Examples of even signals (a and b) and odd signals (¢ and d).
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Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even
and one of which is odd. That is,

x(r) =x,(t) +x,(1)

x[n] =x,In] +x,ln] o

where x,(t)=3{x(t) +x(—=1)) even part of x(r) I
x,[n] = 3{x[n] +x[-n]} even part of x[n] ()

x,(t)=3{x(t) —x(—1)} odd part of x(r) (1.6)

x,[n] =3{x[n] —x[—n]} odd part of x|[n]

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal (Prob. 1.7).

F. Periodic and Nonperiodic Signals:

A continuous-time signal x(¢) is said to be periodic with period T if there is a positive
nonzero value of T for which

x(t+T)=x(t) all ¢ (1.7)

An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or Fig. 1-3(a) it follows
that

x(t +mT)=x(t) (1.8)

for all ¢ and any integer m. The fundamental period T, of x(t) is the smallest positive
value of T for which Eq. (1.7) holds. Note that this definition does not work for a constant

~y

x[n]

minis

Fig. 1-3 Examples of periodic signals.

1

i

0

=

(b)
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signal x(t) (known as a dc signal). For a constant signal x(¢) the fundamental period is
undefined since x(t) is periodic for any choice of T (and so there is no smallest positive
value). Any continuous-time signal which is not periodic is called a nonperiodic (or
aperiodic) signal.

Periodic discrete-time signals are defined analogously. A sequence (discrete-time
signal) x[n] is periodic with period N if there is a positive integer N for which

x[n+N]|=x[n] all n (1.9)

An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it
follows that

x[n+mN]=x[n] (1.10)

for all n and any integer m. The fundamental period N, of x[n]is the smallest positive
integer N for which Eq. (1.9) holds. Any sequence which is not periodic is called a
nonperiodic (or aperiodic) sequence.

Note that a sequence obtained by uniform sampling of a periodic continuous-time
signal may not be periodic (Probs. 1.12 and 1.13). Note also that the sum of two
continuous-time periodic signals may not be periodic but that the sum of two periodic
sequences is always periodic (Probs. 1.14 and 1.15).

G. Energy and Power Signals:

Consider v(t) to be the voltage across a resistor R producing a current i(t). The
instantaneous power p(t) per ohm is defined as

r)=”—(t£—(’2=52(1) (1.11)

Total energy E and average power P on a per-ohm basis are

E=j i?(t)dt joules (1.12)
R NS 7

P= lim — i*(t)dt watts (1.13)
T-= T/ 71,

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is
defined as

E={ |x(n)fdt (1.14)
The normalized average power P of x(t) is defined as
1 72 2
P= lim — t t .
lim = [ Jx(0l'd (1.15)

Similarly, for a discrete-time signal x[rn], the normalized energy content E of x[n] is
defined as

©

E= ¥ |x[n]f’ (1.16)

n=-o
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The normalized average power P of x[n] is defined as

N

P=li 2

Based on definitions (1.14) to (1.17), the following classes of signals are defined:

1. x(¢) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < %, and
so P=0.

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < o, thus
implying that E = .

3. Signals that satisfy neither property are referred to as neither energy signals nor power
signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and
then the average power of this signal need only be calculated over a period (Prob. 1.18).

1.3 BASIC CONTINUOUS-TIME SIGNALS
A. The Unit Step Function:

The unit step function u(t), also known as the Heaviside unit function, is defined as

u(t)={(1) 0 (1.18)

which is shown in Fig. 1-4(a). Note that it is discontinuous at ¢ = 0 and that the value at
t = 0 is undefined. Similarly, the shifted unit step function u(¢ —¢,) is defined as

1 t>t
u(t —1,) = {0 < (1.19)

which is shown in Fig. 1-4(b).

u(r) u(t - 1)

0 0 t

-

(a) (b)
Fig. 1-4 (a) Unit step function; (b) shifted unit step function.

B. The Unit Impulse Function:

The unit impulse function 8(¢), also known as the Dirac delta function, plays a central
role in system analysis. Traditionally, 8(¢) is often defined as the limit of a suitably chosen
conventional function having unity area over an infinitesimal time interval as shown in
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Hh
e—0
~ e | .
Fig. 1-5

Fig. 1-5 and possesses the following properties:

#+0
s={% 170

[_ 8(1)di=1

But an ordinary function which is everywhere 0 except at a single point must have the
integral O (in the Riemann integral sense). Thus, 8(¢) cannot be an ordinary function and
mathematically it is defined by

[~ a5y dt = 6(0) (1.20)

where (1) is any regular function continuous at ¢ = 0.
An alternative definition of 8(t) is given by

b 6(0) a<0<b
[d>(t)8(t)dt= 0 a<b<0 or 0<a<b (1.21)
“ undefined a=0 or b=0

Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an
ordinary Riemann integral. In this sense, 8(¢) is often called a generalized function and
&(t) is known as a testing function. A different class of testing functions will define a
different generalized function (Prob. 1.24). Similarly, the delayed delta function 8(f —1,) is
defined by

J” (03t = tg) i = 8(15) (1.22)

where ¢(t) is any regular function continuous at ¢ = t,,. For convenience, 8(¢) and 8(¢ ~ t)
are depicted graphically as shown in Fig. 1-6.
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8(1) 8(1 - 1)

 J
Bl

0

(@) (b)
Fig. 1-6 (a) Unit impulse function; (b) shifted unit impulse function.

Some additional properties of 8(¢) are

8(at) = '—l—l'&(t) (1.23)
8(—1t)=58(t) (1.24)
x(1)8(t) =x(0)8(¢) (1.25)
if x(¢) is continuous at t = 0.
x(1)8(t —ty) =x(ty)8(t —t,) (1.26)

if x(¢) is continuous at 1 = ¢,
Using Eqs. (1.22) and (1.24), any continuous-time signal x(¢) can be expressed as

x(1) =f_:x(f)6(t—7)dr (1.27)

Generalized Derivatives:

If g(t) is a generalized function, its nth generalized derivative g™(t) =d"g(t)/dt" is
defined by the following relation:

[ e nya=(=1)"f" o010y ds (1.28)

where ¢(1) is a testing function which can be differentiated an arbitrary number of times
and vanishes outside some fixed interval and ¢'"(t) is the nth derivative of ¢(t). Thus, by
Eqgs. (1.28) and (1.20) the derivative of 8(¢) can be defined as

J sy di= -8 (1.29)

where ¢(t) is a testing function which is continuous at ¢ = 0 and vanishes outside some
fixed interval and ¢'(0) = d¢(t)/dt|,-. Using Eq. (1.28), the derivative of u(t) can be
shown to be 8(¢) (Prob. 1.28); that is,

du(t)

8(1)=u'(t)= 7

(1.30)
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Then the unit step function u(t) can be expressed as

u(r) =[_’w5(f)dr (1.31)

Note that the unit step function u(t) is discontinuous at t = 0; therefore, the derivative of
u(t) as shown in Eq. (7.30) is not the derivative of a function in the ordinary sense and
should be considered a generalized derivative in the sense of a generalized function. From
Eq. (1.31) we see that u(¢) is undefined at r = 0 and

1 >
“(’)={0 :<8

by Eq. (1.21) with ¢(¢) = 1. This result is consistent with the definition (1.18) of u(t).

C. Complex Exponential Signals:
The complex exponential signal
x(t) = e/ (1.32)

x(1) 7

N x(r)

(b)
Fig. 1-7 (a) Exponentially increasing sinusoidal signal; (b) exponentially decreasing sinusoidal signal.



10 SIGNALS AND SYSTEMS [CHAP. 1

is an important example of a complex signal. Using Euler’s formula, this signal can be
defined as

x(1) =e’' = cos wyt + jsin wyt (1.33)

Thus, x(¢) is a complex signal whose real part is cos w,¢ and imaginary part is sin wyt. An
important property of the complex exponential signal x(z) in Eq. (1.32) is that it is
periodic. The fundamental period T, of x(¢) is given by (Prob. 1.9)

2 '
T,= _a;; (1.34)

Note that x(¢) is periodic for any value of w,,.

General Complex Exponential Signals:
Let s =0 + jw be a complex number. We define x(t) as
x(t)=e" =el 7" =" (cos wt +jsin wt) (1.35)

Then signal x(¢) in Eq. (1.35) is known as a general complex exponential signal whose real
part e?'cosw! and imaginary part e°‘sin w? are exponentially increasing (o> 0) or
decreasing (o < 0) sinusoidal signals (Fig. 1-7).

Real Exponential Signals:
Note that if s = o (a real number), then Eq. (1.35) reduces to a real exponential signal
x(t)=e" (1.36)

x(1)

~y

(a)

x(1)

\

b)
Fig. 1-8 Continuous-time real exponential signals. (a) o > 0; (b) o < 0.

=Y
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As illustrated in Fig. 1-8, if o > 0, then x(¢) is a growing exponential; and if o <0, then
x(1) is a decaying exponential.

D. Sinusoidal Signals:
A continuous-time sinusoidal signal can be expressed as
x(t) =Acos(wyt + 8) (1.37)

where A is the amplitude (real), w, is the radian frequency in radians per second, and 8 is
the phase angle in radians. The sinusoidal signal x(¢) is shown in Fig. 1-9, and it is periodic
with fundamental period

27
T,=— (1.38)

0
@

The reciprocal of the fundamental period T is called the fundamental frequency f:

fo= -Tl—o hertz (Hz) (1.39)

From Egs. (1.38) and (1.39) we have
wy=27f, (1.40)

which is called the fundamental angular frequency. Using Euler’s formula, the sinusoidal
signal in Eq. (1.37) can be expressed as

Acos(wyt + 68) =A Refe!'+9) (1.41)

where “Re” denotes “real part of.” We also use the notation “Im” to denote “imaginary
part of.” Then

Almfe/ o'+ 9} = 4sin(wyt + 6) (1.42)
x(1)
At To=5
A cos 9}
0 T
+-A

Fig. 1-9 Continuous-time sinusoidal signal.
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1.4 BASIC DISCRETE-TIME SIGNALS
A. The Unit Step Sequence:

The unit step sequence u[n] is defined as

1 >0
u[n]={0 :<0 (1.43)

which is shown in Fig. 1-10(a). Note that the value of u[n] at n =0 is defined [unlike the
continuous-time step function u(¢) at ¢+ = 0] and equals unity. Similarly, the shifted unit step
sequence u[n — k] is defined as

u[n_klz{(]] :ill: (1.44)

which is shown in Fig. 1-10(b).

uln)

" 2101 k n

(a) (b)
Fig. 1-10  (a) Unit step sequence; (b) shifted unit step sequence.

B. The Unit Impulse Sequence:
The unit impulse (or unit sample) sequence 8[n] is defined as

5[n] = {(‘) "o (1.45)

which is shown in Fig. 1-11(a). Similarly, the shifted unit impulse (or sample) sequence
8[n — k] is defined as

1=/ n=k
8(n — k| {0 "=k (1.46)
which is shown in Fig. 1-11(b).
dinl din - k]
! 1
201 23 n 210 1 k n
(a) (b)

Fig. 1-11 (a) Unit impulse (sample) sequence; (b) shifted unit impulse sequence.
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Unlike the continuous-time unit impulse function 8(¢), 8[n] is defined without mathe-
matical complication or difficulty. From definitions (1.45) and (1.46) it is readily seen that

x[n]8[n] =x[0]58[n] (1.47)

x{n)é{n—k] =x[k]8[n—k] (1.48)

which are the discrete-time counterparts of Egs. (1.25) and (1.26), respectively. From
definitions (1.43) to (1.46), 8[n] and u[n] are related by

8[n] =u[n] —uln-1] (1.49)

uln] = z 5[k] (1.50)

which are the discrete-time counterparts of Egs. (1.30) and (1.31), respectively.
Using definition (1.46), any sequence x[n] can be expressed as

©

x[n]= Y x[k)é[n—k] (1.51)

k= —o

which corresponds to Eq. (1.27) in the continuous-time signal case.

C. Complex Exponential Sequences:

The complex exponential sequence is of the form

x[n] = e/ (1.52)
Again, using Euler’s formula, x[n] can be expressed as
x[n] = e’ = cos Qyn + jsin Qyn (1.53)

Thus x[n] is a complex sequence whose real part is cos Qon and imaginary part is sin Q,n.

Periodicity of e’?":
In order for e/" to be periodic with period N (> 0), £, must satisfy the following
condition (Prob. 1.11):
Qy m . 1.54
3w N m = positive integer (1.54)
Thus the sequence ¢/%" is not periodic for any value of Q. It is periodic only if Q,/2 is
a rational number. Note that this property is quite different from the property that the
continuous-time signal e/“' is periodic for any value of w, Thus, if Q, satisfies the
periodicity condition in Eq. (1.54), Q, # 0, and N and m have no factors in common, then
the fundamental period of the sequence x[n] in Eq. (/.52) is N, given by

N 2
0=m(0—0) (1.55)

Another very important distinction between the discrete-time and continuous-time
complex exponentials is that the signals e/ are all distinct for distinct values of w, but
that this is not the case for the signals e/%”,
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-.-Hmllll'”---f

(a)

e

(b

l [ 11 .
l l | [ 1]

H]]I'
lll]ll

Fig. 1-12 Real exponential sequences. (@) a > 1;(b) 1 >a>0;(c)0>a> —-1;(d) a < — 1.
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Consider the complex exponential sequence with frequency (Q, + 27k), where & is an
integer:

ej(ﬂ,,+2-rrk)n = ejﬂonej?,rrkn = ejﬂon (156)

since e/2™%" =1, From Eq. (1.56) we see that the complex exponential sequence at

frequency (), is the same as that at frequencies (Qy+27), (2, +47), and so on.

Therefore, in dealing with discrete-time exponentials, we need only consider an interval of

length 27 in which to choose (),. Usually, we will use the interval 0 <, <27 or the
interval —7 <}, <.

General Complex Exponential Sequences:
The most general complex exponential sequence is often defined as
x[n] =Ca" (1.57)

where C and « are in general complex numbers. Note that Eq. (1.52) is the special case of
Eq. (1.57) with C =1 and a =e/™,

x{n] = cos(%r n)

x[n)= cos(g)

[ .

1§ RN 41 Ps 11111 Bt
il

b)
Fig. 1-13  Sinusoidal sequences. (a) x[n] = cos(mwn /6); (b) x[n] = cos(n /2).
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Real Exponential Sequences:

If C and a in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four
distinct cases can be identified: a > 1,0<a <1, ~1 <a <0, and a < — 1. These four real
exponential sequences are shown in Fig. 1-12. Note that if a =1, x[n] is a constant
sequence, whereas if @ = — 1, x[n] alternates in value between +C and —C.

D. Sinusoidal Sequences:

A sinusoidal sequence can be expressed as
x[n] =Acos(Qyn +80) (1.58)

If n is dimensionless, then both 1, and @ have units of radians. Two examples of
sinusoidal sequences are shown in Fig. 1-13. As before, the sinusoidal sequence in Eq.
(1.58) can be expressed as

Acos(Qyn + 8) = A Rele/ o+ 9) (1.59)

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same
observations [Eqs. (1.54) and (1.56)] also hold for sinusoidal sequences. For instance, the
sequence in Fig. 1-13(a) is periodic with fundamental period 12, but the sequence in Fig.
1-13(b) is not periodic.

1.5 SYSTEMS AND CLASSIFICATION OF SYSTEMS
A. System Representation:

A system is a mathematical model of a physical process that relates the input (or
excitation) signal to the output (or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system
is viewed as a transformation (or mapping) of x into y. This transformation is represented
by the mathematical notation

y=Tx (1.60)

where T is the operator representing some well-defined rule by which x is transformed
into y. Relationship (1.60) is depicted as shown in Fig. 1-14(a). Multiple input and/or
output signals are possible as shown in Fig. 1-14(b). We will restrict our attention for the
most part in this text to the single-input, single-output case.

X Yt

y
——- System — : System

1.

(@) (b)

Fig. 1-14 System with single or multiple input and output signals.
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B. Continuous-Time and Discrete-Time Systems:

If the input and output signals x and y are continuous-time signals, then the system is
called a continuous-time system [Fig. 1-15(a)]. If the input and output signals are discrete-time
signals or sequences, then the system is called a discrete-time svstem [Fig. 1-15(b)].

x(1) wn x[n) vln]

> System | > Sy?;em

(a) (@]
Fig. 1-15 (a) Continuous-time system; (b) discrete-time system.

C. Systems with Memory and without Memory

A system is said to be memoryless if the output at any time depends on only the input
at that same time. Otherwise, the system is said to have memory. An example of a
memoryless system is a resistor R with the input x(r) taken as the current and the voltage
taken as the output y(¢). The input-output relationship (Ohm’s law) of a resistor is

y(t) = Rx(1) (1.61)

An example of a system with memory is a capacitor C with the current as the input x(r)
and the voltage as the output y(7); then

1
()= [ x(r)dr (1.62)

A second example of a system with memory is a discrete-time system whose input and
output sequences are related by

n

ylnl= X x[k] (1.63)

k= —x

D. Causal and Noncausal Systems:

A system is called causal if its output y(t) at an arbitrary time ¢ = t, depends on only
the input x(¢) for ¢ <t,. That is, the output of a causal system at the present time depends
on only the present and/or past values of the input, not on its future values. Thus, in a
causal system, it is not possible to obtain an output before an input is applied to the
system. A system is called noncausal if it is not causal. Examples of noncausal systems are

y(t) =x(r+1) (1.64)
y[n] =x[-n] (1.65)

Note that all memoryless systems are causal, but not vice versa.
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E. Linear Systems and Nonlinear Systems:

If the operator T in Eq. (1.60) satisfies the following two conditions, then T is called a
linear operator and the system represented by a linear operator T is called a linear system:

1. Additivity:
Given that Tx, =y, and Tx, =y,, then
T{x, +x,} =y, +», (1.66)
for any signals x, and x,.

2. Homogeneity (or Scaling):

T{ax}=ay (1.67)

for any signals x and any scalar a.
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a
nonlinear system. Equations (/.66) and (/.67) can be combined into a single condition as
T{a,x, +ayx,} =a,y, +a,y, (1.68)

where @, and a, are arbitrary scalars. Equation (1.68) is known as the superposition

property. Examples of linear systems are the resistor [Eq. (1.61)] and the capacitor [Eq.
(1.62)). Examples of nonlinear systems are

y =x? (1.69)

y =COS X (1.70)

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.67)] of linear

systems is that a zero input yields a zero output. This follows readily by setting @ = 0 in Eq.
(1.67). This is another important property of linear systems.

F. Time-Invariant and Time-Varying Systems:

A system is called time-invariant if a time shift (delay or advance) in the input signal
causes the same time shift in the output signal. Thus, for a continuous-time system, the
system is time-invariant if

T{x(t—17)} =y(t — 1) (1.71)
for any real value of 7. For a discrete-time system, the system is time-invariant (or
shift-invariant) if

T{x[n —k]}=y[n—k] (1.72)
for any integer k. A system which does not satisfy Eq. (1.71) (continuous-time system) or
Eq. (1.72) (discrete-time system) is called a time-varying system. To check a system for

time-invariance, we can compare the shifted output with the output produced by the
shifted input (Probs. 1.33 to 1.39).

G. Linear Time-Invariant Systems

If the system is linear and also time-invariant, then it is called a linear time-invariant
(LTD system.
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H. Stable Systems:

A system is bounded-input /bounded-output (BIBO) stable if for any bounded input x
defined by

x| <k, (1.73)
the corresponding output y is also bounded defined by
lyl<k, (1.74)

where k, and k, are finite real constants. Note that there are many other definitions of
stability. (See Chap. 7.)

I. Feedback Systems:

A special class of systems of great importance consists of systems having feedback. In a
feedback system, the output signal is fed back and added to the input to the system as
shown in Fig. 1-16.

x(1) 10}
System

4

Fig. 1-16 Feedback system.

Solved Problems
SIGNALS AND CLASSIFICATION OF SIGNALS
L.1. A continuous-time signal x(¢) is shown in Fig. 1-17. Sketch and label each of the

following signals.
(a) x(t = 2); (b) x(21); () x(¢/2); (d) x(—1)

x(0)

Ll 1 '} 1 1 '} i B

-2-101 23 45 '
Fig. 1-17
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(a) x(t—2)is sketched in Fig. 1-18(a).
(b) x(21) is sketched in Fig. 1-18(b).
(¢) x(t/2) is sketched in Fig. 1-18(c).
(d) x(—1t) is sketched in Fig. 1-18(d).
x(t-2) x(21)
3 3
11 1 A L1 > L1 1 L1 -
101 234567 ! 2-101 23 v
(a) (b)
x(1/2) x(-t}
3 3
[ 11 I E—— W T ! L >
101 23456789 ¢ 5432101 2 .
(c) (d)
Fig. 1-18
1.2. A discrete-time signal x[n] is shown in Fig. 1-19. Sketch and label each of the

following signals.

(@) x[n —2); (b) x[2n]); (¢) x[—n]; (d) x[—n + 2]

-1 01 2 3 45

x{n]

Fig. 1-19
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(a) x[n —2]is sketched in Fig. 1-20(a).
(b) x[2n] is sketched in Fig. 1-20(b).

(¢) x[—n]is sketched in Fig. 1-20(c).
(d) x[—n + 2] is sketched in Fig. 1-20(d).

{n-2)
3
n

X
01234567

(a)

x[-n]
—‘Jl‘—\L
0 1 n

1.3.

5432 -1

(c)

Fig. 1-20

Given the continuous-time signal specified by

x(t)={(1)_|t|
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x[2n)
‘ls ]
012

3-2-1 01 2

-1<t<1
otherwise

Y )

L 4

determine the resultant discrete-time sequence obtained by uniform sampling of x(¢)
with a sampling interval of (a) 0.25 s, (b) 0.5 s, and (c) 1.0 s.

It is easier to take the graphical approach for this problem. The signal x(t) is plotted in
Fig. 1-21(a). Figures 1-21(b) to (a) give plots of the resultant sampled sequences obtained for

the three specified sampling intervals.
(a) T,=0.25s. From Fig. 1-21(b) we obtain

x[n]={(...,0,0.25,05,0.75,1,0.75,0.5,0.25,0,. ..}

(b) T,=0.5s. From Fig. 1-21(c) we obtain

x[n]={...,0,05,1,05,0,...}
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x(1) x[n] = x(n/4)
! ¥
) 0 ! ¢ 4320001 23 4 "
() (b)
x[n} = x(n/2) x[n] = x(n)
I l
2 a4 0 1 2 n it 0 i "
(c) (d)
Fig. 1-21

(¢) T,=1s. From Fig. 1-21(d) we obtain

x[n]=1{...,0,1,0,...} = 8[n]

Using the discrete-time signals x,[n] and x,[n] shown in Fig. 1-22, represent each of
the following signals by a graph and by a sequence of numbers.

(a) y,[n]=x[n]+x,[n]; (b) y,[n]=2x[n], (c) y{n]=x,[nlx,[n]

x,[n]

2 -1 0 1

2 345 67 n

x|n)

“He

Fig. 1-22
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(a) y,[n]is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain

ynl=1(...,0,-2,-2,3,4,3,-2,0,2,2,0, ...}
T

(b) y,[n]is sketched in Fig. 1-23(b). From Fig. 1-23(b) we obtain

yo[n]=1{...,0,2,4,6,0,0,4,4,0,...)

(¢) y,[n]is sketched in Fig. 1-23(c). From Fig. 1-23(c) we obtain

wiln] = xn] + x,[n]

yiln]=1{...,0,2,4,0,...}
1

yiln] = x,[nlxy(n]

yalnl = 2x,[n]

Sketch and label the even and odd components of the signals shown in Fig. 1-24.

23

Using Egs. (1.5) and (1.6), the even and odd components of the signals shown in Fig. 1-24

are sketched in Fig. 1-25.
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x(1 x(1)
4 4
47051
>
012345 1 0 ?
(a) (b)
x(n} x[n]
| l ] l [ 4 E
1 l [
0123456 n 1012345  on
(©) (d)
Fig. 1-24
1.6. Find the even and odd components of x{(¢) =e’".
Let x,(t) and x,(t) be the even and odd components of e, respectively.
el =x, (1) +x,(1)
From Egs. (1.5) and (1.6) and using Euler’s formula, we obtain
x,(t)=13(e"+e ")y =cost
x, (1) =3(e—e ) =jsint

1.7.  Show that the product of two even signals or of two odd signals is an even signal and

that the product of an even and an odd signal is an odd signal.
Let x(r) =x,(1)x(¢). If x,(¢) and x,(¢r) are both even, then
x(—=t)y=x(=t)x,(—t)=x,(1)xy(t) =x(t)
and x(¢) is even. If x,(+) and x,(¢) are both odd, then
x(—1) =x(=0)x,(—1) = —x;()[=x(1)] =x, (1) x5(2) =x(1)
and x(¢) is even. If x (1) is even and x,(¢) is odd, then
x(=1) =x, (=0 —1) =x,()[—xx(0)] = —x)()xy(1) = —x(1)

and x(1) is odd. Note that in the above proof, variable ¢ represents either a continuous or a
discrete variable.

CHAP. 1] SIGNALS AND SYSTEMS

25

x,(0
4
2 -
-5 ™
> L 1 1 i 1 1 1 1 —
s 0 5 t 5 t
- 2
(@)
x,(0
L
0 ; r
-2
(b)
x[n] x,[n]
4 4 F
B
2 -
IIII IIIII '5.4-3-2-] -IIIII
5-432- 012345 n lllll 12345 "
-2
(c)
x[n] x[n]
4 L
2 B
432a | I I I
432 012 3 4 n 1 23 4 n

Fig. 1-25




