Engineering Mechanics

By Dr. Hasan Alhamwi

Lecture 1 : Introduction to the Engineering Mechanics

Mechanics is the branch of physical science that deals with rigid body or engineering mechanic is essentially a study of the effects of forces acting on bodies.

1 Classification of Engineering Mechanics

The subject of Engineering Mechanics may be divided into the following two main groups: 1. Statics, and 2. Dynamics.

1. Static:

It is that branch of Engineering Mechanics in which has its body at rest while dealing with forces and there effect.

2. Dynamics:

It is that branch of Engineering Mechanics in which has its body in motion while dealing with forces and there effect.The subject of Dynamics may be further sub-divided into the following two branches :

1. Kinetics, and 2. Kinematics.

- Kinetic:

It is the branch of Dynamics, which deals with the bodies in motion due to the application of forces.

Department of Building \& Construction Eng.Tech.
2021-2022

- Kinematics:

It is that branch of Dynamics, which deals with the bodies in motion, without any reference to the forces which are responsible for the motion.

Rigid body is a body in all particles remains at fixed distance from each other's. No real body is absolutely rigid, but in many cases the changes in shape of the body have a negligible effect upon the acceleration produced by a forced system or upon the reactions required to maintain equilibrium. Whenever the changes in distance between the particles of a body can be neglected, the body is assumed to be rigid.

When the force system acting on a body is equal zero (the body is in equilibrium), the branch of mechanics is called Static.
> When the force system acting on a body isn't equal zero (the body isn't in equilibrium), the branch of mechanics is called Dynamic.

2 Scalar and vector quantities

Physical quantities such as force, mass, acceleration, volume, velocity, and time used in engineering mechanics can be classified as either scalar or vector quantities.

1. Vector quantities are the quantities which have magnitude and direction such as: force, weight, velocity, distance, acceleration, displacement.
2. Scalar quantities are the quantities which have magnitude only such as: time, size, sound, density and light.

3 Force

is an action that changes or tends to change the state of the motion of the body upon which it acts. It is a vector quantity that can be represented either mathematically or graphically.

A complete description of a force included:

- Magnitude.
- Direction and sense.
- Point of action.

Madenat Alelem University College $1^{\text {st }}$ Stage

3.1 Classification of force systems

We can classify the force system by means planes as figure shown below:

3.1.1 Coplanar system:
all the forces in same the plane.
a- Coplanar Collinear forces: the forces which lie at one line of action also lie on same the plane.
b- Coplanar concurret forces: the forces which meet at one point and line of action also lie on same the plane.
c- Coplanar parallel forces: the forces whose pareller line of action also lie on same the plane.

Madenat Alelem University College $1^{\text {st }}$ Stage
d- Coplanar non concurret non pareller forces: the forces whose line of action lie on same the plane but they do not meet at one point and non parallel.

3.1.2 Non coplanar system:

The forces are not all in same the plane.
a- Non coplanar concurret forces: the forces which meet at one point but do not lie on same the plane.

b- Non coplanar parallel forces: the forces whose parallel line of action but do not lie on same the plane.

c- Non coplanar non concurret non parallel forces: the forces whose non parallel line of action and do not lie on same the plane and do not meet at one point.

Madenat Alelem University College $1^{\text {st }}$ Stage

Symbols:

α	ALPPHA
$\boldsymbol{\beta}$	BETA
$\boldsymbol{\gamma}$	GAMMA
$\boldsymbol{\phi}$	PHI
$\boldsymbol{\pi}$	$P I$
$\boldsymbol{\mu}$	$M U$

4 Composition and resolution of force

The process of replacing a force system by its resultant is called Composition. The resultant of a pair of concurrent forces can be determined by means:

- Parallelogram law: If two forces acting on a point are represented in magnitude and direction by the two sides of a parallelogram drawn from one of its angular points, their resultant is represented both in magnitude and direction by the diagonal by the parallelogram passing through that angular point.

Madenat Alelem University College

$1^{\text {st }}$ Stage

$$
\begin{aligned}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta} \\
\alpha & =\tan ^{-1}\left[\frac{Q \sin \theta}{P+Q \cos \theta}\right]
\end{aligned}
$$

- Trigonometric law:
a- Sine law

$$
\frac{\mathbf{a}}{\sin \beta}=\frac{\mathbf{b}}{\sin \alpha}=\frac{\mathbf{c}}{\sin \gamma}
$$

b- Cos law

$$
\begin{aligned}
& \mathbf{a}^{2}=\mathbf{b}^{2}+\mathbf{c}^{2}-2 \mathbf{b} \mathbf{c} \cos \beta \\
& \mathbf{b}^{2}=\mathbf{a}^{2}+\mathbf{c}^{2}-2 \mathbf{a} \mathbf{c} \cos \alpha \\
& \mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}-2 \mathbf{a b} \cos \gamma
\end{aligned}
$$

5 Resolving a force components

The force F can be resolved into two components F_{x} and F_{y} along the x and y axes and hence, the components are called rectangular components. Use the parallelogram law to solve this problem.

Madenat Alelem University College $1^{\text {st }}$ Stage \qquad

Department of Building \& Construction Eng.Tech.

$$
\begin{aligned}
& F_{x}=F * \cos \theta \\
& F_{y}=F * \sin \theta
\end{aligned}
$$

Example (1): Find the components $\mathrm{F}=316 \mathrm{~N}$ in the x and y direction with angle 35 .

Sol.

$$
\begin{aligned}
& F_{x}=F * \cos \theta \\
& F_{x}=316 * \cos 35=258.85 \mathrm{~N} \\
& F_{y}=F * \sin \theta \\
& F_{y}=316 * \sin 35=181.25 \mathrm{~N}
\end{aligned}
$$

Example (2): Find the resultant for system forces as shown in fig. below:

Sol.
$F_{x}=F * \cos \theta$
$F_{y}=F * \sin \theta$
For $\mathrm{F}_{1}=400 \mathrm{~N} \& \boldsymbol{\theta}=45^{\circ}$
$F_{1 x}=400 * \cos 45=282.8 \mathrm{~N}$
$F_{1 y}=400 * \sin 45=282.8 \mathrm{~N}$
For $\mathrm{F}_{2}=300 \mathrm{~N} \& \boldsymbol{\theta}=\mathbf{3 0}{ }^{\circ}$
$F_{2 x}=300 * \cos 30=259.8 \mathrm{~N}$
$F_{2 y}=300 * \sin 30=150 N$

Madenat Alelem University College

$1^{\text {st }}$ Stage

For $\mathrm{F}_{3}=500 \mathrm{~N} \& \boldsymbol{\theta}=\mathbf{6 0}{ }^{\circ}$

$$
\begin{aligned}
& F_{3 x}=500 * \cos 60=250 \\
& F_{3 y}=500 * \sin 60=433 \mathrm{~N}
\end{aligned}
$$

For $\mathrm{R}=800 \mathrm{~N} \& \boldsymbol{\theta}=\mathbf{5 0}^{\circ}$

$$
\begin{aligned}
& R_{x}=800 * \cos 50=514 \mathrm{~N} \\
& R_{y}=800 * \sin 50=383 \mathrm{~N} \\
& \sum F_{x}=282.8-259.8-250+514=287 \mathrm{~N} \\
& \sum F_{y}=282.8+150-433-383=-283.2 \\
& F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
& F=\sqrt{(287)^{2}+(-283.2)^{2}}=403.2 \mathrm{~N}
\end{aligned}
$$

Example (3): In the fig. shown below, the resultant \mathbf{F} is 300Ib and the angles $\boldsymbol{\theta}$ and $\boldsymbol{\beta}$, respectively. Resolve the force \mathbf{F} into a pair of components \mathbf{P} along line $\mathbf{O A}$ and \mathbf{Q} along line OB.

Madenat Alelem University College
$1^{\text {st }}$ Stage

Sol.

$$
\begin{aligned}
& \frac{F}{\sin (180-\theta-\alpha)}=\frac{P}{\sin \theta}=\frac{Q}{\sin \alpha} \\
& \frac{F}{\sin 110}=\frac{P}{\sin 45}=\frac{Q}{\sin 25} \\
& P=\frac{F * \sin 45}{\sin 110}=\frac{F * 0.707}{0.94}=225.6 \mathrm{~N} \\
& Q=\frac{F * \sin 25}{\sin 110}=\frac{F * 0.422}{0.94}=134.6 \mathrm{~N}
\end{aligned}
$$

Example (4): In fig. shown below, Resolve the 500Ib force into components: a shearing component parallel $\mathbf{A B}$ and a normal component perpendicular $\mathbf{A B}$.

Sol.
$F_{x}=F * \cos \theta$
$F_{x}=500 * \cos 36.87=400 \mathrm{~N}$
$F_{y}=F * \sin \theta$

Madenat Alelem University College
$1^{\text {st }}$ Stage
$F_{y}=500 * \sin 36.87=300 N$

Example (5): In fig. shown below, Resolve the 200Ib force into two components: one along $\mathbf{A B}$ and the other parallel to $\mathbf{C B}$.

Sol.
$F_{A B}=F * \cos \theta$
$F_{A B}=200 * \cos 53.2=120 \mathrm{~N}$
$F_{B C}=F * \sin \theta$
$F_{B C}=200 * \sin 53.2=160 N$

Example (6): In fig. shown below, the $\mathbf{3 0 0 I b}$ force acts on the box \mathbf{B}, Resolve this force into two components: one along $\mathbf{A O}$ and the other through point \mathbf{C}.

Madenat Alelem University College

$1^{\text {st }}$ Stage

Sol.
$300 / \sin 36.8=O C / \sin 53.2=A O / \sin 90$
$300 / 0.6=O C / 0.8=A O / 1$
$O A=300 * 1 / 0.6=500 \mathrm{~N}$
$O C=300 * 0.8 / 0.6=400 N$
Example (7): In fig. shown below. Resolve the force 130Ib into two nonrectangular components: one along AB and CD.

130 lb

Sol.
$130 / \sin 36.8=A B / \sin 75.8=C D / \sin 67.38$
$130 / 0.6=A B / 0.964=C D / 0.923$
$A B=130 * 0.969 / 0.6=210 N$
$C D=130 * 0.923 / 0.6=200 N$

