THE INTEL MICROPROCESSORS

8086/8088, 80186/80188, 80286, 80386,
80486, Pentium, and Pentium Pro Processor

Architecture, Programming, and Interfacing

Fourth Edition

BARRY B. BREY
DeVry Institute of Technology

Prentice-Hall International, Inc.

ISBN 0-13-802745-5

Cover photo: Ted Horowitz/The Stock Market

Editor: Charles E. Stewart, Jr.

Production Coordination: Tim Flem, Custom Editorial Productions, Inc.
Cover Designer: Brian Deep

Production Manager: Deidra M. Schwartz

Marketing Manager: Debbie Yarnell

This book was set in Times Roman by Custom Editorial Productions, Inc. and was printed and bound by
Courier/Kendallville, Inc. The cover was printed by Phoenix Color Corp.

© 1997 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

This edition may be sold only in those countries to which it is consigned by Prentice-Hall International. It is not
to be re-exported, and it is not for sale in the U.S.A., Mexico, or Canada.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN 0-13-8027u45-5

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc., Upper Saddle River, New Jersey

This text is dedicated to the memory of my father,
Wilmer A. Brey,
who worked for over 40 years in the steel industry
to provide America with the raw materials
to become a great industrial power.

PREFACE

This fourth edition text is written for the student in a course of study that requires a thorough
knowledge of programming and interfacing of the Intel family of microprocessors. It is a very
practical reference text for anyone interested in all programming and interfacing aspects of this
important microprocessor family. Today, anyone functioning or striving to function in a field of
study that uses computers must understand assembly language programming and interfacing.
Intel microprocessors have gained wide applications in many areas of electronics, communica-
tions, control systems, and particularly in desktop computer systems.

ORGANIZATION AND COVERAGE

In order to cultivate a comprehensive approach to learning, each chapter of the text begins with
a set of objectives that briefly define the contents of the chapter. This is followed by the body of
the chapter, which includes many programming applications that illustrate the main topics of the
chapter. At the end of each chapter, a numerical summary, which doubles as a study guide, re-
views the information presented in the chapter. Finally, questions and problems are provided to
promote practice and mental exercise with the concepts presented in the chapter.

This text contains many example programs, using the Microsoft MACRO assembler pro-
gram, to provide an opportunity to learn how to program the Intel family of microprocessors.
Operation of the programming environment includes the linker, library, macros, DOS function,
and BIOS functions.

Also provided is a thorough description of each family member, memory systems, and var-
ious I/O systems that include disk memory, ADC and DAC, 16550 UART, PIAs, timers, key-
board/display controllers, arithmetic coprocessors, and video display systems. Also discussed
are the personal computer system buses (ISA, VESA, and PCI). Through these systems, a prac-
tical approach to microprocessor interfacing is learned.

APPROACH

Because the Intel family of microprocessors is quite diverse, this text initially concentrates on
real mode programming, which is compatible with all versions of the Intel family of micro-
processors. Instructions for each family member, which includes the 80386, 80486, Pentium, and

Vii

viii

PREFACE

Pentium Pro processors are compared and contrasted with the 8086/8088 microprocessors. This
entire series of microprocessors is very similar, which allows more advanced versions to be
learned once the basic 8086/8088 microprocessors are understood. Please note that the
8086/8088 are still used in controllers, along with their updated counterparts, the 80186/80188
and 80386EX embedded controllers.

In addition to fully explaining the programming and operation of the microprocessor, this
text also explains the programming and operation of the numeric coprocessor (8087/80287/
80387/80486/80487/Pentium/Pentium Pro). The numeric coprocessor functions in a system to
provide access to floating-point calculations that are important in applications such as control
systems, video graphics, and computer-aided design (CAD). The numeric coprocessor allows a
program to access complex arithmetic operations that are otherwise difficult to achieve with
normal microprocessor programming.

Also described are the pin-outs and functions of the 8086-80486 and Pentium/Pentium Pro
microprocessors. Interfacing is first developed using the 8088/8086 with some of the more
common peripheral components. After learning the basics, a more advanced emphasis is placed
on the 80186/80188, 80386, 80486, Pentium, and Pentium Pro microprocessors. Because of its
similarity to the 8086 and 80386, coverage of the 80286 is minimized so that the 80386, 80486,
Pentium, and Pentium Pro can be covered in complete detail.

By studying the operation and programming of the microprocessor and numeric co-
processor, as well as the interfacing of all family members, you will be provided with a working
and practical background on the Intel family of microprocessors. On completion of a course of
study based on this text, you should be able to:

+ Develop control software to control an application interface to the 8086/8088, 80186/80188,
80286, 80386, 80486, Pentium, and Pentium Pro microprocessors. Generally, the software
developed will function on all versions of the microprocessor. This software also includes
DOS-based applications.

* Program using DOS function calls to control the keyboard, video display system, and disk
memory in assembly language.

——

* Use the BIOS functions to control the keyboard, display, and various other components in the

i i s

computer system.

* Develop software that uses macro_sequences, procedures, condmonal assembly directives,
and flow control assembler directives.

Develop software that uses mterrugt hooks and hot-keys to gain access to terminate and stay
resident software.

Program the numeric coprocessor (80287/80387/80486/80487/Pentium/Pentium Pro) to
solve complex equations.

Explain the differences between the family members and highlight the features of each
member.

* Describe and use real and protected mode operation of the 80286, 80386, 80486, Pentium,
and Pentium Pro microprocessors.

* Interface memory and I/O systems to the microprocessor.

* Provide a detailed and comprehensive comparison of all family members, their software, and
hardware interface.

* Explain the operation of disk and video systems.

7% Interface small systems to the ISA, VESA local, and PCI bus in a personal computer system.
e — e e

o e

PREFACE ix

CONTENT OVERVIEW

Chapter | introduces the Intel family of microprocessors, with an emphasis on the micro-
processor-based computer system. This first chapter serves to introduce the microprocessor,
its history, its operation, and the methods used to store data in a micre processor-based
system. In this cdition, we also include a coverage of number systems for thosc who are un-
aware of them. Chapter 2 explores the programming model of the microprocessor and system
architecture. Both real and protected mode operation are explained in this second introduc-
tory chapter. B

Once an understanding of the basic machine is grasped, Chapters 3-6 explain how each in-
struction functions with the Intel family of microprocessors. As instructions are explained, simple
applications are presented to illustrate their operation and to develop basic programming concepts.

After the basis for programming is developed Chapter 7 provides applications using the
assembler program. These applications include programming using DOS and BIOS function
calls and the mouse function calls. Disk files are explained as well as keyboard and video opera-
tion on a personal computer system. This chapter provides the tools required to develop virtually
any program on a personal computer system. It also introduces the concept of interrupt hooks
and hot-keys.

Chapter 8 introduces the 8086/8088 family as a basis for learning the basic memory and
I/O interfacing concepts that follow in later chapters. This chapter shows the buffered system as
well as the system timing.

Chapter 9 provides complete detail on memory interface using both integrated decoders
and programmable logic devices. Parity is illustrated as well as dynamic memory systems. The
8-, 16-, 32-, and 64-bit memory systems are provided so that the 8086-80486 and Pentium/
Pentium Pro microprocessors can be interfaced to memory.

» Chapter 10 provides a detailed look at basic I/O interfacing by discussing PIAs, timers,
keyboard/display interfaces, 16550 UART, and ADC/DAC. It also describes the interface of
both DC and stepper motors.

Once these basic /O components and their interface to the microprocessor is understood,
Chapters 11 and 12 provide detail on advanced I/O techniques that include interrupts and direct
memory access (DMA). Appllcatlons include a printer interface, real-time clock, disk memory,
and video systems.

Chapter 13 details the operation and programming for the 8087-Pentium Pro family of
arithmetic coprocessors. Today, few applications function efficiently without the power of the
arithmetic coprocessor. Remember that all Intel microprocessors since the 80486 contain a
COprocessor.

Chapter 14 shows how to interface small systems to the personal computer through the use
of the ISA, VESA, and PCI bus interfaces. This chapter, new to this edition, provides a
launchmg point for the many cards being designed for use in the personal computer embedded in
control systems in the industry.

Chapters 15 and 16 provide detail on the advanced 80186/80188-80486 microprocessors.
In these chapters, we explore the differences between these microprocessors and the 8086/8088,
as well as their enhancements and features. Cache memory, as well as interleaved and burst
memory, are described with the 80386 and 80486 microprocessors. Also described are memory
management and memory paging.

Chapter 17 details the Pentium and Pentium Pro microprocessors. These new microproces-
sors are based upon the original 8086/8088 and should carry Intel well into the next century.

Four appendixes are included to enhance the application of the text:

1. Appendix A includes a complete listing of the DOS INT 21H function calls. This appendix
also details the use of the assembler program and many of the BIOS function calls, including
BIOS function call INT 10H.

PREFACE

2. Appendix B gives a complete listing of all 8086-Pentium Pro instructions, including many ex-
ample instructions and machine coding in hexadecimal, as well as clock timing information.

3. Appendix C provides a compact list of all the instructions that change the flag bits.

4. Appendix D provides answers for the even-numbered questions and problems from the text.

ACKNOWLEDGMENTS

I would like to acknowledge the reviewers for this edition: John Paul Froehlich, University of
Hartford, and Jeffrey B. Weaver, Pennsylvania College of Technology.

STAY IN TOUCH

You can stay in touch with me through the Internet. My Internet site contains information about
all of my textbooks and many important links that are specific to the personal computer, micro-
processors, hardware, and software. Also available is a weekly lesson that details many of the as-
pects of the personal computer. My Internet address is http://usersl.ee.net/brey/

LAB SUPPORT

A lab manual, Instructor’s Manual to Accompany The Intel Microprocessors: 8086/8088,
80186, 80286, 80386, 80486, Pentium, and Pentium Pro Microprocessors: Architecture, Pro-
gramming, and Interfacing (ISBN: 0-13-262981-X), is available from Prentice Hall to support
the programming portion of this text.

CONTENTS

INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

o 1-1
° 12

1-3
14
1-5
1-6

Introduction 1

Chapter Objectives 1

A Historical Background 2

The Microprocessor-Based Personal Computer System 11
Number Systems 25

Computer Data Formats 31

Summary 39

Questions and Problems 41

THE MICROPROCESSOR AND ITS ARCHITECTURE

2-1
2-2

Introduction 45

Chapter Objectives 45

Internal Microprocessor Architecture 45
Real Mode Memory Addressing 51

- 23 Protected Mode Memory Addressing 25

2-4 Memory Paging 60
2-5 Summary 64
2-6 Questions and Problems 65
ADDRESSING MODES

Introduction 68 ¢

Chapter Objectives 68
3-1 Data-Addressing Modes 69
3-2 Program Memory-Addressing Modes 90
3-3 Stack Memory-Addressing Modes 92
34 Summary 95
3-5 Questions and Problems 98

45

68

Xi

Xii

CONTENTS

- DATA MOVEMENT INSTRUCTIONS

Introduction 101

Chapter Objectives 101
4-1 MOV Revisited 102
4-2 PUSH/POP 110
4-3 Load-Effective Address 115
44 String Data Transfers 118
4-5 Miscellaneous Data Transfer Instructions 124
4-6 Segment Override Prefix 129
4-7 Assembler Detail 130
4-8 Summary 139
4-9 Questions and Problems 141

ARITHMETIC AND LOGIC INSTRUCTIONS

Introduction 144
Chapter Objectives 144
5-1 Addition, Subtraction, and Comparison 144
5-2 Multiplication and Division 155
5-3 BCD and ASCII Arithmetic 160
5-4 Basic Logic Instructions 163
5-5 Shift and Rotate 169
5-6 String Comparisons 173
5-7 Summary 175
5-8 Questions and Problems 177

PROGRAM CONTROL INSTRUCTIONS

Introduction 180
Chapter Objectives 180
6-1 The Jump Group 180
6-2 Controlling the Flow of an Assembly Language Program
6-3 Procedures 197
64 Introduction to Interrupts 203
6-5 Machine Control and Miscellaneous Instructions 206
6-6 Summary 210
67 Questions and Problems 212

PROGRAMMING THE MICROPROCESSOR

Introduction 215

Chapter Objectives 215
7-1 Modular Programming 216
7-2 Using the Keyboard and Video Display 229
7-3 Data Conversions 243

190

101

144

180

215

10

CONTENTS

74 Disk Files 253

7-5 Example Programs 263
7-6 Interrupt Hooks 270

7-7 Summary 281

7-8 Questions and Problems 282

8086/8088 HARDWARE SPECIFICATIONS

Introduction 285
Chapter Objectives 285
8-1 Pin-Outs and the Pin Function 285
82 Clock Generator (8284A) 291
8-3 Bus Buffering and Latching 294
84 Bus Timing 299
8-5 Ready and the Wait State 304
8-6 Minimum Mode Versus Maximum Mode 307
8-7 Summary 309
8-8 Questions and Problems 310

MEMORY INTERFACE

Introduction 312
Chapter Objectives 312
9-1 Memory Devices 312
9-2 Address Decoding 324
9-3 8088 and 80188 (8-Bit) Memory Interface 332
94 8086, 80186, 80286, and 80386SX (16-Bit) Memory Interface
9-5 80386DX and 80486 (32-Bit) Memory Interface 347
9-6 Pentium and Pentium Pro (64-Bit) Memory Interface 350
9-7 Dynamic RAM 353
9-8 Summary 358
9-9 Questions and Problems 359

BASIC 1/0 INTERFACE

Introduction 362
Chapter Objectives 362
10-1 Introduction to I/O Interface = 362
102 I/O Port Address Decoding 369
10-3 The Programmable Peripheral Interface 375
104 The 8279 Programmable Keyboard/Display Interface 394
10-5 8254 Programmable Interval Timer 402
10-6 16550 Programmable Communications Interface 412

Xiii

285

312

340

362

10-7 Analog-to-Digital (ADC) and Digital-to-Analog (DAC) Converters 419

10-8 Summary 426
10-9 Questions and Problems 427

xiv

11

12

13

14

CONTENTS

INTERRUPTS

11-1
11-2
11-3
114
11-5
11-6
11-7

Introduction 430

Chapter Objectives 430

Basic Interrupt Processing 430

Hardware Interrupts 439

Expanding the Interrupt Structure 445

8259A Programmable Interrupt Controller 448
Real-Time Clock 462

Summary 464

Questions and Problems 465

DIRECT MEMORY ACCESS AND DMA-CONTROLLED 1/0

12-1
12-2
12-3
124
12-5
12-6
12-7

Introduction 467

Chapter Objectives 467

Basic DMA Operation 467
The 8237 DMA Controller 469
Shared-Bus Operation 483
Disk Memory Systems 500
Video Displays 508

Summary 515

Questions and Problems 515

THE ARITHMETIC COPROCESSOR

13-1
13-2
13-3
13-4
13-5
13-6

Introduction 517

Chapter Objectives 517

Data Formats for the Arithmetic Coprocessor 518
The 80X87 Architecture 522

Instruction Set 527

Programming with the Arithmetic Coprocessor 551
Summary 558

Questions and Problems 559

BUS INTERFACE

14-1
14-2
14-3
144
14-5

Introduction 562

Chapter Objectives 562

The ISA Bus 562

The Extended ISA (EISA) and VESA Loce: Buses 569
The Peripheral Component Interconnect (PCI) Bus 573
Summary 582

Questions and Problems 582

430

467

517

562

15

16

17

CONTENTS

THE 80186, 80188, AND 80286 MICROPROCESSORS

15-1
15-2
15-3
154
15-5
15-6

Introduction 584

Chapter Objectives 584

80186/80188 Architecture 584

Programming the 80186/80188 Enhancements 594
80C188EB Example Interface 612

Introduction to the 80286 616

Summary 619

Questions and Problems 620

THE 80386 AND 80486 MICROPROCESSORS

16-1
16-2
16-3
164
16-5
16-6
16-7
16-8
16-9

Introduction 622

Chapter Objectives 622

Introduction to the 80386 Microprocessor 623
Special 80386 Registers 636

80386 Memory Management 639

Moving to Protected Mode 647

Virtual 8086 Mode 659

The Memory Paging Mechanism 660
Introduction to the 80486 Microprocessor 665
Summary 675

Questions and Problems 676

THE PENTIUM AND PENTIUM PRO MICROPROCESSORS

17-1 Introduction to the Pentium Microprocessor 680

17-2 Special Pentium Registers 689

17-3 Pentium Memory Management 691

174 New Pentium Instructions 693

17-5 Introduction to the Pentium Pro Microprocessor 696

17-6 Special Pentium Pro Features 705

17-7 Summary 706

17-8 Questions and Problems 707

APPENDIXES

A The Assembler, Disk Operating System, Basic I/O System,
Mouse, and DPMI Memory Manager 709

B Instruction Set Summary 783

C Flag-Bit Changes 871

D Answers to Selected Even-Numbered Questions and Problems

INDEX

Introduction 679
Chapter Objectives 679

XV

584

622

679

709

901

-

%)

THE INTEL MICROPROCESSORS

8086/8088, 80186/80188, 80286, 80386,
80486, Pentium, and Pentium Pro Processor

Architecture, Programming, and Interfacing

Fourth Edition

CHAPTER 1

Introduction to the
Microprocessor and Computer

INTRODUCTION

This chapter provides an overview of the Intel family of microprocessors. Included is a
discussion of the history of computers and the function of the microprocessor in the micro-
processor-based computer system. Also introduced are the terms and jargon of the computer
field so that computerese is understood and used when discussing microprocessors and
computers.

The block diagram, and a description of the function of each block, detail the operation
of a computer system. The chapter also shows how the memory and input/output system of
the personal computer function. Finally, the way that data are stored in the memory is pro-
vided so that each data type can be used as software is developed. Numeric data are stored as
integers, floating-point, and binary-coded decimal (BCD); alphanumeric data are stored using
the ASCII (American Standard Code for Information Interchange) code.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Use appropriate computer terminology including bit, byte, data, real memory system, ex-
panded memory system (EMS), extended memory system (XMS), DOS, BIOS, I/O, and
so forth.

Briefly detail the history of the computer and list applications performed by the computer.
Provide an overview of the various 80X86 and Pentium/Pentium Pro family members.
Draw the block diagram of a computer system and explain the purpose of each block.
Describe the function of the microprocessor and detail its basic operation.

Define the contents of the memory system in the personal computer.

Convert between binary, decimal, and hexadecimal numbers.

Differentiate and represent numeric and alphabetic information as integers, floating-point,
BCD, and ASCII data.

e A il

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

A HISTORICAL BACKGROUND

This first section outlines the historical events leading to the development of the microprocessor
and, specifically, the extremely powerful and current 80X86! and Pentium and Pentium Pro? mi-
croprocessors. Although a study of history is not essential to understand the microprocessor, it
provides a historical perspective on the fast-paced evolution of the computer.

The Mechanical Age

The idea of a computing system is not new—it existed long before modern electrical and elec-
tronic devices were invented. The idea of calculating with a machine dates to before 500 B.C.
when the Babylonians invented the abacus, the first mechanical calculator. The abacus, which
uses strings of beads to perform calculations, was used by Babylonian priests to keep track of
their vast storehouses of grain. The abacus, which was used extensively and is still in use today,
was not improved until 1642, when Blaise Pascal, the mathematician, invented a calculator con-
structed of gears and wheels. Each gear contained 10 teeth that, when moved one complete rev-
olution, advanced a second gear one place. This is the same principle employed in a car’s
odometer mechanism and is the basis of all mechanical calculators. Incidentally, the PASCAL
programming language is named in honor of Blaise Pascal for his pioneering work in mathe-
matics and with the mechanical calculator.

The arrival of the first practical geared, mechanical machines used to compute information
automatically dates to the early 1800s. This is before humans invented the light bulb or before
much was known about electricity. In this dawn of the computer age, humans dreamed of me-
chanical machines that could compute numerical facts with a program—not merely calculate
facts as with a calculator.

One early pioneer of mechanical computing machinery was Charles Babbage, who was
aided by Augusta Ada Byron, the Countess of Lovelace. Babbage was commissioned in 1823 by
the Royal Astronomical Society of Great Britain to produce a programmable calculating ma-
chine. This machine was to generate navigational tables for the Royal Navy. He accepted the
challenge and began to create what he called his Analytical Engine. This engine was a mechan-
ical computer that stored 1,000 20-digit decimal numbers and a variable program that could
modify the function of the machine so it could perform various calculating tasks. Input to his en-
gine was through punched cards, much as computers in the 1950s and 1960s used punched cards.
It is assumed that he obtained the idea of using punched cards from Joseph Jacquard, a
Frenchman who used punched cards as input to a weaving machine he invented in 1801, which
is today called Jacquard’s loom. Jacquard’s loom used punched cards to select intricate weaving
patterns in the cloth that it produced. The punched cards programmed the loom.

After many years of work, Babbage’s dream began to fade when he realized that the ma-
chinists of his day were unable to create the mechanical parts needed to complete his work. The
Analytical Engine required more than 50,000 machined parts, which could not be made with
enough precision to allow his engine to function reliably.

The Electrical Age

The 1800s saw the advent of the electric motor (conceived by Michael Faraday); with it came a
multitude of motor-driven adding machines, all based on the mechanical calculator developed by
Blaise Pascal. These electrically driven mechanical calculators were common pieces of office

180X 86 is shorthand notation that embodies the 8086, 8088, 80186. 80188, 80286, 80386, and 80486 microprocessors.

2pentium and Pentium Pro are registered trademarks of Intel Corporation and represent either the Pentium or the Pen-
tium Pro processors in this text.

1-1 A HISTORICAL BACKGROUND 3

equipment until well into the early 1970s, when the small hand-held electronic calculator, first
introduced by Bomar, appeared. Monroe was also a leading pioneer of electronic calculators, but
their machines were desktop, four-function models the size of cash registers.

In 1889, Herman Hollerith developed the punched card for storing data. Like Babbage, he
too apparently borrowed the idea of a punched card from Jacquard. He also develcped a me-
chanical machine—driven by one of the new electric motors—that counted, sorted, and collated
information stored on punched cards. The idea of calculating by machinery intrigued the Unite
States government so much that Hollerith was commissioned to use his punched-card system to
store and tabulate information for the 1890 census.

In 1896, Hollerith formed a company called the Tabulating Machine Company. This com-
pany developed a line of machines that used punched cards for tabulation. After a number of
mergers, the Tabulating Machine Company was formed into the International Business Ma-
chines Corporation, now referred to more commonly as IBM, Inc. The punched cards used in
computer systems are often called Hollerith cards in honor of Herman Hollerith. The 12-bit
code used on a punched card is called the Hollerith code.

Mechanical machines driven by electric motors continued to dominate the information
processing world until the advent of the first electronic calculating machine in 1941 by a German
inventor named Konrad Zuse. His calculating computer, the Z3, was used in aircraft and missile
design during World War II for the German war effort. Had Zuse been given adequate funding
by the German government, he most likely would have developed a much more powerful com-
puter system. Zuse is today finally receiving some belated honor for his pioneering work in the
area of digital electronics (which began in the 1930s) and for his Z3 computer system.

It has recently been discovered (through the declassification of British military documents)
that the first truly electronic computer was placed into operation in 1943 to break secret German
military codes. This first electronic computer system, which used vacuum tubes, was invented by
Alan Turing. Turing called his machine Colossus, most likely because of its size. A problem
with Colossus was that although its design allowed it to break secret German military codes gen-
erated by the mechanical Enigma machine, it could not solve other problems. Colossus was not
programmable—it was a fixed-program computer system, which today is often called a special-
purpose computer.

The first general-purpose programmable electronic computer system was developed in
1946 at the University of Pennsylvania. This first modern computer was called the ENIAC
(Electronics Numerical Integrator and Calculator). The ENIAC was a huge machine con-
taining over 17,000 vacuum tubes and over 500 miles of wires. This massive machine weighed
over 30 tons, yet performed only about 100,000 operations per second. The ENIAC thrust the
world into the age of electronic computers. The ENIAC was programmed by rewiring its cir-
cuits—a process that took many workers several days to accomplish. The workers changed the
electrical connections on plug-boards that looked much like early telephone switchboards. An-
other problem with the ENIAC was the life of the vacuum tube components, which required fre-
quent maintenance.

Breakthroughs that followed were the development of the transistor in 1948 at Bell Labs, fol-
lowed by the invention of the integrated circuit in 1958 by Jack Kilby of Texas Instruments. The in-
tegrated circuit led to the development of digital integrated circuits (RTL or resistor-to-transistor
logic) in the 1960s and the first microprocessor in 1971 at Intel Corporation. At this time Intel, and
one of its engineers, Marcian E. Hoff, developed the 4004 microprocessor—the device that started
the microprocessor revolution that continues today at an ever-accelerating pace.

Programming Advancements

Now that programmable machines had been developed, programs and programming languages
began to appear. As mentioned, the first truly programmable electronic computer system was
programmed by rewiring its circuits. This proved too cumbersome for practical application, so

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

early in the evolution of computer systems, computer languages began to appear to control the
computer. The first such language was machine language, which was constructed of ones and
zeros using binary codes that were stored in the computer’s memory system in groups called pro-
grams. This was more efficient than rewiring a machine to program it, but it was still extremely
time consuming to develop a program because of the sheer number of codes required. John von
Neumann, the mathematician, was the first to develop a system that accepted instructions and
stored them in a memory. Computers are often called von Neumann machines in honor of John
von Neumann.

Once computer systems such as the UNIVAC I and II became available in the early 1950s,
assembly language was used to simplify the chore of entering binary code into a computer as its
instructions. The assembler allowed the programmer to use mnemonic codes such as ADD for
addition in place of a binary number such as 01000111, which is cryptic. Even though assembly
language was an aid to programming, it wasn’t until Grace Hopper developed the first high-level
programming language called FLOW-MATIC in 1957 that computers became easier to pro-
gram. Also in 1957, IBM developed FORTRAN (FORmula TRANslator) for its computer sys-
tems. The FORTRAN language allowed programmers to develop programs that used formulas to
solve mathematical problems. Note that FORTRAN is still used by some scientists for computer
programming. Another similar language introduced about a year after FORTRAN was ALGOL
(ALGOrithmic Language).

The first truly successful and widespread programming language for business applications
was COBAL (COmputer Business Oriented Algorithmic Language). Although COBAL
usage has diminished somewhat in recent years, it is still a major player in many large business
systems. Another fairly popular business language is RPG (Report Program Generator),
which allows programming by specifying the form of the input, output, and calculations.

Since these early days of programming, additional languages have appeared. Some of the
more common are BASIC, C/C++, PASCAL, and ADA. The BASIC and PASCAL languages
were both designed as teaching languages, but have escaped the classroom and are used in many
computer systems. The BASIC language is probably the easiest of all to learn. Some estimates
indicate that the BASIC language is used in the personal computer for 80 percent of the pro-
grams written by users. Recently, a new version of BASIC called VISUAL BASIC has appeared,
so programming in the Windows environment has become easier. The VISUAL BASIC lan-
guage may eventually supplant C/C++ and PASCAL.

In the scientific community, C/C++ and PASCAL appear as control programs. Both lan-
guages, and especially C/C++, allow the programmer almost complete control over the program-
ming environment and computer system. In many cases, C/C++ is replacing some of the low-
level, machine control software normally reserved for assembly language. Even so, assembly
language still plays an important role in programming. Most video games written for the per-
sonal computer are written almost exclusively in assembly language. Assembly language is also
interspersed with C/C++ and PASCAL to perform machine control functions efficiently.

The ADA language is used heavily by the Department of Defense. The ADA language was
named in honor of Augusta Ada Byron, Countess of Lovelace. The Countess worked with
Charles Babbage in the early 1800s in the development of his Analytical Engine.

The Microprocessor Age

The wor'd’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—a programmable
controller on a chip—that was meager by today’s standards. It addressed a mere 4,096 4-bit wide
memory locations. (A bit is a binary digit with a value of one or zero. A 4-bit wide memory lo-
cation is often called a nibble.) The 4004 instruction set contained only 45 instructions. It was
fabricated with the then-current state-of-the-art P-channel MOSFET technology that only al-
lowed it to execule instructions at the slow rate of 50 KIPs (kilo-instructions per second). This

1-1 A HISTORICAL BACKGROUND 5

was slow when compared to the 100,000 instructions executed per second by the 30-ton ENIAC
computer in 1946. The main difference was that the 4004 weighed much less than an ounce.

At first, applications abounded for this device. The 4-bit microprocessor debuted in early
video game systems and small microprocessor-based control systems. One such early video
game, a shuffleboard game, was produced by Balley. The main problems with this early micro-
processor were its speed, word width, and memory size. The evolution of the 4-bit micro-
processor ended when Intel released the 4040, an updated version of the carlicr 4004. The 4040
operated at a higher speed, although it lacked improvements in word width and memory size.
Other companies, particularly Texas Instruments (TMS-1000), also produced 4-bit microproces-
sors. The 4-bit microprocessor still survives in low-end applications such as microwave ovens
and small control systems and is still available from some microprocessor manufacturers. Most
calculators are also still based on 4-bit microprocessors that process 4-bit BCD (binary-coded
decimal) codes.

Later in 1971, realizing that the microprocessor was a commercially viable product, Intel
Corporation released the 8008—an extended 8-bit version of the 4004 microprocessor. The 8008
addressed an expanded memory size (16K bytes) and contained additional instructions (a total of
48) that provided an opportunity for its application in more advanced systems. (A byte is gener-
ally an 8-bit wide binary number and a K is 1,024 bytes. Often, memory size is specified in
K bytes.)

As engineers developed more demanding uses for the 8008 microprocessor, they discov-
ered that its somewhat small memory size, slow speed, and instruction set limited its usefulness.
Intel recognized these limitations and, in 1973, introduced the 8080 microprocessor—the first of
the modern 8-bit microprocessors. About six months after Intel released the 8080 microprocessor,
Motorola Corporation introduced its MC6800 microprocessor. The floodgates opened and the
8080—and, to a lesser degree, the MC6800—ushered in the age of the microprocessor. Soon,
other companies began to introduce their own versions of the 8-bit microprocessor. Table 1-1
lists several of these early microprocessors and their manufacturers. Of these early micro-
processor producers, only Inte] and Motorola continue successfully to introduce newer and im-
proved versions of the microprocessor. Zilog still manufactures microprocessors, but has
remained in the background, deciding to concentrate, fairly successfully, on microcontrollers
and embedded controllers instead of general-purpose microprocessors. Rockwell has all but
abandoned microprocessor development in favor of modem circuitry.

What Was Special about the 8080? Not only could the 8080 address more memory and execute
additional instructions, but it executed them 10 times faster than the 8008. An addition that took
20 ps (50,000 instructions per second) on an 8008-based system required only 2.0 ps (500,000
instructions per second) on an 8080-based system. Also, the 8080 was compatible with TTL
(transistor-transistor logic), whereas the 8008 was not directly compatible. This made interfacing
much easier and less expensive. The 8080 could also address four times more memory (64K
bytes) than the 8008 (16K bytes). These improvements were responsible for ushering in the era

TABLE 1-1 Early

Fairchild F-8

Intel 8080
MOS Technology 6502
Motorola MC6800
National Semiconductor IMP-8
Rockwell International PPS-8

Zilog z8

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

of the 8080 and the continuing saga of the microprocessor. Incidentally, the first personal com-
puter, the MITS Altair 8800, was released in 1974. (Note that the number 8800 was probably
chosen to avoid copyright violations with Intel.) The BASIC language interpreter, written for the
Altair 8800 computer, was developed by Bill Gates—the founder of Microsoft Corporation. The
assembler program for the Altair 8800 was written by Digital Research Corporation, which now
produces DR-DOS for the personal computer.

The 8085 Microprocessor. In 1977, Intel Corporation introduced an updated version of the
8080—the 8085. This was to be the last 8-bit general-purpose microprocessor developed by Intel.
Although only slightly more advanced than an 8080, the 8085 executed software at an even higher
speed. An addition that took 2.0 ps (500,000 instructions per second) on the 8080 required only
1.3 ps (769,230 instructions per second) on the 8085. The main advantages of the 8085 were its
internal clock generator, internal system controller, and higher clock frequency. This higher level
of component integration reduced the 8085’s cost and increased its usefulness. Intel has managed
to sell well over 100 million copies of the 8085, including the 8085s manufactured by other li-
censed second sources, such as Advandel Micro Devices (AMD); there are over 200 million of
these microprocessors in existence. Applications that contain the 8085 are still being used and de-
signed and will likely continue to be popular well into the future. Another company that sold 500
million 8-bit microprocessors is Zilog Corporation, which produced the Z-80 microprocessor.
The Z-80 is machine language code compatible with the 8085, which means that there are well
over 700 million microprocessors that execute 8085/Z-80 compatible code!

The Modern Microprocessor

In 1978, Intel released the 8086 microprocessor; a year or so later, it released the 8088. Both de-
vices were 16-bit microprocessors, which executed instructions in as little as 400 ns (2.5 MIPs or
2.5 million instructions per second). This represented a major improvement over the execution
speed of the 8085. In addition, the 8086 and 8088 addressed 1M bytes of memory, 16 times more
memory than the 8085. (A 1M byte memory contains 1,024K byte-sized memory locations, or
1,048,576 bytes.) This higher execution speed and larger memory size allowed the 8086 and
8088 to replace smaller minicomputers in many applications. One other feature found in the
8086/8088 was a small 4- or 6-byte instruction cache or queue that prefetches a few instructions
before they are executed. The queue sped the operation of many sequences of instructions and
proved to be the basis for the much larger instruction caches found in modern microprocessors.

The increase in memory size and additional instructions of the 8086 and 8088 have led to
many sophisticated applications for microprocessors. Improvements to the instruction set in-
cluded a multiply-and-divide instruction, which were missing on earlier microprocessors. Also,
the number of instructions increased from 45 on the 4004, to 246 on the 8085, to well over
20,000 variations on the 8086 and 8088 microprocessors. Note that these microprocessors were
called CISC (complex instruction set computers) because of the number and complexity of in-
structions. The additional instructions eased the task of developing efficient and sophisticated
applications even though their number was at first overwhelming and time consuming to learn.
The 16-bit microprocessor also provided more internal register storage space than the 8-bit mi-
croprocessor. The additional registers allowed software to be written more efficiently.

The 16-bit microprocessor evolved mainly because of the need for larger memory systems.
The popularity of the Intel family was ensured in 1981 when IBM Corporation decided to use the
8088 microprocessci :n its personal computer. Applications such as spreadsheets, word proces-
sors, spelling checkers, and computer-based thesauruses were memory intensive and required
more than the 64K bytes of memory found in 8-bit microprocessors to execute efficiently. The
16-bit 8086 and 8088 provided 1M bytes of memory for these applications. Soon, even 1M byte
of memory proved limiting for large spreadsheets and other applications. This led Intel to intro-
duce the 80286 microprocessor, an updated 8086, in 1983.

1-1 A HISTORICAL BACKGROUND 7

The 80286 Microprocessor. The 80286 microprocessor (also a 16-bit architecture micro-
processor) was almost identical to the 8086 and 8088 except it addressed a 16M byte memory
system instead of a IM byte system. The instruction set of the 80286 was also almost identical to
the 8086 and 8088 except for a few additional instructions that managed the extra 15M bytes of
memory. The clock speed of the 80286 was increased, so it executed some instructions in as little
as 250 ns (4.0 MIPs) with the original release 8.0 MHz version. Some changes also occurred in
the internal execution of the instructions that led to an eight-fold increase in speed for many in-
structions when compared to 8086/8088 instructions.

The 32-bit Microprocessor. Applications began to demand faster microprocessor speeds, more
memory, and wider data paths. This led to the arrival of the 80386, in 1986, by Intel Corporation.
The 80386 represented a major overhaul of the 16-bit 8086-80286 microprocessor’s architec-
ture. The 80386 was Intel’s first practical 32-bit microprocessor that contained a 32-bit data bus
and a 32-bit memory address. (Note that Intel produced an earlier, although unsuccessful, 32-bit
microprocessor called the iapx-432.) Through these 32-bit buses, the 80386 addressed up to 4G
bytes of memory. (1G of memory contains 1,024M or 1,073,741,824 locations.) A 4G byte
memory can store an astounding 1,000,000 typewritten, double-spaced pages of data. The 80386
was also available in a few modified versions such as the 80386SX, which addressed 16M bytes
of memory through a 16-bit data and 24-bit address bus, and the 80386SL/80386SLC, which ad-
dressed 32M bytes of memory through a 16-bit data and 25-bit address bus. An 80386SLC ver-
sion contained an internal cache memory that allowed it to process data at even higher rates. In
1995, Intel released the 80386EX microprocessor. The 80386EX is called an embedded PC,
containing all the components of the AT class personal computer on a single integrated circuit.
The 80386EX also contains 24 lines for input/output data, a 26-bit address bus, a 16-bit data bus,
a DRAM refresh controller, and programmable chip selection logic.

Applications requiring higher microprocessor speeds and large memory systems include
software systems that use a GUI or graphical user interface. Modern graphical displays often
contain 256,000 or more picture elements (pixels or pels). The least sophisticated VGA (vari-
able graphics array) video display has a resolution of 640 pixels per scanning line with 480
scanning lines. In order to display one screen of information, each picture element must be
changed. This requires a high-speed microprocessor. Many new software packages use this type
of video interface. These GUI-based packages require high microprocessor speeds and often ac-
celerated video adapters for quick and efficient manipulation of video text and graphical data.
The most striking system, which requires high-speed computing for its graphical display inter-
face, is Microsoft Corporation’s Windows.? We often call a GUI a WYSIWYG (what you see is
what you get) display.

The 32-bit microprocessor is needed because of the size of its data bus, which transfers
real (single-precision floating-point).numbers that require 32-bit wide memory. In order to effi-
ciently process 32-bit real numbers, the microprocessor must efficiently pass them between itself
and memory. If they pass through an 8-bit data bus, it takes four read or write cycles; when
passed through a 32-bit data bus, however, only one read or write cycle is required. This signifi-
cantly increases the speed of any program that manipulates real numbers. Most high-level lan-
guages, spreadsheets, and database management systems use real numbers for data storage. Real
numbers are also used in graphical design packages that use vectors to plot images on the video
screen. These include such CAD (computer aided drafting/design) systems as AUTOCAD,
ORCAD, and so forth.

Besides providing higher clocking speeds, the 80386 included a memory management unit
that allowed memory resources to be allocated and managed by the operating system. Earlier

*Windows is a registered trademark of Microsoft Corporation and is currently available as version 3.1, 3 11, and
Windows 95.

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

microprocessors left memory management completely to the software. The 80386 included
hardware circuitry for memory management and memory assignment, which improved its effi-
ciency and reduced software overhead.

The instruction set of the 80386 microprocessor was upward compatible with the earlier
8086, 8088, and 80286 microprocessors. Additional instructions referenced the 32-bit registers
and managed the memory system. Note that memory management instructions and techniques
used by the 80286 were also compatible with the 80386 microprocessor. These features allowed
older, 16-bit software to operate on the 80386 microprocessor.

The 80486 Microprocessor. In 1989, Intel released the 80486 microprocessor, which incorpo-
rated an 80386-like microprocessor, an 80387-like numeric coprocessor, and an 8K byte cache
memory system into one integrated package. Although the 80486 was not radically different from
the 80386, it did include one substantial change. The internal structure of the 80486 was modified
from the 80386 so about half of its instructions executed in one clock instead of two clocks. Be-
cause the 80486 was available in a 50 MHz version, about half of its instructions executed in 25ns
(50 MIPs). The average speed improvement for a typical mix of instructions was about 50 percent
over the 80386 operated at the same clock speed. Later versions of the 80486 executed instruc-
tions at even higher speeds with a 66 MHz double-clocked version (80486DX2). The double-
clocked 66 MHz version executed instructions at the rate of 66 MHz, with memory transfers
executed at the rate of 33 MHz. A triple-clocked version from Intel, the 80486DX4, improved the
internal execution speed to 100 MHz with memory transfers at 33 MHz. Note that the 80486DX4
executed instructions at about the same speed as the 60 MHz Pentium. It also contained an ex-
panded 16K byte cache in place of the standard 8K byte cache found on earlier 80486 micro-
processors. Recently, Advanced Micro Devices (AMD) has produced a triple-clocked version that
runs with a bus speed of 40 MHz and a clock speed of 120 MHz. The future promises to bring mi-
croprocessors that internally execute instructions at rates of up to 250 MHz or higher.

Other versions of the 80486 were called Overdrive* processors. The Overdrive processor
was actually a double-clocked version of the 80486DX that replaced an 80486SX or slower
speed 80486DX. When the Overdrive processor was plugged into its socket, it disabled or re-
placed the 80486SX or 80486DX and functioned as a doubled-clocked version of the micro-
processor. For example, if an 80486SX operating at 25 MHz was replaced with an Overdrive
microprocessor, it functioned as a 80486DX2 50 MHz microprocessor using a memory transfer
rate of 25 MHz.

Table 1-2 lists many microprocessors produced by Intel and Motorola with information
about their word and memory sizes. Other companies produce microprocessors, but none have
attained the success of Intel and, to a lesser degree, Motorola.

The Pentium Microprocessor. The Pentium, introduced in 1993, was similar to the 80386 and
80486 microprocessors. This microprocessor was originally labeled the PS or 80586, but Intel
decided not to use a number because it appeared to be impossible to copyright a number. The
two introductory versions of the Pentium operated with a clocking frequency of 60 MHz and
66 MHz and a speed of 110 MIPs, with a higher frequency 100 MHz one and one-half clocked
version operating at 150 MIPs. The double-clocked Pentium, operating at 120 MHz and 133 MHz,
was also available, as were higher speed versions (200 Mhz). Another difference was that the
cache size was increased to 16K bytes from the 8K cache found in the basic version of the 80486.
The Pentium contains an 8K byte instruction cache and an 8K byte data cache. This allowed a
program transfering a large amour.t of memory data still to benefit from a cache. The memory
system contained up to 4G bytes, with the data bus width increased from the 32-bits found in the
80386 and 80486 to a full 64-bits. The data bus transfer speed wass either 60 MHz, or 66 MHz
depending on the version of the Pentium. This wider data bus width accommodated double-

“Overdrive is a registerced trademark of Intel Corporation.

1-1 A HISTORICAL BACKGROUND

TABLE 1-2 Many modern Intel and Motorola microprocessors

Manufacturer Part Data Bus Width Memory Size
Intel 8048 8 2K internal
8051 8 8K internal
8085A 8 64K
8086 16 1M
8088 8 1M
8096 16 8K internal
80186 16 M
80188 8 ™
80251 8 16K internal
80286 16 16M
80386EX 16 64M
80386DX 32 4G
80386SL 16 32M
80386SLC 16 32M + 1K cache
80386SX 16 16M
80486DX/DX2 32 4G + 8K cache
80486SX 32 4G + 8K cache
80486DX4 32 4G + 16K cache
Pentium 64 4G + 16K cache
Pentium Overdrive (P24T) 32 4G + 16K cache
Pentium Pro processor 64 64G + 16K L1
cache + 256K L2 cache
Motorola 6800 8 64K
6805 8 2K
6809 8 64K
68000 16 16M
68008Q 8 M
68008D 8 4M
68010 16 16M
68020 32 4G
68030 32 4G + 256 cache
68040 32 4G + 8K cache
68050 32 Proposed, but never
released
68060 64 4G + 16K cache
PowerPC 64 4G + 32K cache

precision floating-point numbers used for high-speed vector-generated graphical displays. It also
transfered data between the memory system and microprocessor at a higher rate. This should
allow virtual reality and software to operate at more realistic rates on current and future Pentium-
based platforms. The widened data bus and higher execution speed of the Pentium should also
allow full-frame video displays that operate at scan rates of 30 Hz or higher—comparable to
commercial television.

Recently, Intel has released the long-awaited Pentium OverDrive (P24T) for older 80486
systems that operate at either 63 MHz or 83 MHz clock. The 63 MHz version upgrades older
80486DX2 50 MHz systems, and the 83 MHz version upgrades the 80486DX2 66 MHz systems.
The upgraded 83 MHz system performs at a rate somewhere between a 66 MHz Pentium and a
75 MHz Pentium. If older VESA local bus video and disk caching controllers seem t0o expensive
to toss out, the Pentium OverDrive represents an ideal upgrade path from the 80486 to the Pentium.

10

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Probably the most ingenious feature of the Pentium is its dual integer processors. The Pen-
tium executes two instructions, not dependent on each other, simultaneously because it contains
two independent internal integer processors called superscaler technology. This allows the Pen-
tium to often execute two instructions per clocking period. Another feature that enhances perfor-
mance is a jump prediction technology that speeds the execution of programs that include loops.
As with the 80486, the Pentium also employs an internal floating-point coprocessor to handle
floating-point data, albeit at about a five times speed improvement. These features portend con-
tinued success for the Intel family of microprocessors. They also may allow the Pentium to re-
place some of the RISC (reduced instruction set computer) machines that currently execute
one instruction per clock. Note that some newer RISC processors execute more than one instruc-
tion per clock through the introduction of superscaler technology. Motorola, Apple, and IBM
have recently produced the PowerPC, a RISC microprocessor that has two integer units and one
floating-point unit. The PowerPC certainly boosts the performance of the Apple Macintosh, but
at present is slow at emulating the Intel family of microprocessors. Tests indicate that the current
emulation software executes DOS and Windows applications at a speed slower than the
80486SX 25 MHz microprocessor. Because of this, the Intel family should survive for many
years in personal computer systems. Note that there are currently 4 million Apple Macintosh®
systems and well over 160 million personal computers based on Intel microprocessors.

In order to compare the speeds of various microprocessors, Intel devised the iCOMP rating
index. This index is a composite of SPEC92, ZD Bench, and Power Meter. Figure 1-1 shows the
relative speeds of the 80386DX 25 MHz version at the low end to the Pentium 133 MHz version
at the high end of the spectrum.

Pentium Pro Microprocessor. The latest entry from Intel is the Pentium Pro microprocessor,
formerly code-named the P6 microprocessor. The Pentium Pro microprocessor contains 21 mil-
lion transistors, 3 integgg:}:lnrli,ts, as well as a floating-point unit to increase the performance of
most software. The basic clock frequency is 150 MHz and 166MHz in the initial offering made
available in late 1995. In addition to the internal 16K level one (L1) cache (8K for data and 8K
One other significant change is that the Pentium Pro processor uses three execution engines so it
can execute up to three instructions at a time, which can conflict and still execute in parallel. This
represents a change from the Pentium, which executes two instructions simultaneously as long as

efficiently; for this reason it is often bundled with Windows NT rather than with normal versions
of Windows 95. Still another change is that the Pentium Pro can address either a 4G byte
memory system or a 64G byte memory system. The Pentium Pro has a 36-bit address bus if con-
figured for a 64G memory system.

No one can really make accurate predictions, but the success of the Intel family should
continue for quite a few years. What may occur is a change to RISC technology, but more likely
a change to a new technology being developed jointly by Intel and Hewlett-Packard will take
place. Even this new technology will undoubtedly embody the CISC instruction set of the 80X86
family of microprocessors so that software for the system will survive. The basic premise behind
this technology is that many microprocessors will communicate directly with one another, al-
lowing parallel processing without any change to the instruction set or program. Currently, the
superscaler technology uses many microprocessors, but they all share the same register set. This
new untried technology, to be uscd in the P7, contains many microprocessors that each contain
their own register sets that are linked with the other microprocessors’ registers. This technology
should offer truc parallel processing without writing any special program.

*Macintosh is a registered trademark of Apple Computer Corporation.

FIGURE 1-1
iCOMP index.

The Intel 0 100 200 300 400 500 600 700 800 900 1000 11001200

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 11

Pentium 133 [1110
Pentium 120
Pentium 100 [z
Pentium 90
Pentium 75
Pentium 83*
Pentium 66
Pentium 60
Pentium 63*

486 DX4 100
486 DX4 75
486 DX2 66 [2
486 DX 50
486 DX2 50
486 SX2 50
486 DX 33
486 SX2 40
486 SX 33
486 DX 25
486 SX 25
486 SX 20

386 DX 33
386 SX 33
386 DX 25
386 SX 25
386 SX 20
386 SX 16

Note: * = Pentium OverDrive

THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM

Computer systems have undergone many changes recently. Machines that once filled large areas
have been reduced to small desktop computer systems because of the microprocessor. Even
though these desktop computers are compact, they possess computing power that was only
dreamed of a few years ago. Million-dollar mainframe computer systems, developed in the early
1980s, are not as powerful as the 80486-, Pentium-, or Pentium Pro- based computers of today.
In fact, many smaller companies are replacing their mainframe computers with microprocessor-
based systems. Companies such as DEC (Digital Equipment Corporation) have stopped pro-
ducing mainframe computer systems in order to concentrate their resources on microprocessor-
based computer systems.

This section shows the structure of the microprocessor-based personal computer system.
This structure includes information about the memory and operating system used in many mi-
croprocessor-based computer systems. -)

Refer to Figure 1-2 for the block diagram of the personal computer. This diagram also ap-
plies to any computer system from the early mainframe computers to the latest microprocessor-
based systems. The block diagram is composed of three blocks that are interconnected by buses.
(A bus is a set of common connections that carry the same type of information. For example, the
address bus, which contains 20 or more connections, conveys the memory address to the memory.)
These blocks and their functions in a personal computer are outlined in this section of the text.

12

&

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Buses
— —_—
Memory system Microprocessor I/O system
- -
Dynamic RAM (DRAM) 8086 Printer
Static RAM (SRAM) 8088 Serial communications
Cache 80186 Floppy disk drive
Read-only (ROM) 80188 Hard disk drive
Flash memory 80286 Mouse
EEPROM 80386 CD-ROM drive
80486 Plotter
Pentium Keyboard
Pentium Pro Monitor
Tape backup
Scanner

FIGURE 1-2 The block diagram of a microprocessor-based computer system

The Memory and /0 System .

The memory structure of all Inte] 80X86- and Pentium-based personal computer systems are sim-
ilar. This includes the first personal computers based on the 8088 introduced in 1981 by IBM to
the most powerful, high-speed versions of today based on the Pentium Pro processor. Figure 1-3
illustrates the memory map of a personal computer system. This map applies to any IBM personal
computer or any of the many IBM ccmpatible clones that are in existence.

The memory system is divided into three main parts: TPA (transient program area),
system area, and XMS (extended memory system). The type of microprocessor in your com-
puter determines whether an extended memory system exists. If the computer is based upon an
older 8086 or 8088 (a PC® or XT7), the TPA and system areas exist, but there is no extended
memory area. ry area. The PC and XT contain 640K bytes of TPA and 384K bytes of system memory for
a total memory size of 1M byte. We often call the first IM byte of memory the real memory be-
cause each Intel microprocessor is designed to function in this area in its real mode of operation.

(640K bytes) and system area (384K bytes); they may also contam extended memory. These
machines are often called AT? class machines. The PS/1 and PS/2, produced by IBM, are other
versions of the same basic memory deslgn Sometimes these machines are also referred to as ISA
(industry standard architecture) or EISA (extended ISA) machines. The PS/2 is referred to as
a micro-channel® architecture system or an ISA system, depending on the model number. Re-
cently, a new bus, the PCI (peripheral control interconnect) bus, is being used in almost all
Pentium- and Pentium Pro-processor-based systems. Extended memory contains up to 15M
bytes in the 80286- and 80386SX-based computer and up to 4,095M bytes in the 80386DX-,
80486-, and Pentium-based computer in addition to the first 1M byte of real memory. The Pen-
tium Pro processor-based computer system can have up to 1M less than 4G or 64G of extended
memory. The ISA machine contains an 8-bit peripheral bus used to irterface 8-bit devices to the

SPC is a trademark of IBM Corporation for the personal computer.

"XT is a trademark of IBM Corporation for the extended technology personal computer.

8AT is a trademark of IBM Corporation used to designale an advanced class computer system.
“Micro-channel is a registered trademark of IBM Corporation.

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 13

FIGURE 1-3 The memory]
map of the personal computer

Extended memory

15M bytes in the 80286 or 80386SX

= 31M bytes in the 80386SL/SLC

/-J 63M bytes in the 80386EX

4,095M bytes in the 80386DX, 80486, and Pentium

/_\/\5\—/\/ 64G bytes in the Pentium Pro

System area
384K bytes

— 1M bytes of real (conventional) memory

TPA
640K bytes

computer in the 8088/8088-based PC or XT computer system. The AT class machine, also called
an ISA machine, uses a 16-bit peripheral bus for interface and may contain an 80286 or above
microprocessor. The EISA bus is a 32-bit peripheral interface bus found in a few older
80386DX- and 80486-based systems. Note that each of these buses is compatible with the earlier
versions. That is, an 8-bit interface card functions in the 16-bit ISA or 32-bit EISA bus standards;
likewise, a 16-bit interface card functions in the 16-bit ISA or 32-bit EISA standard. Another bus
type found in many 80486-based personal computers is called the VESA'? local bus or VL bus.
The local bus interfaces disk and video to the microprocessor at the local bus level. This allows
32-bit interfaces to function at the same clocking speed as the microprocessor. A recent modifi-
cation to the VESA local bus supports the 64-bit data bus of the Pentium microprocessor and
competes directly with the PCI bus, although it has generated little if any interest. The ISA and
EISA standards function at only 8 MHz, which reduces the performance of disk and video inter-
faces using these standards. The PCI bus is either a 32- or 64-bit bus that is specifically designed
to function with the Pentium and Pentium Pro microprocessors at a bus speed of 60 or 66 MHz.

The TPA. The transient program area (TPA) holds the operating system and other programs that
control the computer system. The TPA also stores any currently active or inactive application
programs. The length of the TPA is 640K bytes. As mentioned, this area of memory holds the
operating system, which requires a portion of the TPA. In practice, the amount of memory re-
maining for application software is about 628K bytes if MSDOS!! version 6.X is used as an op-
erating system. Earlier versions of MSDOS required more of the TPA and often left only 530K
bytes or less for application programs. Another operating system found in some personal com-
puters is PCDOS!? Both PCDOS and MSDOS are compatible, so either function in the same
manner with application programs. Windows and OS/2!? are other operating systems that are

I"VESA is the Video Electronic Standards Association.

'"MSDOS (Microsoft Disk Operating System) is a registered trademark of Microsoft Corporation.
12PCODS (Personal Computer Disk Operating System) is a registered trademark of IBM Corporation.
130S/2 (Operating System version 2) is a registered trademark of IBM Corporation.

14

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FIGURE 1-4 The memory 9FFFF
map of the TPA in a personal OFFFO MSDOS program
computer. (Note that this map

will vary between systems.)

Free TPA

\/—/\
—_/_/\

08E30
COMMAND.COM
08490
Device drivers
such as MOUSE.SYS
02530
MSDOS program
01160
10.SYS program
00700 prog
DOS communications area
00500
BIOS communications area
00400
Interrupt vectors
00000

compatible with DOS and also allow DOS programs to execute. The DOS (disk operating
system) controls the way that the disk memory is organized and controlled as well as the func-
tion and control of the some of the I/O devices connected to the system. Figure 1-4 shows the or-
ganization of the TPA in a computer system.

The memory map shows how the many areas of the TPA are used for system programs,
data, and drivers. It also shows a large area of memory available for application programs. To the
left of each area is a hexadecimal number that represents the memory addresses that begin and
end each data area. Hexadecimal memory addresses or memory locations are used to number
each byte of the memory system. (A hexadecimal number is a number represented in radix 16
or base 16 with each digit representing a value from 0-9 and A-F. We often end a hexadecimal
number with an H to indicate that it is a hexadecimal value. For example, 1234H is 1234 hexa-
decimal. We also represent hexadecimal data as 0x1234 for a 1234 hexadecimal.)

The Interrupt vectors access various features of the DOS, BIOS (basic I/O system), and
applications. The BIOS is a collection of programs stored in either a read-only (ROM) or flash
memory that operate many of the I/O devices connected to your computer system. Note that a
flash memory is an EEPROM (electrically erasable read-only memory) that is erased in the

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 15

system electrically, while the ROM is a device that must be programmed in a special machine
called an EPROM programmer for an EPROM (erasable/programmable read-only memory)
or at the factory when a ROM is fabricated. These programs are stored in the system area defined
later in this section of the chapter.

The BIOS and DOS communications areas contain transient data used by programs to ac-
cess 1/0 devices and the internal features of the computer system. (Refer to Appendix A for a
complete listing if the BIOS and DOS communications areas.) These are stored in the TPA so
they can be chanved as the system operates. Note that the TPA contains read/write memory
(called RAM or random access memory) so it can change as a program executes.

The I0.SYS is a program that loads into the TPA from the disk whenever an MSDOS or
PCDOS system is started. The I0.SYS contains programs that allow DOS to use the keyboard,
video display, printer, and other /O devices often found in the computer system. The I0.SYS
program links DOS to the programs stored on the BIOS ROM.

The MSDOS (PCDOS) program occupies two areas of memory. One area is 16 bytes in
length and is located at the top of the TPA; the other is much larger and is located near the
bottom of the TPA. The MSDOS program controls the operation of the computer system. The
size of the MSDOS area depends on the version of MSDOS installed in the computer memory
and how the MSDOS program is installed. If DOS is installed in high memory with the
HIMEM.SYS driver, most of the TPA is free to hold application programs. Note that high
memory is described later in this text and only applies to 80286 or newer microprocessors.

The size of the driver area and number of drivers change from one computer to another. Dri-
vers are programs that control installable I/O devices such as a mouse, disk cache, hand scanner, and
CD-ROM memory (Compact Disc Read- Only Memory), as well as programs. Drivers are nor-
mally files that have an extension of .SYS, such as MOUSE.SYS, in DOS version 3.2 and later, the
files have an extension of .EXE, such as EMM386.EXE. Because few computer systems are iden-
tical, the driver area varies in size and contains different numbers and types of drivers. Note that
even though these files are not used by Windows, they are still used to execute DOS application,
even with Windows 95. Windows uses a file called SYSTEM.INI to load drivers used by Windows.

The COMMAND.COM program—command processor—controls the operation of the com-
puter from the keyboard. The COMMAND.COM program processes the DOS commands as they
are typed from the keyboard. For example, if DIR is typed, the COMMAND.COM program dis-
plays a directory of the disk files in the current disk directory. If the COMMAND.COM program is
erased, the computer cannot be used from the keyboard. Never erase COMMAND.COM, I0.SYS,
or MSDOS.SYS programs to make room for other software or your computer will not function.
Note that these programs can be reloaded to the disk if erased with the SYS.COM program located
in the DOS dlrectory

The free TPA area holds application programs as they are executed. These application pro-
grams include word processors, spreadsheet programs, CAD programs, and so forth. The TPA
also holds TSR (terminate and stay resident) programs that remain in memory in an inactive state
until activated by a hot-key sequence or other event such ¢ as an interrupt. A calculator program is
an example of a TSR program that activates whenever an ALT-C key (hot-key) is typed. A hot-
key is a combination of keys on the keyboard that activate a TSR program. A TSR program is
often also called a pop-up program because, when activated, it appears to pop up inside another
program. If Windows is installed and in use, it also uses a portion of the TPA to store informa-
tion that allows it to access extended memory.

The System Area. The system area, although smaller than the TPA, is just as important. The
system area contains programs on either a read-only memory (ROM) or flash memory and also
areas of read/write (RAM) memory for data storage. Figure 1-5 shows the system area of a typ-
ical computer system. As with the map of the TPA, this map also includes the hexadecimal
memory addresses of the various areas.

16

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FIGURE 1-5 The system FFFFF
area of a typical personal BIOS system ROM
computer
F0000
BASIC language ROM
(only on early PCs)
E0000
Free area
Hard disk controller ROM
C8000 LAN controller ROM
Video BIOS ROM
C0000
Video RAM
(text area)
1000
Video RAM
(graphics area)
A0000

The first area of the system space contains video display RAM and video control programs
on ROM or flash memory. This area generally starts at location AOQOOH and extends to location
C7FFFH. The size and amount of memory used depends on the type of video display adapter at-
tached to the system. Display adapters that are often attached to a computer include the earlier
CGA (color graphics adapter) and EGA (enhanced graphics adapter) or one of the many
newer forms of VGA (variable graphics array). Generally, the video RAM located at
AO000H-AFFFFH stores graphical or bit-mapped data and the memory at BOOOOH-BFFFFH
stores text data. The video BIOS, located on a ROM or flash memory, is found at locations
CO000H—C7FFFH and contains programs that control the video display.

If a hard disk memory is attached to the computer, the interface card might contain a ROM.
The ROM, often found with older MFM or RLL hard disk drives, holds low-level format soft-
ware at location C8000H. The size, location, and presence of the ROM depends on the type of
hard disk adapter attached to the computer.

° The area at locations C8000H-DFFEFH is often open or free. This area is used for the ex-

A1 ISLEAZA S

panded memory systern (EMS) in a PC or XT system or the upper memory system in an AT
system. Its use depends on the system and its configuration. The expanded memory system al-
lows a 64K byte page frame of memory to be used by application programs. This 64K byte page
frame (usually location DOOOOH-DFFFFH) is used to expand the memory system by switching
in pages of memory from the EMS into this range of memory addresses. Note that the informa-
tion is addressed in the page frame as 16K byte-sized pages of data that are swapped with pages
from the EMS. Figure 1-6 shows the expanded memory system. Most application programs that

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 17

FIGURE 1-6 The expanded Expanded memory
memory system showing a system (EMS)
page frame
64K-byte
page 255
SJ

// 64K-byte
page 2
System area .-
e 64K-byte
DFFFF page 1
64K-byte B
page frame LT
Pt 64K-byte
Doooo —/__1 : page 0

state they are LIM 4.0 driver compatible can use expanded memory. The LIM 4.0 memory man-
agement driver is the result of Lotus, Intel, and Microsoft standardizing access to expanded
memory systems. Note that expanded memory is slow because the change to a new 16K byte
memory page requires action by the driver. Also note that expanded memory was designed to ex-
pand the memory system of the early 8086/8088- based computer systems. In most cases, except
for some DOS-based games that use the sound card, expanded memory should be avoided in the
80386 through the Pentium Pro-based systems.

Memory locations EOOOOH-EFFFFH contain the cassette BASIC language on ROM
found in early IBM personal computer systems. This area is often open or free in newer com-
puter systems. In newer systems, we often back-fill this area with extra RAM called upper
memory or upper memory blocks. Each upper memory block is 4K bytes in length.

Finally, the system BIOS ROM is located in the top 64K bytes of the system area
(FOOOOH-FFFFFH). This ROM controls the operation of the basic I/O devices connected to the
computer system. It does not control the operation of the video system, which has its own BIOS
ROM at location COO00H. The first part of the BIOS (FOOOOH-F7FFFH) contains programs that
set up the computer; the second part contains procedures that control the basic I/O system. Once
the system is set up, upper memory blocks at locations FOOOOH-F7FFFH are available, if
EMM386.EXE is installed. Also available for upper memory blocks are locations BOOOOH—-
B7FFFH, provided black and white video is not needed in the CGA mode.

/0 Space. 'The /O (input/output) space in a computer system extends from I/O port 0000H to
port FFFFH. (An I/O port address is similar to a memory address except that instead of ad-
dressing memory, it addresses an I/O device.) The I/O devices allow the microprocessor to com-
municate between itself and the outside world. The I/O space allows the computer to access up to
64K different 8-bit I/O devices. A great number of these locations are available for expansion in
most computer systems. Figure 1-7 shows the I/O map found in many personal computer systems.

The I/O area contains two major sections. The area below I/O location 0500H is consid-
ered reserved for system devices, with many depicted in Figure 1-7. The remaining area is avail-
able /O space for expansion that extends from /O port 0500H-FFFFH. Note that some main
boards in the computer system can also use other addresses above 0500H. Generally, I/O ad-
dresses between 0000H-00FFH address components on the main board of the computer, while
addresses between 0100H-0500H address devices located on plug-in cards.

18

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FIGURE 1-7 The I/O map FFFF
of a personal computer
showing some of the many /O expansion area

areas of I/0 devices

03F8 comi

03F0 Floppy disk controller
0300 CGA adapter
0378 LPT1

0320 Hard disk controller
02FB COM2

0060 8255 (PIA)
0040 Timer (8253)
0020 Interrupt controller
0000 DMA controller

Various I/O devices that control the operation of the system are usually not directly ad-
dressed. Instead, the BIOS ROM addresses these basic devices, which can vary slightly in loca-
tion and function from one computer to the next. Access to most I/O devices should always be
made through DOS or BIOS function calls to maintain compatibility from one computer system
to another. The map shown in Figure 1-7 is provided as a guide to illustrate the I/O space in the
system.

The DOS Operating SEEE

The operating system is the program that operates the computer. This text assumes that the oper-
ating system is either MSDOS or PCDOS, which are by far the most common operating systems
found in over 160 million personal computers (85 percent, according to a recent PC magazine'*
article). The Windows operating system is available to 65 million personal computers, according
to the same article. Windows 95 will undoubtedly replace Windows as an important operating
system. The operating system is stored on a disk that is either placed in one of the floppy disk
drives or found on a hard disk drive that is either resident to the computer or to a local area net-
work (LAN). Some dedicated systems store the DOS on a ROM. An example is the Tandy Cor-
poration personal computer. Each time that the computer is powered up or reset, the operating

stalled in the 1 memory by the boot, it controls the operation of the computer system, its /O de-
vices, and application programs. In addition to the DOS operating system, other operating
sys ems are sometimes used to control or operate the computer. As listed in a recent article, these
other operating systems include Windows from Microsoft, with over 65 million users; OS/2 from
IBM, with over 4 million users; UNIX from AT&T, with over 2.0 million users; and many others.

'4PC Magazinc is a Ziff-Davis publication.

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 19

The first task of the DOS operating system, after loading into memory, is to use a file
called the CONFIG.SYS file, which should not be erased. This file specifics various drivers that
load into the memory, setting up or configuring the machine for operation. Example 1-1 lists an
example CONFIG.SYS file for DOS version 6.X. Note that the statements in this file vary from
machine to machine, and the one illustrated is just an example.

EXAMPLE 1-1

REM DOS VERSION 6.22 CONFIG.SYS FILE
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS 1=c800-efff
DOS=UMB

FILES=30

BUFFERS=10

SHELL=C:\DOS\COMMAND.COM C:\DOS\ /E:2048 /P
DOS=HIGH

DEVICEHIGH C:\LASERLIB\SONY_CDU.SYS
DEVICEHIGH C:\DOS\SETVER.EXE

DEVICEHIGH C:\MOUSE1\MOUSE.SYS

LASTDRIVE=F

The first statement (REM) is a remark that merely identifies this file and is optional. The
second line informs the system to load the HIMEM.SYS driver that allows upper memory blocks
to be used and also provides high memory to the system. (A driver is a program that controls an
I/O device or some other function and is loaded before other programs by the CONFIG.SYS
file.) High memory is a section of memory that exists beginning at location 100000H and ends
at 10FEFFH, just above the first 1M byte of memory, to be used for programs in the 80286~
through the Pentium-based system. This driver allows a DOS-based system access to 1M plus

64K bytes of memory. Th1s extra 64K byte sectlon of hlgh memory holds most of the MSDOS

T'he- first four statements in this CONFIG.SYS file set up the number of files, buffers, stacks,
and file control blocks required to execute various programs. These settings should be adequate for
just about any program loaded into memory using DOS. In general, if a program requires more
buffers, and so forth, the documentation indicates that the CONFIG.SYS file must be changed to
reflect an increased need. Many modern programs automatically adjust the CONFIG.SYS file
when installed by changing these parameters or by adding additional statements.

In order to enable the upper memory blocks, available only in an 80386-, 80486-, or Pen-
tium-based system, the EMM386.EXE (extended memory manager) program is loaded into
memory. The extended memory manager is a driver that emulates expanded memory in extended
memory and also the extended memory system. This program back-fills free areas of memory
within the system area so that programs can be loaded into this area and accessed directly by
DOS applications. The I=c800-efff switch tells EMM386.EXE to use memory area C8000H—
EFFFFH for upper memory or upper memory blocks (UMB). Drivers and programs are loaded
into upper memory, freeing even more area in the TPA for application programs. Before using
the I=c800-efff switch, make sure that your computer does not contain any system ROM/RAM
in this area of the memory. Note that NOEMS tells EMM386.EXE to exclude expanded
memory Expanded memory can also be installed by replacing NOEMS with a number that indi-
cates how much extended memory to allocate to LIM 4.0 expanded memory system (EMS).
Today, most systems should not use expanded memory. If expanded memory is required, the
NOEMS is replaced with RAM 1024 to enable 1,024 bytes of expanded memory. The
FRAME=D000 statement places the page frame for expanded memory at location DOOOOH-
DFFFFH if expanded memory is enabled. If DOS version 6.0 or higher is in use, the NOEMS
statement still provides access to EMS on an as-needed basis through a driver called VCPI (vir-
tual control program interface). The VCPI program dynamically allocates EMS if a program
requires it and then releases it after the program completes execution.

20

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

The next two commands inform the system to provide upper memory blocks (DOS=UMB)
and also dictate how many files can be opened at the same time (FILES=30). The BUFFERS
statement informs DOS to allocate 10 buffers to open for file transfer areas.

The SHELL command specifies the command processor used with DOS. In this example,
the COMMAND.COM file is the command processor (also selected by default) using the E:2048
/P switches. The E:2048 switch sets the environment size to 2,048 bytes. The environment space
stores shared keywords and other information used by all applications in the system. An example
is the statement SET TEMP=C:\TEMP, which informs applications that the temporary directory
is on the C disk drive in a directory called TEMP. The SET command can be used to assign key-
words at the DOS command prompt or in the AUTOEXEC.BAT file. The /P switch tells the com-
mand processor to make COMMAND.COM permanent. If COMMAND.COM is not permanent,
it must be loaded into memory from the disk each time that DOS returns to the command prompt.
Although this may free a small amount of memory, the constant access to the disk for the COM-
MAND.COM program increases wear and tear on the disk drive and also lengthens the time re-
quired to return to the DOS prompt. This is followed by the command DOS=HIGH, which
informs the system to load DOS into the high memory area created by the HIMEM.SYS driver.

The next three lines use the DEVICEHIGH command, which loads drivers and programs
into the upper memory blocks allocated by the EMM386.EXE driver. In the CONFIG.SYS file
illustrated, three drivers are loaded into upper memory blocks beginning at location C8000H.
The first is a program that operates a Sony CD-ROM drive, the second loads a program called
SETVER, and the third loads the MOUSE driver.

The last statement in the CONFIG.SYS file illustrated shows the LASTDRIVE statement.
This tells DOS which is the last disk drive connected to your computer system. By using the
LASTDRIVE statement, more memory can be freed for use in the TPA. Each drive requires a
buffer area; if you use the actual last drive with this statement, extra memory is made available.
Other drivers may also be loaded into memory using the CONFIG.SYS file, such as a
PRINT.SYS driver, ANSL.SYS driver, or any other program that functions as a driver. Driver
programs normally contain the DOS extension .SYS used to indicate a system file. Be very
careful when changing the CONFIG.SYS file, because an error locks up the computer system
(except for DOS 6.0 and above, which can exit this type of system lockup). Once the computer
is locked up by a CONFIG.SYS error, the only way to recover is to boot off a DOS floppy disk
that contains the operating system with a functioning CONFIG.SYS file.

Once the operating system completes its configuration, as dictated by CONFIG.SYS, the
AUTOEXEC.BAT (automatic execution batch) file is executed by the computer. If none exists,
the computer asks for the time and date. Example 1-2 shows a typical AUTOEXEC.BAT file. This
is only an example; variations often occur from system to system. The AUTOEXEC.BAT file con-
tains commands that execute when power is first applied to the computer. These are the same com-
mands that could be typed from the keyboard, but the AUTOEXEC.BAT saves us from doing so
each time the computer is powered up.

EXAMPLE 1-2

PATH C:\DOS;C:\;C:\MASM\BIN;C:\MASM\BINB\;C:\UTILITY
SET BLASTER=A220 I7 D1 T3

SET INCLUDE=C:\MASM\INCLUDE\

SET HELPFILES=C:\MASM\HELP*.HLP

SET INIT=C:\MASM\ HIT\

SET ASMEX=C:\MASM\SAMPLES\

SET TMP=C:\MASM\TMP

SET SOUND=C:\SB

LOADHIGH C:\LASERLIB\MSCDVFN.EXE /D:SONY_001 /L:F /M:10
LOADHIGH C:\LASERLIB\LLTSR.EXE ALT-Q

LOADHIGH C:\DOS\FASTOPEN C:=256

LOADHIGH C:\DOS\DOSKEY /BUFSIZE=1024

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 21

LOADHIGH C:\LASERLIB\PRINTF.COM
DOSKEY GO=C:\WINDOWS\WIN /3
GO

The PATH statement specifies the search paths whenever a program name is typed at the
command line. The order of the path search is the same as the order of the paths in the path state-
ment. For example, if PROG is typed at the command line, the machine first searches C:\DOS,
then the root directory C:\, then C: \MASM\BIN and so forth until the program named PROG is
found. If it isn’t found, the command interpreter (COMMAND. COM) informs the user that the
program is not found.

The SET statement, as introduced earlier, sets a variable name to a path. This allows names
to be associated with paths for batch programs. It’s also used to set command strings (environ-
ments) for various programs. The first SET command sets the environment for the sound blaster
card. The second SET command sets INCLUDE to the path C:\MASMMINCLUDE\. Note that
the SET statements are stored in the DOS environment space that was reserved in the
CONFIG.SYS file using the SHELL statement. If the environment becomes too large, you must
‘change the SHELL statement to. allow more space.

LOADHIGH or LH places programs into upper memory blocks defined by the
EMM386.EXE program. LOADHIGH is used at any DOS command prompt for loading a pro-
gram into the high (upper) memory area as long as the computer is an 80386 or above. The
second-last command in this AUTOEXEC.BAT file uses the DOSKEY program to define a
macro for the word GO. Here the word GO is assigned the character string CAWINDOWS\WIN
/3. The COMMAND.COM program will then interpret the word GO so that the Windows pro-
gram executes anytime that the word GO is typed on the keyboard at the DOS prompt. This last
command then runs Windows. 4

The Microprocessor

At the heart of the microprocessor-based computer system is the microprocessor integrated cir-
cuit. The microprocessor is the controlling element ina computer system and is sometimes re-

between an I/O device or memory and the mlcroprocessor and control _the I/O and memory
system. Memory and /O are controlled through instructions that are stored in the memory and
executed by the microprocessor.

The microprocessor performs three main tasks for the computer system: (1) data transfer
between itself and the memory or I/O systems, (2) simple arithmetic and logic operations, and
(3) program flow via simple decisions. Albeit these are simple tasks, but through them, the mi-
croprocessor performs virtually any series of operations or tasks.

The power of the microprocessor is in its ability to execute millions of instructions per
second from a program or software (group of instructions) stored in the memory system. This
stored program concept has made the microprocessor and computer system a very powerful de-
vice. Recall that Babbage also wanted to use the stored program concept in his Analytical Engine.

Table 1-3 shows the arithmetic and logic operations executed by the Intel family of mi-
croprocessors. These operations are very basic, but through them, very complex problems are
solved. Data are operated upon from the memory system or internal registers. Data widths are
variable and include a byte (8-bits), word (16-bits), and doubleword (32-bits). Note that only
the 80386 through the Pentium directly manipulate 8-, 16-, and 32-bit numbers. The earlier
8086-80286 directly manipulate 8- and 16-bit numbers, but not 32-bit numbers. The 80486DX
and Pentium also contain a numeric coprocessor that allows them to perform complex calcula-
tions using floating-point arithmetic. The numeric coprocessor was an additional component in
the 8086- through the 80386-based personal computer.

22

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

TABLE 1-3 Simple

arithmetic and logic Operation Comment
operations —
Addition
Subtraction
Multiplication
Division
AND Logical multiplication
OR Logical addition
NOT Logical inversion
NEG Arithmetic inversion
Shift
Rotate

Another feature that makes the microprocessor powerful is its ability to make simple deci-
sions. Decisions are based upon numerical facts. For example, a microprocessor can decide if a
number is zero, if it is positive, and so forth. These simple decisions allow the microprocessor to
modify the program flow so programs appear to think through these simple decisions. Table 14
lists the decision-making abilities of the Intel family of microprocessors.

Buses. A bus is a common group of wires that interconnect components in a computer system.
The buses that interconnect the sections of a computer system transfer address, data, and control in-
formation between the microprocessor and its memory and I/O systems. In the microprocessor-
based computer system, three buses exist for this transfer of information: address, data, and control.
Figure 1-8 shows how these buses interconnect various system components such as the micro-
processor, read/write memory (RAM), read-only memory (ROM), and a few I/O devices.

The address bus requests a memory location from the memory or an I/O location from the /O
devices. If I/O is addressed, the address bus contains a 16-bit I/O address from 0000H-FFFFH. The
16-bit I/O address or port number selects one of 64K different I/O devices. If memory is addressed,
the address bus contains a memory address. The memory address varies in width with the different
versions of the microprocessor. The 8086 and 8088 address 1M byte of memory using a 20-bit ad-
dress that selects locations 00000H-FFFFFH. The 80286 and 80386SX address 16M bytes of
memory using a 24-bit address that selects locations 000000H-FFFFFFH. The 80386SL, 80386SLC,
and 80386EX address 32M bytes of memory using a 25-bit address that selects locations
0000000H-1FFFFFFH. The 80386DX, 80486SX, and 80486DX address 4G bytes of memory
using a 32-bit address that selects locations 00000000H-FFFFFFFFH. The Pentium also addresses
4G bytes of memory, but it uses a 64-bit data bus to access up to 8 bytes of memory at a time. The

" Pentium Pro processor has a 64-bit data bus and a 32-bit address bus that addresses 4G bytes of

TABLE 1-4 Decisions

found in 8086-80486 and Decision Comment
Pentium/Pentium Pro
miCroprocessors Zero Test a number for zero or not-zero
Sign Test a number for positive or negative
Carry Test for a carry after addition or a borrow after
subtraction
Parity Test a number for an even or an odd number of
ones
Overflow Test for an overflow that indicates an invalid

signed result after addition or subtraction

1-2 THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM 23

up < Data hus

Address bus J_>
[| | | | 1 >

FWTC 1 /
MRDC
iowe
o8C L, P L
\ Yy Y
Read-only Read/write
memory memory Keyboard Printer
ROM RAM

FIGURE 1-8 The block diagram of a computer system showing the address, data, and control
bus structure

memory from location 00000000H-FFFFFFFFH or a 36-bit address bus that addresses 64G bytes of
memory at locations 000000000H-FFFFFFFFFH depending on its configuration. Refer to Table 1-5
for a complete listing of bus and memory sizes on the Intel family of microprocessors.

The data bus transfers information between the microprocessor and its memory and I/O ad-
dress space. Data transfers vary in size from 8-bits wide to 64-bits wide in various members of the
Intel microprocessor family. The 8088 contains an 8-bit data bus that transfers 8-bits of data at a
time. The 8086, 80286, 80386SL, 80386SX, and 80386EX transfer 16-bits of data through their
data buses; the 80386DX, 80486SX, and 80486DX transfer 32-bits of data; and finally, the Pen-
tium and Pentium Pro transfer 64-bits of data. The advantage of a wider data bus is speed in ap-
plications that use wide data. For example, if a 32-bit number is stored in memory, it takes the
8088 microprocessor four transfer operations to complete because its data bus is only, 8-bits wide.
The 80486 accomplishes the same task with one transfer because its data bus is 32-bits wide.
Figure 1-9 shows the memory widths and sizes of the 8086-80486 and Pentium microprocessors.
Notice how the memory sizes and organizations differ between various members of the Intel

TABLE 1-5 The Intel family of microprocessor bus and memory sizes

Microprocessor Data Bus Width Address Bus Width Memory Size
8086 16 20 M
8088 8 20 1M
80186 16 20 1M
80188 8 20 i
80286 16 24 16M
80386SX 16 24 16M
80386DX 32 32 4G
80386EX 16 26 64M
80486 32 32 4G
Pentium 64 32 4G
Pentium OverDrive 32 32 4G
Pentium Pro 64 32 ' 4G

Pentium Pro 64 36 64G

24

FFFFF
FFFFE
FFFFD

00002
00001
00000

FFFFFFFF
FFFFFFFB
FFFFFFF7

00000008
00000007
00000003

CHAPTER 1

<¢—— 8 bits ——>

INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FFFFFF
FFFFFD
FFFFFB

High bank
(Odd bank)

[~<¢—— 8 bits —>

FFFFFE
FFFFFC
FFFFFA

Low bank
(Even bank)

[——— 8 bits ——>

[<¢—— 8 bits ——

1M byte 8M bytes 8M bytes
"""""""" e ooooos| T
000003 000002
000001 000000
D7-DO D15-D8 D7-Do
8088 microprocessor . .
8086 microprocessor (memory is only 1M bytes)
80286 microprocessor .
80386SX microprocessor
80386SL microprocessor (memory is 32M bytes)
80386SLC microprocessor (memory is 32M bytes)
Bank 3 Bank 2 Bank 1 Bank 0
FFFFFFFE FFFFFFFD FFFFFFFC
FFFFFFFA FFFFFFF9 FFFFFFF8
FFFFFFF6 FFFFFFF5 FFFFFFF4

<— 8 bits — —— 8 bits —— <¢—— 8 bits ——>

1G byte 1G byte 1G byte 1G byte
""""""" 0000000Af 77T TTTTTTTY oooooooe| T 7] eooogoos| T T
00000006 00000005 00000004
00000002 00000001 00000000
D31-D24 D23-D16 D15-D8 D7-DO

80386DX microprocessor
80486SX microprocessor
80486DX microprocessor

FIGURE 1-9 The physical memory systems of the 8086 through the Prentium Pro microprocessors

microprocessor family. In all family members, the memory is numbered by byte. Notice that the
Pentium and Pentium Pro processors both contain a 64-bit wide data bus.

The control bus contains lines that select the memory or I/O and cause them to perform a read
or a write operation. In most computer systems, there are four control bus connections: MRDC
(memory read control), MWTC (memory write control), TORC (I/O read control), and IOWC
(I/O write control). Note that the over-bar indicates that the control sygnal is active-low—that is. it is
active when a logic zero appears on the control line. For example, if IOWC = 0, the microprocessor is
writing data from the data bus to an I/O device whose address appears on the address bus.

The microprocessor reads the contents of a memory location by sending the memory an ad-
dress through the address bus. Next, it sends the memory read control <ignal (MRDC) to cause
memory to read data. Finally the data read from the memory are passed to the microprocessor
through the data bus. Whenever a memory write, I/O write, or I/O read occurs, the same scquence

1-3 NUMBER SYSTEMS

25

Bank 7 Bank 6 Bank 5 Bank 4
FFFFFFFF FFFFFFFE FFFFFFFD FFFFFFFC
FFFFFFF7 FFFFFFF6 FFFFFFFS FFFFFFF4
FFFFFFEF| FFEFFFEE| . FrrFFFED| FFEFFFEC)
<—— 8 bits ——> < 8 bits > l«—— 8 bits ——> b« 8 bits ——>]
512M bytes 512M bytes 512M bytes 512M bytes
oooooot7| T eer] oooooots| T 00000014) T
0000000F 0000000E 0000000D 0000000C
00000007 00000006 00000005 00000004
D63-DS6 D55-D48 D47-D40 D39-D32
Bank 3 Bank 2 Bank 1 Bank 0
FFFFFFFB FEFFFFFA FFFFFFF9 FFFFFFF8
FFFFFFE3 FFFFFFF2 FFFFFFF1 FFFFFFFO
FFEFRFEB FFEFFFEA| . FFFFFFEQ] . FFFFFFES|
l«—— 8 bits ——>] l«—— 8 bits ——>] <« 8 bits ——>] l«—— 8 bits ——>
512M bytes 512M bytes 512M bytes 1G byte
oooooota| T T ooogoot2| T ooo00011| T ooooootof T
00000008 0000000A 00000009 00000008
00000003 00000002 00000001 00000000
D31-D24 D23-D16 D15-D8 D7-D0

Pentium/Pentium Pro microprocessor

FIGURE 1-9 (continued)

ensues except that different control signals are issued and the data flow out of the microprocessor
through its data bus for a write operation.

NUMBER SYSTEMS

The use of the microprocessor requires a working knowledge of binary, decimal, and hexadec-
imal number systems. This section of the text provides a background for those unfamiliar with
number systems. Conversions between decimal and binary and decimal and hexadecimal, as
well as between binary and hexadecimal, are described.

Digits
Before numbers are converted from one number base to another, the digits of a number system
must be understood. Early in our education, we learned that a decimal or base 10 number was

constructed with 10 digits: O through 9. The first digit in any numbering system is always a zero.
For example, a base 8 (octal) number contains 8 digits: O through 7; a base 2 (binary) number

26

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

contains 2 digits: 0 and 1. If the base of a number exceeds 10, the additional digits use the letters
of the alphabet beginning with an A. For example, a base 12 number contains 12 digits: 0
through 9 followed by A for 10 and B for 11. Note that a base 10 number does not contain a 10
digit just as a base 8 number does not contain an & digit. The most common number systems used
with computers are decimal, binary, octal, and hexadecimal (base 16). Each system is described
and used in this section of the chapter.

Positional Notation

Once the digits of a number system are understood, larger numbers are constructed using posi-
tional notation. In grade school, one learned that the position to the left of the units position was
the tens position, the position to the left of the tens position was the hundreds position, and so
forth. What probably was not learned was that the units position has a weight of 10° or 1; the tens
position has a weight of 10! or 10; and the hundreds position has a weight of 102 or 100. The
powers of the positions are critical in understanding numbers in other numbering systems. The
position to the left of the radix (number base) point, called a decimal point only in the decimal
system, is always the units position in any number system. For example, the position to the left
of the binary point is 2° or 1; while the position to the left of the octal point is 8 or 1. In any case,
any number raised to its zero power is always 1 or the units position.

The position to the left of the units position is always the number base raised to the first
power; in a decimal system this is 10! or 10. In a binary system it is 2! or 2, and in an octal
system it is 8! or 8. Therefore, an 11 decimal has a different value than an 11 binary. The 11 dec-
imal is composed of 1 ten plus 1 unit and has a value of 11 units, while the 11 binary is composed
of 1 two plus 1 unit for a value of 3 units. The 11 octal has a value of 9 units.

In the decimal system, positions to the right of the decimal point have negative powers.
The first digit to the right of the decimal point has a value of 10~! or 0.1. In the binary system, the
first digit to the right of the binary point has a value of 2-! or 0.5. In general, the principles that
apply to decimal numbers also apply to numbers in any other number system.

Example 1-3 shows a 110.101 in binary (often written as 110.101,). It also shows the
power and weight or value of each digit position. To convert a binary number to decimal, add the
weights of each digit to form its decimal equivalent. The 110.101, is equivalent to a 6.625 in
decimal (4 + 2 + 0.5 + 0.125). Notice that this is the sum of 22 (or 4) plus 2! (or 2), but 2° (or 1)
is not added because there are no digits under this position. The fraction part is composed of 2!
(0.5) plus 23 (or .125), but there is no digit under the 2-2 (or .25).

EXAMPLE 1-3

Power 27 21 20 21 2" 273

Weight 4 2 1 0.5 0.25 .125

Number 1 1 o . 1 0 1

Numeric Value 4 + 2 + 0 + 0.5 + 0 + 0.125 = 6.625

Suppose that the conversion technique is applied to a base 6 number such as 25.2. Ex-
ample 1-4 shows this number placed under the powers and weights of each position. In this ex-
ample, there is a 2 under 6!, which has a value of 12,,(2x6), and a 5 under 6° which has a value
of 5 (5 x 1). The whole number portion has a decimal value of 12 + 5 or 17. The number to the
right of the hex point is a 2 under 67! which has a value of .333 (2 x .167). The number 25.2,
therefore, has a decimal value of 17.333.

EXAMPLE 1-4

Power 6’ 60 6!
Weight 6 1 .167
Number 2 5. 2

Numeric Value 12 + 5 + 0.333 = 17.333

1-3 NUMBER SYSTEMS 27

Conversion to Decimal

The prior examples have shown that to convert from any number base to decimal, determine the
weights of each position of the number and then sum the weights to form the decimal equivalent.
Suppose that a 125.7; octal is converted to decimal. To accomplish this conversion, first write
down the weights of each position of the number. This appears in Example 1-5. The value of
125.7, is 85.875 decimal or 1 x 64 plus 2 x 8 plus 5 x 1 plus 7 x .125.

EXAMPLE 1-5

Power 8? gt go gt

Weight 64 8 1 .125

Number 1 2 3.7

Numeric Value 64 + 16 + 5 + .875 = 85.875

Notice that the weight of the position to the left of the units position is 8. This is 8 times 1.
Then notice that the weight of the next position is 64 or 8 times 8. If another position existed, it
would be 64 times 8 or 512. To find the weight of the next higher-order position, multiply the
weight of the current position by the number base (or 8 in this example). To calculate the weights
of position to the right of the radix point, divide by the number base. In the octal system, the po-
sition immediately to the right of the octal point is /s or .125. The next position is 125/ or
.015625, which can also be written as '/s4. Also note that the number in Example 1-5 can also be
written as the decimal number 857/s.

Example 1-6 shows the binary number 11011.01 11 written with the weights and powers
of each position. If these weights are summed, the value of the binary number converted to dec-
imal is 27.4375.

-

EXAMPLE 1-6

Power 24 23 22 21 20 21 2% 273 2t

Weight 16 8 4 2 1 0.5 0.25 .125 .0625

Number 1 1 0 1 1.0 1 1 1

Numeric Value 16 + 8 + 4 + 2 + 1 + 0 + .25 + .125 + .0625 = 27.4375

It is interesting to note that 2! is also '/2, 272 is !/4, and so forth. It is also interesting to note
that 2= is Y16 or 0.625. The fractional part of this number is "/16 or .4375 decimal. Notice that
0111 is a 7 in binary code for the numerator and the rightmost one is in the /16 position for the
denominator. Other examples are the binary fraction of .101 is 5/g and the binary fraction of
001101 is ¥/64.

Hexadecimal numbers are often used with computers. A 6A.CH (H for hexadecimal) is il-
lustrated with its weights in Example 1-7. The sum of its digits are 106.75 or 1063/4. The whole
number part is represented with 6 x 16 plus 10 (A) X 1. The fraction part is 12 (C) as a numerator
and 16 (167!) as the denominator, or '%/16, which is reduced to 3.

EXAMPLE 1-7

Power 161 16° 167t

Weight 16 1 .0625

Number 6 A c

Numeric Value 96 + 10 + .75 = 106.75

Conversion from Decimal

Conversions from decimal to other number systems are more difficult to accomplish than con-
version to decimal. To convert the whole number portion of a number to decimal, divide by the
radix. To convert the fractional portion, multiply by the radix.

28

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Whole Number Conversion from Decimal. To convert a decimal whole number to another num-
ber system, divide by the radix and save the remainders as significant digits of the result. An al-
gorithm for this conversion follows:

1. Divide the decimal number by the radix (number base).
2. Save the remainder (first remainder is the least significant digit.)
3. Repeat steps 1 and 2 until the quotient is zero.

For example, to convert a 10 decimal to binary, divide it by 2. The result is 5, with a re-
mainder of 0. The first remainder is the units position of the result, in this example a 0. Next di-
vide the 5 by 2. The result is 2 with a remainder of 1. The 1 is the value of the two’s (2!) position.
Continue the division until the quotient is a zero. Example 1-8 shows this conversion process.
The result is written as 1010, from the bottom to the top.

EXAMPLE 1-8

2) 10 remainder = 0
2) 5 remainder = 1
2) 2 remainder = 0
2) remainder = 1

ol

To convert a 10 decimal into base 8, divide by 8 as shown in Example 1-9. A 10 decimal
is a 12 octal.

EXAMPLE 1-9
8) 10 remainder = 2
8) 1 remainder = 1

0

Conversion from decimal to hexadecimal is accomplished by dividing by 16. The remain-
ders will range in value from 0 through 15. Any remainder of 10 though 15 is then converted to
the letters A through F for the hexadecimal number. Example 1-10 shows the decimal number
109 converted to a 6DH.

EXAMPLE 1-10

16) 109 remainder
16) 6 remainder

0

13 (D)

Converting from a Decimal Fraction. Conversion from a decimal fraction to another number
base is accomplished with multiplication by the radix. For example, to convert a decimal fraction
into binary, multiply by 2. After the multiplication, the whole number portion of the result is
saved as a significant digit of the result and the fractional remainder is again multiplied by the
radix. When the fraction remainder is zero, multiplication ends. Note that some numbers are
never-ending. That is, a zero is never a remainder. An algorithm for conversion from a decimal
fraction follows:

1. Multiply the decimal fraction by the radix (number base).

2. Save the whole number portion of the result (even if zero) as a digit. Note that the first result
is written immediately to the right of the radix point.

3. Repeat steps 1 and 2 using the fractional part of step 2 until the fractional part of step 2 is
zero.

Suppose that a .125 decimal is converted to binary. This is accomplished with multipli-
cations by 2 as illustrated in Example 1-11. Notice that the multiplication continues until the

1-3 NUMBER SYSTEMS 29

fractional remainder is zero. The whole number portions are written as the binary fraction
(0.001) in this example.

EXAMPLE 1-11

.125

® 2
0.25 digit is 0
.25

X 2

0.5 digit is 0

1.0 digit is 1. The result is written as 0.001 binary

This same technique is used to convert a decimal fraction into any number base. Example
1-12 shows the same decimal fraction of .125 from Example 1-11 converted to octal by multi-

plying by 8.

EXAMPLE 1-12

.125
x__ 8 -
1.0 digit is 1. The result is written as 0.1 octal

Conversion to a hexadecimal fraction appears in Example 1-13. Here a decimal .046875 is
converted to hexadecimal by multiplying by 16. Note that a .046875 is a 0.0CH.

EXAMPLE 1-13

.046875
X 16
0.75 digit is 0
.75
x_ 16

12.0 digit is 12 (C). The result is written as 0.0C hexadecimal

Binary-Coded Hexadecimal

Binary-coded hexadecimal (BCH) is used to represent hexadecimal data in binary code. A bi-
nary-coded hexadecimal number is a hexadecimal number written so that each digit is repre-
sented by a 4-bit binary number. The values for the BCH digits appear in Table 1-6.

Hexadecimal numbers are represented in BCH code by converting each digit to BCH code
with a space between each coded digit. Example 1-14 shows a 2AC converted to BCH code.
Note that each BCH digit is separated by a space.

EXAMPLE 1-14
2AC = 0010 1010 1100

The purpose of BCH code is to allow a binary version of a hexadecimal number to be
written in a form that can easily be converted between BCH and hexadecimal. Example 1-15
shows a BCH coded number converted back to hexadecimal code.

EXAMPLE 1-15
1000 0011 1101 . 1110 = 83D.E

30

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

TABLE 1-6 Binary-coded] -
hexadecimal (BCH) code Hexadecimal Digit BCH Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMUOTDPOONOADWN O

Complements

At times, data are stored in complement form to represent negative numbers. There are two sys-
tems that are used to represent negative data: radix and radix -1 complements. The earliest
system was the radix —1 complement, where each digit of the number is subtracted from the
radix to generate the radix —1 complement to represent a negative number.

Example 1-16 shows how the 8-bit binary number 01001100 is one’s (radix —1) comple-
mented to represent it as a negative value. Notice that each digit of the number is subtracted from
the radix to generate the radix —1 (one’s) complement. In this example, the negative of 01001100
is 10110011. The same technique can be applied to any number system as illustrated in Example
1-17, where the fifteen’s (radix —1) complement of a 5CD hexadecimal is computed by sub-
tracting each digit from a fifteen. '

EXAMPLE 1-16

EXAMPLE 1-17

15 15 15
-5 €D
A 3 2

Today, the radix —1 complement is not used by itself, but it is used as a step for finding the
radix complement. The radix complement is the way that negative numbers are represented in
modern computer systems, where the radix —1 complement was used in the early days of com-
puter technology. The main problem with the radix —1 complement is that a negative or a posi-
tive zero cxits, where in the radix complement system, only a positive zero can exist.

To form the radix complement, first find the radix —1 complement and then add a one to
the result. Example 1-18 shows how the number 0100 1000 is converted to a negative value by
two’s (radix) complementing it.

1-4 COMPUTER DATA FORMATS 31

EXAMPLE 1-18
2

o N
QN

(one’s complem=nt)

1O RO N
=lo o N
O =IO N
RO O N
OO IO N

1
0
0
0

o0 =

1
1
0 (two’s complement)

To prove that 2 0100 1000 is the inverse (negative) of a 1011 0111, add the two together to form
an 8-digit result. The ninth digit is dropped and the result is zero because a 0100 1000 is a posi-
tive 72, while a 1011 0111 is a negative 72. The same technique applies to any number system.
Example 1-19 shows how the inverse of a 345 hexadecimal is found by first fifteen’s comple-
menting the number and then by adding one to the result to form the sixteen’s complement. As
before, if the original 3-digit number 345 is added to the inverse of CBB, the result is a 3-digit
000. As before, the fourth bit (carry) is dropped. This proves that 345 is the inverse of CBB. Ad-
ditional information about one’s and two’s complements is presented with signed numbers in the
next section of the text.

EXAMPLE 1-19

15 15 15
- 3 4

_5

C B A (fifteen’s complement)
+ 0 0 1

C B B (sixteen’s complement)

COMPUTER DATA FORMATS

Successful programming requires a precise understanding of data formats. In this section, many
common computer data formats are described as used with the Intel family of microprocessors.
Commonly, data appear as ASCII, BCD, signed and unsigned integers, and floating point num-
bers (real numbers). Other forms are available, but are not presented here because they are not
commonly found.

ASCII Data

ASCI (American Standard Code for Information Interchange) data represent alphanumeric
characters in the memory of a computer system (see Table 1-7). The standard ASCII code is a 7-bit
code with the eighth and most-significant bit used to hold parity in some systems. If ASCII data are
used with a printer, the most-significant bit is a 0 for alphanumeric printing, and 1 for graphics
printing. In the personal computer, an extended ASCII character set is selected by placing a logic 1
in the left most bit. Table 1-8 shows the extended ASCII character set using code 80H-FFH. The
extended ASCII characters store some foreign letters and punctuation, Greek characters, mathe-
matical characters, box-drawing characters, and other special characters. Note that extended char-
acters can vary from one printer to another. The list provided is designed to be used with the IBM
ProPrinter'? and also matches the special character set found with some word processors.

The ASCII control characters, also listed in Table 1-7, perform control functions in a com-
puter system, including clear screen, backspace, line feed, etc. To enter the control codes through
the computer keyboard, the control key is held down while typing a letter. To obtain the control

'3The 1BM ProPrinter is a product of IBM Corporation.

32

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

TABLE 1-7 ASCII code

Second

First
0X
1X
2X
3X
4X
5X
6X
7X

X0 X1

X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

o "U@O%)

ap oD

“ # $ % & () * + , - . /
2 3 4 5 6 7 8 9 ; < = > ?
B o] D E F G H | J K L M N O
R S T u v W X Y Z [\] A _
b c d e f g h i i k | m n o
r s t u \ w X y z { | } ~

code 01H, type a control A; the control code 02H is obtained by typing a control B, etc. Note that the
control codes appear on the screen, from the DOS prompt, as *A for control A, *B for control B, and
so forth. Also note that the carriage return code (CR) is the enter key on most modern keyboards.
The purpose of CR is to return the cursor or print-head to the left margin. Another code that ap-
pears in many programs is the line feed code (LF), which moves the cursor down one line.

To use Tables 1-7 or 1-8 for converting alphanumeric or control characters into ASCII
characters, first locate the alphanumeric code for conversion. Next, find the first digit of the
hexadecimal ASCII code. Then find the second digit. For example, the capital letter A is ASCII
code 41H, and the lowercase letter a is ASCII code 61H.

ASCII data are most often stored in memory using a special directive to the assembler pro-
gram called define byte(s), or DB. (The assembler is a program that is used to program a com-
puter in its native binary machine language.) The DB directive, along with several examples of
its usage with ASCII-coded character strings, is listed in Example 1-20. Notice how each char-
acter string is surrounded by apostrophes (’)—never use the quote (‘). Also notice that the as-
sembler lists the ASCII-coded value for each character to the left of the character string. To the
far left is the hexadecimal memory location where the character string is first stored in the

TABLE 1-8 Extended ASCII code as printed by the IBM ProPrinter

First Second

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
0X © @ ¥ ¢ & 4 e 00 O@ & ¢) A %
IX » <« 1 0 0 § m & 1 1 = « o = a v
8X C i é a & a & ¢ e & &1 11 AA
X E = £6 6 0 6 a § OU ¢ £ ¥ P f
AX 4 1 6 a4 & N * ° 5 = % % | « »
BX i & _l J| 3 i/ I
cxHT}-iwl}ﬂllh#l
DX 1 5 Lo + rilli'
EX « ' = 2 o p y & 6 d = ¢ € n
FX = = » < [J + = ° . v n 2 =

1-4 COMPUTER DATA FORMATS 33

memory system. For example, the character string WHAT is stored beginning at memory ad-
dress 001D, and the first letter is stored as 57 (W), followed by 68 (H), and so forth.

EXAMPLE 1-20

0000 42 61 72 72 79 NAMES DB 'Barry B. Brey’
20 42 2E 20 42

000D 57 68 65 72 65 MESS DB ‘Where can it be?’
20 63 61 6E 20
69 74 20 62 65

001D 57 68 61 74 20 WHAT DB ‘What is on first.’
69 73 20 6F 6E
20 66 69 72 73

BCD (Binary-Coded Decimal) Data

Binary-coded decimal (BCD) information is stored in either packed or unpacked forms.
Packed BCD data are stored as two digits per byte and unpacked BCD data are stored as one
digit per byte. The range of a BCD digit extends from 00002 to 10012, or 0-9 decimal. Un-
packed BCD data are often returned from a keypad or keyboard, while packed BCD data are
used for some of the instructions included for BCD addition and subtraction in the instruction
set of the microprocessor.

Table 1-9 shows some decimal numbers converted to both the packed and unpacked BCD
forms. Applications that require BCD data are point-of-sales terminals and almost any device
that performs a minimal amount of simple arithmetic. If a system requires complex arithmetic,
BCD data is seldom used because there is no simple and efficient method of performing complex
BCD arithmetic.

Example 1-21 shows how to use the assembler to define both packed and unpacked BCD
data. In all cases, the convention of storing the least-significant data first is followed. This means
that to store an 83 into memory the 3 is stored first, followed by the 8. Also note that with packed
BCD data the letter H (hexadecimal) follows the number to ensure that the assembler stores the
BCD value rather than a decimal value for packed BCD data. Notice how the numbers are stored
in memory as unpacked, one digit per byte, or packed as two digits per byte.

EXAMPLE 1-21 /

;Unpacked BCD data (leasé—significant data first)
0000 03 04 05 NUMB1 DB 3,4,5 ;defines the number 543
0003 07 08 NUMB2 DB 7,8 ;defines the number 87

:Packed BCD data (least-significant data first)

0005 37 34 NUMB3 DB 34H,37H ;defines the number 3437
0007 03 45 NUMB4 DB 3,45H ;defines the number 4503

TABLE 1-9 Packed and unpacked BCD data

Decimal Packed Unpacked
12 0001 0010 0000 0001 0000 0010
623 0000 0110 0010 0011 0000 0110 0000 0010 0000 0011

910 0000 1001 0001 0000 0000 1001 0000 0001 0000 0000

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

128 64 32 16 8 4 2 1 Binary weights
Unsigned byte
-128 64 32 16 8 4 2 1 Binary weights
Signed byte

FIGURE 1-10 The unsigned and signed bytes illustrating the weights of each binary-bit
position

Byte-Sized Data

Byte-sized data are stored as unsigned and signed integers. Figure 1-10 illustrates both the un-
signed and signed forms of the byte-sized integer. The difference in these forms is the weight of
the leftmost bit position. Its value is 128 for the unsigned integer and minus 128 for the signed
integer. In the signed integer format, the leftmost bit represents the sign bit of the number as well
as a weight of minus 128. For example, an 80H represents a value of 128 as an unsigned number;
as a signed number, it represents a value of minus 128. Unsigned integers range in value from
00H-FFH (0-255). Signed integers range in value from —128 to 0 to +127.

Although negative signed numbers are represented in this way, they are stored in the two’s
complement form. The method of evaluating a signed number, using the weights of each bit po-
sition, is much easier than the act of two’s complementing a number to find its value. This is es-
pecially true in the world of calculators designed for programmers.

Whenever a number is two’s complemented, its sign changes from negative to positive or
positive to negative. For example, the number 00001000 is a +8. Its negative value (-8) is found by
two’s complementing the +8. To form a two’s complement, first one’s complement the number. To
one’s complement a number, invert each bit of a number from zero to one or from one to zero.
Once the one’s complement is formed, the two’s complement is found by adding a one to the one’s
complement. Example 1-22 shows how numbers are two’s complemented using this technique.

EXAMPLE 1-22

+8 = 00001000

11110111 (one’'s complement)
+ 1
-8 = 11111000 (two’'s complement)

Another, and probably simpler, technique for two’s complementing a number starts with the
rightmost digit. Start writing down the number from right to left. Write the number exactly as it ap-
pears until the first one. Write down the first one, and then invert of complement all remaining ones
to its left. Example 1-23 shows this t »>hnique with the same number as in Example 1-22.

EXAMPLE 1-23

+8 = 00001000

1000 (write number to first 1)
1111 (invert the remaining bits)
11111000

1
@0
1}

1-4 COMPUTER DATA FORMATS 35

To store 8-bit data in memory using the assembler program, use the DB directive as in
prior examples. Example 1-24 lists many forms of 8-bit numbers stored in memory using the as-
sembler program. Notice in this example that a hexadecimal number is defined with the letter H
following the number and that a decimal number is written as is without anything special.

EXAMPLE 1-24

;Unsigned byte-sized data

0000 FE DATAL DB 254 jdefine 254 decimal

0001 87 DATA2 DB 87H ;define 87 hexadecimal

0002 47 DATA3 DB 71 ;define 71 decimal
;Signed byte-sized data

0003 9C DATA4 DB -100 ;define

a -100 decimal
0004 64 DATAS DB +100 ;define a +100 decimal
0005 FF DATAG DB -1 ;jdefine a -1 decimal
0006 38 DATA7 DB 56 ;jdefine a 56 decimal

Word-sized Data

A word (16-bits) is formed with two bytes of data. The least-significant byte is always stored in the
lowest-numbered memory location, and the most-significant byte in the highest. This method of
stbring anumber is called the little endian format. An alternate method, not used with the Intel family
of microprocessors, is called the big endian format. With the big endian format, numbers are stored
with the lowest location containing the most-significant data. The big endian format is used with the
Motorola family of microprocessors. Figure 1-11 (a) shows the weights of each bit position in a word
of data, and Figure 1-11 (b) shows how the number 1234H appears when stored in the memory loca-
tion 3000H and 3001 H. The only difference between a signed and an unsigned word is the leftmost bit

3 S N © o o«
§ oﬁ. 2 3 3 8 g § d T & @ o < o - Binary weights
®» - © < o - T
\
(a) Unsigned word

3003H

3002H

3001H 12H High-order byte

3000H 34H Low-order byte

2FFFH

(b) The contents of memory location 3000H and 3001H are the word 1234H.

FIGURE 1-11

The storage format for a 16-bit word in (a) a register and (b) two bytes of memory

36

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

position. In the unsigned form, the leftmost bit is unsigned; in the signed form, its weight is a =32,768.
As with byte-sized signed data, the signed word is in two’s complement form when representing a
negative number. Also notice that the low order byte is stored in the lowest-numbered memory loca-
tion (3000H) and the high-order byte is stored in the highest-numbered location (3001H).

Example 1-25 shows several signed and unsigned word-sized data stored in memory using
the assembler program. Notice that the define word(s) directive or DW causes the assembler to
store words in the memory instead of bytes as in prior examples. Also notice that the word data
is displayed by the assembler in the same form as entered. For example, a 1000H is displayed by
the assembler as a 1000. This is for our convenience, because the number is actually stored in the
memory as a 00 10 in two consecutive memory bytes.

EXAMPLE 1-25

;Unsigned word-sized data

0000 09F0 DATAL DW 2544 ;define 2544 decimal
0002 87AC * DATA2 DW 87ACH ;define 87AC hexadecimal

0004 02C6 DATA3 DW 710 ;define 710 decimal
;Signed word-sized data

0006 CBAS DATA4 DW -13400 ;jdefine a -13400 decimal

0008 00C6 DATAS DW +198 ;define a +198 decimal
000A FFFF DATA6 DW -1 ;define a -1 decimal

Doubleword-sized Data

Doubleword-sized data requires four bytes of memory because it is a 32-bit number. Double-
word data appear as a product after a multiplication and also as a dividend before a division. In the
80386 through the Pentium, memory and registers are also 32-bits in width. Figure 1-12 shows
the form used to store doublewords in the memory and the binary weights of each bit position.

When a doubleword is stored in memory, its least-significant byte is stored in the lowest-
numbered memory location and its most-significant byte is stored in the highest-numbered
memory location using the little endian format. Recall that this is also true for word-sized data.
For example, a 12345678H that is stored in memory location 00100H-00103H is stored with the
78H in memory location 00100H, the 56H in location 00101H, the 34H in location 00102H, and
the 12H in location 00103H.

To define doubleword-sized data, use the assembler directive define doubleword(s) or DD.
Example 1-26 shows both signed and unsigned numbers stored in memory using the DD directive.

EXAMPLE 1-26

;Unsigned doubleword-sized data

0000 0003E1CO DATAL DD 254400 ;define 254400 decimal

0004 87AC1234 DATA2 DD 87AC1234H ;define 87AC1234 hexadecimal

0008 00000046 DATA3 DD 70 ;define 70 decimal
;Signed doubleword-sized data

000C FFEB8058 DATA4 DD -1343400 ;define a -1343400 decimal

0010 000000C6 DATAS DD +198 ;define a +198 decimal
0014 FFFFFFFF DATAG6 DD -1 ,1efine a -1 decimal

Integers may also be stored in memory that is of any width. The forms listed here are standard
forms, but that doesn’t mean that a 128-byte wide integer can’t be stored in the memory. The micro-
processor is flexible enough to allow any size data. When nonstandard width numbers are stored in
memory, the DB directive is normally used to store them. For example, the 24-bit number 123456H
is stored using a DB 56H,34H,12H directive. Note that this conforms to the little endian format.

1-4 COMPUTER DATA FORMATS 37

g 3
© @ X8 Y g oo
20885839
SRR s s N2 mw IR oos
N O 0ot N O IO N O TN O AN~ O M O O N O 0 T
T oo g mOUNRDDYE - DNDDD I AN 0 0
— 9 5 0 ON®O O 29O o muwa o T290 - nH AT A o X i
A~ B A~ 0o Fad~bA- OO+~ OF o~ 1A - OO~ o <+ & —=—-~R8inaryweights
(a) Unsigned doubieword
00103H 12H High-order byte
00102H 34H
00101H 56H
00100H 78H ~—— Low-order byte
000FFH

(b) The contents of memory location 00100H —00103H are the doubleword 12345678H.

FIGURE 1-12 The storage format for a 32-bit word in (a) a register and (b) in four bytes of memory

Real Numbers

Because many high-level languages use the Intel family of microprocessors, real numbers are often
encountered. A real number, or as it is often called, a floating-point number, contains two parts: a
mantissa, significand, or fraction and an exponent. Figure 1-13 depicts both the 4- and 8-byte
forms of real numbers as they are stored in any Intel system. Note that the 4-byte real number is
called single-precision and the 8-byte form is called double-precision. The form presented here is
the same form specified by the IEEE!® standard, IEEE-754, version 10.0. This standard has been
adopted as the standard form of real numbers with virtually all high-level programming languages
and many apphcauons packages. The standard also applies to data manipulated by the numeric co-
processor in the perso gl computer. Figure 1-13 (a) shows the single-precision form that contains
a sign-bit, an 8-bit exponent, and a 24-bit fraction (mantissa). Note that because applications often
require double-precision floating-point numbers [see Figure 1-13 (b)], the Pentium with its 64-bit
data bus performs memory transfers at twice the speed of the 80386/80486 microprocessors.

Simple arithmetic indicates that it should take 33 bits to store all three pieces of data. Not
true—the 24-bit mantissa contains an implied (hidden) one-bit that allows the mantissa to repre-
sent 24-bits while being stored in only 23-bits. The hidden bit is the first bit of the normalized
real number. When normalizing a number, it is adjusted so that its value is at least 1, but less than
2. For example, if a 12 is converted to binary (1100,), it is normalized and the resultis a 1.1 x 23.
The 1 is not stored in the 23-bit mantissa portion of the number. The 1 is the hidden one-bit.
Table 1-10 shows the single-precision form of this number and others.

The exponent is stored as a biased exponent. With the single-precision form of the real
number, the bias is 127 (7FH); with the double-precision form, it is 1023 (3FFH). The bias adds
to the exponent before is stored into the exponent portion of the floating-point number. In the
previous example, there is an exponent of 2, represented as a biased exponent of 127 + 3 or 130
(82H) in the single-precision form or as 1026 (402H) in the double- -precision form.

There are two exceptions to the rules for floating-point numbers. The number 0.0 is stored
as all zeros. The number infinity is stored as all ones in the exponent and all zeros in the mantissa.
The sign-bit indicates a + 0.0 or a + oo,

'®IEEE is the Institute of Electrical and ElectronicsEngineers.

38 CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

\ o st L (Y
31 30 ’ 23 22 0
S Exponent Significand
[]
(a)
63 62 52 51 0
S Exponent Significand
L]
(b)

FIGURE 1-13 The floating-point numbers (a) single-precision using a bias of 7FH, and
(b) double-precision using a bias of 3FFH

As with other data types, the assembler can be used to define real numbers in both single-

and double-precision forms. Because single-precision numbers are 32-bit numbers, use the DD
directive or use the define quadwords(s) or DQ directive to define 64-bit double-precision real
numbers. Optional directives for real numbers are REAL4, REALS, and REAL10 for defining
single-, double-, and extended precision real numbers. Example 1-27 shows numbers defined in
real number format.

EXAMPLE 1-27

;Single-precision real numbers

0000 3F9DF3B6 ﬁUMBl DD 1.234 ;define 1.234
0004 C1BB3333 NUMB2 DD -23.4 ;define -23.4
0008 43D20000 NUGMB3 REAL4 4.2E2 ;define 420
000C 3F9DF3B6 NUMB4 REAL4 1.234 ;define a 4-byte real number
;Double—precision real numbers
0010 I’\TUMES DQ 123.4 ;define 123.4
405ED9999999999A
0018 NUMB6 REALS -23.4 ;jdefine -23.4
C1BB333333333333
0028 NUMB7 REALS 123.4 ;define an 8-byte real number
405ED9999999999%A
;Extended—precision real numbers
0030 éUMBS REAL1O 123.4 ;define a 10-byte real number
4005F6CCCCCCCCCCCCeD
Decimal Binary Normalized Sign Biased Exponent Mantissa
+12 1100 1.1 x28 0 10000010 1000000 00000000 00000000
-12 1100 -1.1 x 23 1 10000010 1CC0000 00000000 00000000
+100 1100100 1.1001 x 26 0 10000101 1001000 00000000 00000000
-1.75 111 —1.11x20 1 01111111 1100000 00000000 00000000
+0.25 .01 1.0x22 0 01111101 0000000 00000000 00000000
+0.0 0 0 0 00000000 0000000 00000000 00000000

1-5 SUMMARY 39

1-5 SUMMARY

1.

10.

11.

12.

The mechanical computer age began with the advent of the abacus in 500 B.C. This first me-
chanical calculator remained unchanged until 1642 when Blaise Pascal improved it. An
early first mechanical computer system was the Analytical Engine developed by Charles
Babbage in 1823. Unfortunately, this machine never functioned because of the inability to

create the necessary machine parts.

. The first electronic calculating machine was developed during World War II by Konrad

Zuse, an early pioneer of digital electronics. His computer, the Z3, was used in aircraft and
missile design for the German war effort.

The first electronic computer, which used vacuum tubes, was placed into operation in 1943
to break secret German military codes. This first electronic computer system, the Colossus,
was invented by Alan Turing. Its only problem was that the program was fixed and could not
be changed.

. The first general-purpose programmable electronic computer system was developed in 1946

at the University of Pennsylvania. This first modern computer was called the ENIAC (Elec-
tronics Numerical Integrator and Calculator).

. The first high-level programming language called FLOW-MATIC was developed for the

UNIVAC I computer by Grace Hopper in the early 1950s. This led to FORTRAN and other
early programming languages.

. The world’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—a program-

mable controller on a chip—that was meager by today’s standards. It addressed a mere
4,096 4-bit memory locations. Its instruction set contained only 45 different instructions.

. Microprocessors that are common today include the 8086/8088, which were the first 16-bit

microprocessors. Following these early 16-bit machines were the 80286, 80386, 80486,
Pentium, and Pentium Pro processors. With each newer version, improvements followed
that increased the processor’s speed and performance. From all indications, this process of
speed and performance improvement will continue.

. Microprocessor-based personal computers contain memory systems that include three main

areas: TPA (transient program area), system area, and extended memory. The TPA holds ap-
plication programs, the operating system, and drivers. The system area contains memory
used for video display cards, disk drives, and the BIOS ROM. The extended memory area is
available only to the 80286 through the Pentium microprocessor in an AT-style personal
computer system.

. The 8086/8088 address 1M byte of memory from location 00000H-FFFFFH. The 80286 and

80386SX address 16M bytes of memory from location 000000H-FFFFFFH. The 80386SL
addresses 32M bytes of memory from location 0000000H-1FFFFFFH. The 80386DX,
80486, Pentium, and Pentium Pro processors address 4G bytes of memory from location
00000000H-FFFFFFFFH. In addition, the Pentium Pro can run with a 36-bit address and ac-
cess up to 64G bytes of memory from location 000000000H through FFFFFFFFFH.

All versions of the 8086-80486 and Pentium microprocessor address 64K bytes of I/O ad-
dress space. These I/O ports are numbered from 0000H-FFFFH with I/O ports 0000H-
04FFH reserved for use by the personal computer system.

The operating system in many personal computers is either MSDOS (Microsoft disk operating
system) or PCDOS (personal computer disk operating system from IBM). The operating system
performs the task of operating or controlling the computer system along with its I/O devices.
The microprocessor is the controlling element in a computer system. The microprocessor
performs data transfers, simple arithmetic and logic operations, and makes simple decisions.
The microprocessor executes programs stored in the memory system to perform complex
operations in short periods of time.

40

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

All computer systems contain three buses to control memory and I/O. The address bus is
used to request a memory location or I/O device. The data bus transfers data between the mi-
croprocessor and its memory and I/O spaces. The control bus controls the memory and I/O
and requests reading or writing of data. Control is accomplished with IORC (I/O read con-
trol), IOWC (1/O write control), MRDC (memory read control), and MWTC (memory write
control). .

Numbers are converted from any number base to decimal by noting the weights of each po-
sition. The weight of the position to the left of the radix point is always the units position in
any number system. The position to the left of the units position is always the radix times
one. Succeeding positions are determined by multiplying by the radix. The weight of the po-
sition to the right of the radix point is always determined by dividing by the radix.
Conversion from a whole decimal number to any other base is accomplished by dividing by
the radix. Conversion from a fractional decimal number is accomplished by multiplying by
the radix.

Hexadecimal data are represented in hexadecimal form or at times in a code called binary-
coded hexadecimal (BCH). A binary-coded hexadecimal number is one that is written with
a 4-bit binary number that represents each hexadecimal digit.

The ASCII code is used to store alphabetic or numeric data. The ASCII code is a 7-bit code
and can have an eighth bit used to extend the character set from 128 codes to 256 codes. The
carriage return (enter) code returns the print head or cursor to the left margin. The line feed
code moves the cursor or print head down a line.

Binary-coded decimal (BCD) data are sometimes used in a computer system to store dec-
imal data. This data is stored in either packed (two digits per byte) or unpacked (one digit
per byte) form.

Binary data are stored as a byte (8-bits), word (16-bits), or doubleword (32-bits) in a com-
puter system. This data may be unsigned or signed. Signed negative data are always stored
in the two’s complement form. Data that are wider than 8-bits are always stored using the
little endian format.

Floating-point data are used in computer system to store whole, mixed, and fractional num-
bers. A floating-point number is composed of a sign, a mantissa, and an exponent.

We use the assembler directive DB to define bytes, DW to define words, DD to define dou-
blewords, and DQ to define quadwords.

Example 1-28 shows the assembly language formats for storing numbers as bytes, words,
doublewords, and real numbers. Also shown are ASCII-coded character strings.

EXAMPLE 1-28

;ASCII data
0000 54 68 69 73 20 69 MES1 DB 'This is a character string in ASCII’
73 20 61 20 63 68
61 72 61 63 74 65
72 20 73 74 72 69
6E 67 20 69 6E 20
41 53 43 49 49
0023 53 6F 20 69 73 20 MES2 DB ‘So is this’
74 68 69 73
;BYTE data
002D 17 DATAL DB 23 ;23 decimal
002E DE DATA2 DB -34 ;-34 decimal
002F 34 DATA3 DB 34H ;34 hexadecimal
;WORD data

0030 1000 DATA4 DW 1000H 71000 hexadecimal

1-6 QUESTIONS AND PROBLEMS 41

0032 FF9C DATAS DW -100 ;=100 decimal

0034 o000C DATAG DW +12 ;=12 decimal
; DOUBLEWORD data

0035 00001000 DATA7 DD 1000H ;1000 hexadecimal

003A FFFFFED4 DATAS DD -300 ;=300 decimal

003E 00012345 DATA9 DD 12345H ;12345 hexadecimal
;Real data

0042 4015C28F DATAL10 REAL4 2.34 ;2.34 decimal

0046 CO00cCCCCD DATA1l REAL4 -2.2 ;-2.2 decimal

004A DATAl2 REAL8 100.3 7100.3 decimal

4059133333333333

QUESTIONS AND PROBLEMS

[\

27.
28.
29.
30.
31
32.

. Who developed the Analytical Engine?
. The 1890 census used a new device called a punched card. Who developed the punched

card?

. Who was the founder of the IBM Corporation?

. Who developed the first electronic calculator?

. The first truly electronic computer system was developed for what purpose?

. The first general-purpose programmable computer was called the

. The world’s first microprocessor was developed in 1971 by

. Who was the Countess of Lovelace?

. Who developed the first high-level programming language called FLOW-MATIC?
. Whatis a vor/l,Neﬁ]ann machine?

. Which 8-bit microprocessor ushered in the age of the microprocessor?

. The 8085 microprocessor, introduced in 1977, hassold ____ copies.
. Which Intel microprocessor was the first to address 1M bytes of memory?
. The 80386SL addresses_____ bytes of memory.

. How much memory is available to the 80486 microprocessor?
. When did Intel introduce the Pentium microprocessor?

. When did Intel introduce the Pentium Pro processor?

. Which Intel microprocessor can address 64G of memory?

. What is the acronym MIPs?

. What is the acronym CISC?

. A binary bit stores a ora

. AcomputerKisequalto_____ bytes.

. AcomputerMisequalto_____ K bytes.

. AcomputerGisequalto_____ M bytes.

. How many typewritten pages of information are stored in a 4G byte memory system?

. The first 1M byte of memory in a computer system contains a _____ and a
area.

How much memory is found in the transient program area?

How much memory is found in the systems area?

The 8086 microprocessor addresses ________ bytes of memory.
The 80286 microprocessor addresses —____ bytes of memory.
Which microprocessors address 4G bytes of memory?

Memory above the first IM byteiscalled _____ memory.

42

CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

What is the BIOS?

What is DOS?

What is the difference between an XT and an AT computer system?

What is the VESA local bus?

TheISAbusholds _____ -bitinterface cards.

What is the XMS?

What is the EMS?

Adriverisstoredinthe ________ area.

What is a TSR?

How is a TSR often accessed?

What is the purpose of the CONFIG.SYS file?

What is the purpose of the AUTOEXEC.BAT file?

The COMMAND.COM program processes what information?

The personal computer system addresses _____ bytes of I/O space.
Where is the high memory located in a personal computer?

The DEVICE or DEVICEHIGH statement is found in what file?

Where are the upper memory blocks used by MSDOS version 5.0 or 6.2?
Where is the video BIOS?

Draw the block diagram of a computer system.

What is the purpose of the microprocessor in a microprocessor-based computer system?
List the three buses found in all computer systems.

Which bus transfers the memory address to the I/O device or to the memory device?
Which control signal causes the memory to perform a read operation?
What is the purpose of the IORC signal?

If the MRDC signal is a logic 0, which operation is performed by the microprocessor?
Convert the following binary numbers into decimal:

(a) 1101.01

(b) 111001.0011

(c) 101011.0101

(d) 111.0001

Convert the following octal numbers into decimal:

(a) 2345

(b) 123

(c) 7767.07

(d) 123.45

(e) 72.72

Convert the following hexadecimal numbers into decimal:

(a) A33

(b) 129.C

(c) AC.DC

(d) FAB.3

(e) BB8.OD

Convert the following decimal integers into binary, octal, and hexadecimal:
(a) 23

(b) 107

(c) 1238

(d) 92

(e) 173

Convert the following decimal numbers into binary, octal, and hexadecimal:
(a) 625

(b) .00390625

CHAPTER 2
The Microprocessor and Its Architecture

INTRODUCTION

This chapter presents the microprocessor as a programmable device by first looking at its internal
programming model and then at how it addresses its memory space. The architecture of the entire
family of Intel microprocessors is presented simultaneously, as are the ways that the family mem-
bers address the memory system.

The addressing modes for this powerful family of microprocessors are described for both the
real and protected modes of operation. Real mode memory exists at locations 00000H- —
the first LM byte of the memory system—and is present on all versions of the microprocessor. Pro-
tected mode memory exists at any location in the entire memory system, but is only available to the
80286—Pentium Pro and not the earlier 8086 or 8088 microprocessors. Protected mode memory for
the 80286 contains 16M bytes; for the 80386—Pentium, 4G bytes; and for the Pentium Pro, 64G bytes.

T
CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Describe the function and purpose of each program-visible register in the 8086-80486 and
Pentium /Pentium Pro microprocessors.

. Detail the flag register and the purpose of each flag bit.

. Describe how memory is accessed using real mode memory-addressing techniques.

. Describe how memory is accessed using protected mode memory-addressing techniques.

. Describe the program-invisible registers found within the 80286, 80386, 80486, Pentium,
and Pentium Pro microprocessors.

. Detail the operation of the memory paging mechanism.

wn hwN

=)}

2-1

INTERNAL MICROPROCESSOR ARCHITECTURE

Before a program is written or any instruction investigated, the internal configuration of the mi-
croprocessor must be known. This section of the chapter details the program-visible internal ar-
chitecture of the 8086-80486 and the Pentium/Pentium Pro microprocessors. Also detailed are
the function and purpose of each of these internal registers.

45

46 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

The Programming Model

The programming model of the 8086 through the Pentium Pro is considered program visible be-
cause its registers are used during programming and are specified by the instructions. Other reg-
isters, detailed later in this chapter, are considered program invisible because they are not
addressable directly during applications programming, but may be used indirectly during system
programming. Only the 80286 and above contain the program-invisible registers used to control
and operate the protected memory system.

Figure 2-1 illustrates the programming model of the 8086 through the Pentium Pro micro-
processor. The earlier 8086, 8088, and 80286 microprocessors contain 16-bit internal architectures,
a subset of the registers shown in Figure 2-1. The 80386, 80486, Pentium, and Pentium Pro micro-
processors contain full 32-bit internal architectures. The architectures of the earlier 8086 through the

FIGURE 2-1 The program- 8-bit
ming model of the Intel 8086 names
through the Pentium Pro 30-bit m
names names
EAX AH A:X AL Accumulator
EBX BH BJ[X BL Base index
ECX CH C|X CL Count
EDX DH D:X DL Data
ESP SP Stack pointer
EBP BP Base pointer
EDI DI Destination index
ESI Sl Source index
EIP P Instruction pointer
EFLAGS FLAGS Flags
cs Code
DS Data
ES Extra
sSs Stack
FS
GS
Notes:

1. The shaded areas registers exist ony on the
80386 through the Pentium Pro.

2. The FS and GS register have no special
names.

2-1 INTERNAL MICROPROCESSOR ARCHITECTURE 47

80286 are fully upward compatible to the 80386 through the Pentium Pro. The shaded areas in this
illustration K-lepresent registers that are not found in the 8086, 8088, or 80286 microprocessors and
are enhancements provided on the 80386, 80486, Pentium, and Pentium Pro microprocessors.

The prygramming model contains 8-, 16-, and 32-bit registers. The 8-bit registers are AH,
AL, BH, BL, CH, CL, DH, and DL and are referred to when an instruction is formed using these
two-letter designations. For example an ADD AL,AH instruction adds the 8 bit contents of AH

BP, DI, SI, IP, FLAGS, CS, DS, ES SS FS and GS These reglsters are also referenced w1th
these two-letter designations. For example, an ADD DX,CX instruction adds the 16-bit contents
of CX to DX. (Only DX changes due to this instruction.) The extended 32-bit registers are la-
beled EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI, EIP, and EFLAGS. These 32-bit extended
registers and 16-bit registers FS and GS are available only in the 80386 and above. These regis-
ters are referenced by the designations FS or GS for the two new 16-bit registers and by a three-
letter designation for the 32-bit registers. For example, an ADD ECX,EBX instruction adds the
32-bit contents of EBX to ECX. (Only ECX changes due to this instruction.)

Some registers are general-purpose or multipurpose registers, while some have special
purposes. The multipurpose registers include EAX, EBX, ECX, EDX, EBP, EDI, and ESI.
These registers hold various data sizes (bytes, words, or doublewords) and are used for almost
any purpose as dictated by a program.

Multipurpose Registers. The multipurpose registers include EAX, EBX, ECX, EDX, EDB’
EDI, and ESI.

EAX EAX is referenced as a 32-bit register (EAX), as a 16-bit register

(accumulator) (AX), or as either of two 8-bit registers AH and AL. Note that
if an 8- or 16-bit register is addressed, only that portion of the 32-bit
register changes without affecting the remaining bits. The accumu-
lator is used for instructions such as multiplication, division, and
some of the adjustment instructions. For these instructions, the
accumulator has a special purpose, but is generally considered a
multipurpose register. In the 80386 and above, the EAX register
may also hold the offset address of a location in the memory system.

EBX EBX is addressable as EBX, BX, BH, or BL. The BX register

(base index) sometimes holds the offset address of a location in the memory
system in all versions of the microprocessor. In the 80386 and
above, EBX also can address memory data.

ECX ECX is a general-purpose register that also holds the count for

(count) various instructions. In the 80386 and above, the ECX register can
also hold the offset address of memory data. Instructions that use a
count are the repeated string instructions (REP/REPE/ REPNE),
shift, rotate, and LOOP/LOOPD instructions. The shift and rotate
instructions use CL as the count, the repeated string instructions use
CX, and LOOP/LOOPD instructions use either CX or ECX.

EDX EDX is a general-purpose register that holds a part of the result

(data) from a multiplication or part of the dividend before a division. In
the 80386 and above, this register can also address memory data.

EBP EBP points to a memory location in all versions of the micropro-

(base pointer) cessor for memory data transfers. This register is addressed as either
BP or EBP.

EDI EDI often addresses string destination data for the string instructions.

(destination index) It also functions as either a 32-bit (EDI) or 16-bit (DI) general-

purpose register.

48

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

ESI
(source index)

ESI is used as either ESI or SI. The source index register often
addresses source string data for the string instructions. Like EDI,
ESI also functions as a general-purpose register. As a 16-bit
register, it is addressed as SI; as a 32-bit register, as ESL.

Special-purpose Registers. The special-purpose registers include EIP, ESP, EFLAGS, and the
segment registers CS, DS, ES, SS, FS, and GS.

EIP
(instruction pointer)

ESP
(stack pointer)

EFLAGS

EIP addresses the next instruction in a section of memory defined
as a code segment. This register is IP (16-bits) when the micropro-
cessor operates in the real mode and EIP (32-bits) when the 80386
and above operate in the protected mode. Note that the 8086, 8088,
and 80286 do contain EIP, and only the 80286 and above operate
in the protected mode. The instruction pointer, which points to the
next instruction in a program, is used by the microprocessor to find
the next sequential instruction in a program located within the code
segment. The instruction pointer can be modified with a jump or a
call instruction.

ESP addresses an area of memory called the stack. The stack memory
stores data through this pointer and is explained in this chapter with
instructions that address stack data. This register is referred to as SP
if used as a 16-bit register and ESP if referred to as a 32-bit register.

EFLAGS indicate the condition of the microprocessor as well as
control its operation. Figure 2-2 shows the flag registers of all ver-
sions of the microprocessor. Note that the flags are upward compa-
tible from the 8086/8088 to the Pentium Pro microprocessors. The
8086-80286 microprocessors contain a FLAG register (16-bits),
while the 80386 and above contain an EFLAG register (32-bit
extended flag register).

The rightmost five flag bits and the overflow flag change after many arithmetic and logic
instructions execute. Some of the flags are also used to control features found in the micro-
processor. Following is a list of each flag bit with a brief description of their function. As in-
structions are introduced in subsequent chapters, additional detail on the flag bits is provided.
The rightmost five flags and the overflow flag are changed by most arithmetic and logic opera-
tions, while data transfers do not affect them.

C (carry)

P (parity)

A (auxiliary carry)

Carry holds the carry after addition or the borrow after subtraction.
The carry flag also indicates error conditions as dictated by some
programs and procedures. This is especially true of the DOS func-
tion calls detailed in later chapters and Appendix A.

Parity is a logic O for odd parity and a logic 1 for even parity. Parity
is a count of ones in a number expressed as even or odd. For ex-
ample, if a number contains three binary one bits, it has odd parity.
If a number contains zero one bits, it has even parity. The parity
flag finds little application in modern programming and was im-
plemented in early Intel microprocessors for checking data in data
communi-ations environments. Today, parity checking is often
accomplished by the data communications equipment instead of by
the microprocessor.

The auxiliary carry holds the carry (half-carry) after addition or the
borrow after subtraction between bits positions 3 and 4 of the result.

2-1 INTERNAL MICROPROCESSOR ARCHITECTURE 49

FIGURE 2-2 The EFLAG 31

21

20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

and FLAG register counts for

D

vie|viF|AC|VM|RF NT|'OP “gp ofol1]T]s]z A P [

the entire 80X86 and Pentium
microprocessor family

Z (zero)

S (sign)

T (trap)

I (interrupt)

D (direction)

O (overflow)

IOPL
(/O privilege level)

~——————8086/8088/80186/80188————>

80286

80386/8986DX —————

80486SX ——

Pentium/Pentium Pro

This highly specialized flag bit is tested by the DAA and DAS in-
structions to adjust the value of AL after a BCD addition or subtrac-
tion. Otherwise, the A flag bit is not used by the microprocessor or
any other instructions.

The zero flag shows that the result of an arithmetic or logic opera-
tion is zero. If Z = 1, the result is zero; if Z = 0, the result is not zero.

The sign flag holds the arithmetic sign of the result after an arith-
metic or logic instruction executes. If S = 1, the sign bit (Ieftmost
bit of a number) is set or negative; if S = 0, the sign bit is cleared or
positive.

The trap flag enables trapping through an on-chip debugging fea-
ture. (A program is debugged to find an error or bug.) If the T flag
is enabled (1), the microprocessor interrupts the flow of the pro-
gram on conditions as indicated by the debug registers and control
registers. If the T flag is a logic 0, the trapping (debugging) feature
is disabled. The CodeView program can use the trap feature and
debug registers to debug faulty software.

The interrupt flag controls the operation of the INTR (interrupt re-
quest) input pin. If I = 1, the INTR pin is enabled; if I = 0, the INTR
pin is disabled. The state of the I flag bit is controlled by the STI
(set I flag) and CLI (clear I flag) instructions.

The direction flag selects either the increment or decrement mode
for the DI and/or SI registers during string instructions. If D =1, the
registers are automatically decremented; if D = 0, the registers are
automatically incremented. The D flag is set with the STD (set
direction) and cleared with the CLD (clear direction) instructions.

Overflows occur when signed numbers are added or subtracted. An
overflow indicates that the result has exceeded the capacity of the
machine. For example, if a 7FH (+127) is added—using an 8-bit
addition—to a O1H (+1), the result is 8OH (-128). This result rep-
resents an overflow condition indicated by the overflow flag for
signed addition. For unsigned operations, the overflow flag is
ignored.

IOPL is used in protected mode operation to select the privilege
level for /O devices. If the current privilege level is higher or more
trusted than the IOPL, then I/O executes without hindrance. If the
IOPL is lower than the current privilege level, an interrupt occurs,
causing execution to suspend. Note that an IOPL of 00 is the
highest or most trusted; if IOPL is 11, it’s the lowest or least
trusted.

50

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

NT (nested task)

RF (resume)

The nested task flag indicates that the current task is nested within
another task in protected mode operation. This flag is set when the
task is nested by software.

The resume flag is used with debugging to control the resumption
of execution after the next instruction.

VM (virtual mode) The VM flag bit selects virtual mode operation in a protected mode

system. A virtual mode system allows multiple DOS memory

partitions that are 1M byte in length to coexist in the memory

system. Essentially, this allows the system program to execute
multiple DOS programs.

AC (alignment check) The alignment check flag bit activates if a word or doubleword is

addressed on a non-word or non-doubleword boundary. Only the
80486SX microprocessor contains the alignment check bit that is
primarily used by its companion numeric coprocessor, the
80487SX, for synchronization.

VIF (virtual The VIF is a copy of the interrupt flag bit available to the Pentium/

interrupt flag) Pentium Pro microprocessors.

VIP (virtual VIP provides information about a virtual mode interrupt for the

interrupt pending) Pentium/Pentium Pro microprocessors. This is used in multitasking
environments to provide the operating system with virtual interrupt
flags and interrupt pending information.

ID (identification) The ID flag indicates that the Pentium/Pentium Pro microprocessors

support the CPUID instruction. The CPUID instruction provides the
system with information about the Pentium microprocessor, such as
its version number and manufacturer.

Segment Registers. Additional registers, called segment registers, generate memory addresses
when combined with other registers in the microprocessor. There are either four or six segment
registers in various versions of the microprocessor. A segment register functions differently in
the real mode when compared to the protected mode operation of the microprocessor. Detail on
their functions in real and protected mode is provided later in this chapter. Following is a list of
each segment register along with its function in the system.

CS (code)

DS (data)

ES (extra)

SS (stack)

The code segment is a section of memory that holds the code (programs and
procedures) used by the microprocessor. The code segment register defines
the starting address of the section of memory holding code. In real mode
operation, it defines the start of a 64K byte section of memory; in protected
mode, it selects a descriptor that describes the starting address and length of a
section of memory holding code. The code segment length is limited to 64K
bytes in the 8088-80286 and 4G bytes in the 80386 and above when these
microprocessors operate in the protected mode.

The data segment is a section of memory that contains most data used by a
program. Data are accessed in the data segment by an offset address or the
contents of other registers that hold the offset address. As with the code
segment and other segments, the length is limited to 64K bytes in the
8086-80286 and 4G bytes in the 80386 and above.

The extra segment is an additional data segment used by some of the string
instructions to hold destination data.

The stack segment defines the area of memory used for the stack. Th= loca-
tion of the current entry point in the stack segment is determined by the stack
pointer register. The BP register also addresses data within the stack segment.

2-2 REAL MODE MEMORY ADDRESSING 51

FS and GS The FS and GS segments are supplemental segment registers available in the
80386, 80486, Pentium, and Pentium Pro microprocessors to allow two
additional memory segments for access by programs.

N

REAL MODE MEMORY ADDRESSING

The 80286 and above operate in either the real or protected mode. Only the 8086 and 8088 op-
erate exclusively in the real mode. This section of the text details the operation of the micro-
processor in the real mode. Real mode operation allows the microprocessor to address only the
first 1M byte of memory space—even the Pentium microprocessor. Note that the first 1M byte of
memory is called either the real memory or conventional memory system. Both the MSDOS or
PCDOS operating systems assume that the microprocessor is operated in the real mode at all

times. Real mode operation allows application software written for the 8086/8088, which con-

tain only 1M byte of memory, to function in the 80286 and above without changing the software.
At present, 95 percent of all software in use is designed to operate in the real mode. This will
most likely change as Windows 95 becomes the new 32-bit operating platform. The upward
compatibility of software is partially responsible for the continuing success of the Intel family of
microprocessors. In all cases, each of these microprocessors begins operation in the real mode by
default whenever power is applied or the microprocessor is reset. Note that the DOS environ-
ment is a real mode environment.

Segments and Offsets

A combination of a segment address and an offset address access a memory location in the real
mode. All real mode memory addresses consist of a segment address plus an offset address. The
segment address, located within one of the segment registers, defines the beginning address of
any 64K-byte memory segment. The offset address selects any location within the 64K-byte
memory segment. Figure 2-3 shows how the segment plus offset addressing scheme selects a
memory location. This illustration shows a memory segment that begins at location 10000H and
ends at location 1IFFFFH—64K bytes in length. It also shows how an offset, sometimes called a

FIGURE 2-3 The real mode Real mode memory
memory-addressing scheme, ~ FFFFF
using a segment address plus

an offset

1FFFF

1F000 Offset = FO00

64K-byte
segment
Segment register

10000 < {1000]

00000

52

TABLE 2-1

Example

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

displacement, of FOOOH selects location 1FOOOH in the memory system. Note that the offset or
displacement is the distance above the start of the segment.

The segment register in Figure 2-3 contains a 1000H, yet it addresses a starting segment at
location 10000H. In the real mode, each segment register is internally appended with a OH on its
rightmost end. This forms a 20-bit memory address, allowing it to access the start of a segment
at_any 16-byte boundary within the first 1M byte of memory. This is required in the micro-
processor to generate a 20-bit memory address. For example, if a segment register contains a
1200H, it addresses a 64K-byte memory segment beginning at location 12000H. Likewise, if a
segment register contains a 1201H, it addresses a memory segment beginning at location
12010H. Because of the internally appended OH, real mode segments can only begin at a 16-byte
boundary in the memory system. This 16-byte boundary is often called a paragraph.

Because a real mode segment of memory is 64K in length, once the beginning address is
known, the ending address is found by adding FFFFH. For example, if a segment register con-
tains 3000H, the first address of the segment is 30000H and the last address is 30000H + FFFFH
or 3FFFFH. Table 2-1 shows several examples of segment register contents and the starting and
ending addresses of the memory segments selected by each segment address.

The offset address is added to the start of the segment to address a memory location in the
memory segment. For example, if the segment address is 1000H and the offset address is 2000H,
the microprocessor addresses memory location 12000H. The segment and offset address is
sometimes written as 1000:2000 for a segment address of 1000H with an offset of 2000H.

In the 80286 (with special external circuitry) and the 80386 through the Pentium Pro, an
extra 64K minus 16 bytes of memory is addressable when the segment address is FFFFH and the
HIMEM.SYS driver is installed in the system. This area of memory (OFFFFOH-10FFEFH) is re-
ferred to as hlgh memory. When an address is generated using a segment address of FFFFH, the
A20 address pin is set (if supported) when an offset is added. For example, if the segment ad-
dress is FFFFH and the offset address is 4000H, the machine addresses memory location
FFFFOH + 4000H or 103FFOH. If A20 is not supported, the address generated is 03FFOH be-
cause A20 remains a logic zero.

Some addressing modes combine more than one register and an offset value to form an offset
address. When this occurs, the sum of these values may exceed FFFFH. For example, the address
accessed in a segment whose segment address is 3000H and whose offset address is specified as the
sum of FOOOH plus 3000H will access memory location 32000H, instead of location 42000H.
When the FOOOH and 3000H are added, they form a 16-bit (modulo 16) sum of 2000H used as the
offset address and not 12000H, the true sum. Note that the carry of 1 (FOOOH + 3000H = 12000H)
is dropped for this addition to form the offset address of 2000H.

Default Segment and Offset Registers

The microprocessor has a set of rules that apply to segments whenever memory is addressed.
These rules, which apply in either the real or protected mode, define the segment register and
offset register combination used by certain addressing modes. For example, the code segment
register is always used with the instruction pointer to address the next instruction in a program.

segment addresses Segment Register Starting Address Ending Address

2000H 20000H 2FFFFH
2001H 20010H 3000FH
21000H 21000H 30FFFH
ABOOH ABOOOH BAFFFH
1234H 12340H 2233FH

2-2 REAL MODE MEMORY ADDRESSING 53

TABLE 2-2 8086-80486)
and Pentium/Pentium Pro Segment Offset Special Purpose

default 16-bit segment and

offset address combinations CS P Instruction address
SS SP or BP Stack address
DS BX, DI, SlI, an 8-bit number Data address

or a 16-bit number
ES DI for string instructions String destination address

This combination is CS:IP or CS:EIP depending upon the microprocessor’s mode of operation.
The code segment register defines the start of the code segment and the instruction peinter lo-
cates the next instruction within the code segment. This combination (CS:IP or CS:EIP) locates
the next instruction executed by the microprocessor. For example, if CS = 1400H and IP/EIP =
1200H, the microprocessor fetches its next instruction from memory location 14000H + 1200H
or 15200H.

Another of the default combinations is the stack. Stack data are referenced through the
stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the base
pointer (BP/EBP). These combinations are referred to as SS:SP (SS:ESP) or SS:BP (SS:EBP).
For example, if SS = 2000H and BP = 3000H, the microprocessor addresses memory location
23000H for a stack segment memory location. Note that in real mode, only the rightmost 16-bits
of the extended register address a location within the memory segment. In the 80386—Pentium
Pro, never place a number larger than FFFFH into an offset register if the microprocessor is op-
erated in the real mode. This causes the system to halt and indicate an addressing error.

"~ Other defaults are shown in Table 2-2 for addressing memory using any Intel micro-
processor with 16-bit registers. Table 2-3 shows the defaults assumed in the 80386 and above
when using 32-bit registers. Note that the 80386 and above have a far greater selection of seg-
ment/offset address combinations than do the 8086 through the 80286 microprocessors.

The 8086-80286 microprocessors allow four memory segments, and the 80386 and above
allow six memory segments. Figure 2—4 shows a system that contains four memory segments.
Note that a memory segment can touch or even overlap if 64K bytes of memory are not required
for a segment. Think of segments as windows that can be moved over any area of memory to ac-
cess data or code. Also note that a program can have more than four or six segments, but can
only access four or six segments at a time.

Suppose an application program requires 1000H bytes of memory for its code, 190H bytes
of memory for its data, and 200H bytes of memory for its stack. This application does not require
an extra segment. When this program is placed in the memory system by DOS, it is loaded in the
TPA at the first available area of memory above the drivers and other TPA programs. This area

TABLE 2-3 80386, 80486, .
Pentium, and Pentium Pro Segment Offset Special Purpose

default 32-bit segment and

offset address combinations cs EIP Instruction address
SS ESP and EBP Stack address
DS EAX, EBX, ECX, EDX, ESI, EDI, an Data address
8-bit number, or a 32-bit number
ES EDI for string instructions String destination address
FS No default General address

GS No default General address

54

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

FIGURE 2-4 A memory Memory
system showing the place- FFFFF
ment of four memory
segments |
e]
59000
58FFF
Extra
49000 4 9 0 0 |ES
48FFF
44000
43FFF
Stack
34000 3400]SS
33FFF
30000
2FFFF
Code
20000 cs
1FFFF
Data
10000 1000 |DS
OFFFF
00000

is indicated by a free-pointer that is maintained by DOS. Program loading is handled automati-
cally by the program loader located within DOS. Figure 2-5 shows how this application is stored
in the memory system. The segments show an overlap because the amount of data in them does not
require 64K bytes of memory. The side view of the segments clearly shows the overlap and how
segments can be moved to any area of memory by changing the segment starting address. Fortu-
nately, DOS calculates and assigns segment starting addresses. This is explained in Chapter 7,
which details the operation of the assembler, BIOS, and DOS for an assembly language program.

Segment and Offset Addressing Scheme Allows Relocation

The segment and offset addressing scheme seems unduly complicated. It is complicated, but it
also affords an advantage to the system. This complicated scheme of segment plus offsct ad-
dressing allows programs to be relocated in the memory system. It also allows programs written
to function in the real mode to operate in a protected mode system. A relocatable program is one
that can be placed into any area of memory and executed without change. Relocatable data are
data that can be placed in any area of memory and used without any change to the program. The

2-2 REAL MODE MEMORY ADDRESSING

FIGURE 2-5 An application
program containing a code,
data, and stack segment
loaded into a DOS system
memory

Imaginary side
view detailing

55

segment overlap Memory
FFFFF
L L —— ~——_
— e —— /"—-_/
1
sl H
t
a
c
kip
a
t
alc 0A480
[¢] 0A47F
d Stack
L1 |e 0A280 0 A28 |SS
0A27F
Data
|| 0AOFO 0 A0 F |DS
0AOQEF
Code
0908F
DOS and drivers
00000

segment and offset addressing scheme allows both programs and data to be relocated without
changing anything in the programs or data. This is ideal for use in a general-purpose computer
system where not all machines contain the same memory areas. The personal computer memory
structure is different from machine to machine, requiring relocatable software and data.

Because memory is addressed within a segment by an offset address, the memory segment
can be moved to any place in the memory system without chanomg any of the offset addresses.
This is accomplished by moving the entire program, as a block, to a new area and then changing
only the contents of the segment registers. If an instruction is 4 bytes above the start of the seg-
ment, its offset address is 4. If the entire program is moved to a new area of memory, this offset
address of 4 still points to 4 bytes above the start of the segment. Only the contents of the seg-
ment register must be changed to address the program in the new area of memory. Without this
feature, a program would have to be extensively rewritten or altered before it is moved. This
would require additional time or many versions of a program for the ‘many different configura-

tions of computer systems.

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

a

PROTECTED MODE MEMORY ADDRESSING

Protected mode memory addressing (80286 and above) allows access to data and programs lo-
cated above the first 1M byte of memory as well as within the first 1M byte of memory. Ad-
dressing this extended section of the memory system requires a change to the segment plus offset
addressing scheme used with real mode memory addressing. When data and programs are ad-
dressed in extended memory, the offset address is still used to access information located within
the memory segment. The difference is that the segment address, as discussed with real mode
memory addressing, is no longer present in the protected mode. In place of the segment address,
the segment register contains a selector that selects a descriptor from a descriptor table. The de-
scriptor describes the memory segment’s location, length, and access rights. Because the seg-
ment register and offset address still access memory, protected mode instructions are identical to
real mode instructions. In fact, most programs written to function in the real mode will function
without change in the protected mode. The difference between modes is in the way that the seg-
ment register is interpreted by the microprocessor to access the memory segment.

Selectors and Descriptors

The selector, located in the segment register, selects one of 8,192 descriptors from one of two ta-
bles of descriptors. The descriptor describes the location, length, and access rights of the seg-
ment of memory. Indirectly, the segment register still selects a memory segment, but not directly
as in the real mode. For example, in the real mode, if CS = 0008H, the code segment begins at lo-
cation 00080H. In the protected mode, this segment number can address any memory location in
the entire system for the code segment, as explained shortly.

There are two descriptor tables used with the segment registers: one contains global de-
scriptors and the other contains local descriptors. The global descriptors contain segment defi-
nitions that apply to all programs, while the local descriptors are usually unique to an
application. Each descriptor table contains 8,192 descriptors, so a total of 16,384 descriptors are
available to an application at any time. Because the descriptor describes a memory segment, this
allows up to 16,384 memory segments to be described for each application.

Figure 2-6 shows the format of a descriptor for the 80286 through the Pentium Pro. Note
that each descriptor is 8 bytes in length, so the global and local descriptor tables are each a max-
imum of 64K bytes in length. Descriptors for the 80286 and tmlggm the Pentium Pro
differ slightly, but the 80286 descriptor is upward compatible.

The base address portion of the descriptor indicates the starting location of the memory
segment. For the 80286 microprocessor, the base address is a 24-bit address, so segments begin
at any location in its 16M bytes of memory. Note that the paragraph boundary limitation is re-
moved in these microprocessors when operated in the protected mode. The 80386 and above use
a 32-bit base address that allows segments to begin at any location in its 4G bytes of memory.
Notice how the 80286 descriptor’s base address is upward compatible to the 80386 through the
Pentium Pro descriptor because its most-significant 8-bits are 00H. Refer to Chapter 17 for addi-
tional detail on the 64G memory address space provided by the Pentium Pro processor.

The segment limit contains the last offset address found in a segment. For example, if a
segment begins at memory location FOOOOOH and ends at location FOOOFFH, the base address is
FO00OOH and the limit is FFH. For the 80286 microprocessor, the base address is FOOO00H and
the limit is OOFFH. For the 80386 and above, the base address is 00FO0000H and the limit is
000FFH. Notice that the 80286 has a 16-bit limit, and the 80386 through the Pentium Pro have a
20-bit limit. The 80286 accesses memory segments that are between 1 and 64K bytes in length.
The 80386 and above access memory segments that are between 1 and 1M byte or 4K and 4G
bytes in length.

2-3 PROTECTED MODE MEMORY ADDRESSING 57

80286 descriptor 80386/80486/Pentium/Pentium Pro descriptor
00000000 | 00000000 |6 Base (B31-B24) |G|p|o|Bf, Hmit e
7 V}(L19-L16)
Access rights Base (B23-B16) |4 5 Access rights Base (B23--B16) |4
3 Base (B15-B0) 2 3 Base (B15-B0) 2
] Limit (L15-L0) 0) Limit (L15-L0) 0

FIGURE 2-6 The descriptor formats for the 80286 and 80386/80486/Pentium/Pentium Pro
microprocessors

There is another feature found in the 80386 through the Pentium Pro descriptor that is not
found in the 80286 descriptor: the G bit or granularity bit. If G = 0, the limit specifies a segment
limit of from 1 to 1M byte in length. If G = 1, the value of the limit is multiplied by 4K bytes (ap-
pended with 000H). If G = 1, the limit is any multiple of 4K bytes. This allows a segment length
of 4K to 4G bytes in steps of 4K bytes. The reason that the segment length is 64K bytes in the
80286 is that the offset address is always 16-bits because of its 16-bit internal architecture. The
80386 and above use a 37 blt archltecture which allows an offset address, in the protected mode
16-bit offset address allows seoment lengths of 64K bytes. Operating systems operate in elther a
16~ or 32-bit environment.

The AV bit, in the 80386 and above descriptor, is used by some operating systems to indi-
cate that the segment is available (AV = 1) or not available (AV = 0). The D bit indicates how the
80386 through the Pentium Pro instructions access register and memory data in the protected or
real mode. If D = 0, the instructions are 16-bit instructions compatible with the 8086-80286 mi-
croprocessors. This means that the instructions use 16-bit offset addresses and 16-bit registers by
default. This mode is often called the 16-bit instruction mode. If D = I, the instructions are 32-bit
instructions. By default, the 32-bit instruction mode assumes that all offset addresses as well as all
registers are 32-bits. Note that the default for register size and offset address size can be over-
ridden in both the 16- and 32-bit instruction modes. Both the MSDOS and PCDOS operating sys-
tems require that the instructions are always used in the 16-bit instruction mode. Windows 3.1
also requires that the 16-bit instruction mode is selected. Note that the 32-bit instruction mode is
only accessible in a protected-mode system such as Windows NT, Windows 95, or OS/2. More
detail on these modes and their application to the instruction set appears in Chapters 3 and 4.

The access rights byte (see Figure 2-7) controls access to the protected mode memory
segment. This byte describes how the segment functions in the system. The access rights byte al-
lows complete control over the segment. If the segment is a data segment, the direction of growth
is specified. If the segment grows beyond its limit, the microprocessor’s program is interrupted,
1ndlcéﬁﬁg a general protection fault. You can even specify if a data segment can be written or is
write-protected. The code segment is also controlled in a similar fashion and can have reading
inhibited to protect software.

Descriptors are chosen from the descriptor table by the segment register. Figure 2—8 shows
how the segment re_glster functions in the protected mode system. The segment register contains
a 13-bit selector field, a table selector bit, and a _requested privilege level field. The 13-bit se-
lector chooses one of the 8,192 descriptors from the descriptor table. The TI bit selects either the
global descnptor table (TI = 0) or the local descriptor table (TI = 1). The requested privilege
level (RPL) requests the access privilege level of a memory segment. The highest privilege level
is 00 and the lowest is 11.If the requested privilege level matches or is higher in priority than the
prlv1lege level set by the access rights byte, access is granted. For example, if the requested priv-
ilege level is 10 and the access rights byte sets the segment privilege level at 11, access is granted

58 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

A =0 Segment not accessed
A =1 Segment has been accessed

E = 0 Descriptor describes a data segment
ED =0 Segment expands upward (data segment)
ED =1 Segment expands downward (stack segment)

W =0 Data may not be written
W =1 Data may be written

7 6 5 4 2 1.0

P| DPL | S ED[RW| A
Ic

L1 IL

ESEEEEEe

e

Descriptor describes code segment
Ignore descriptor privilege level
Abide by privilege level

Code segment may not be read
Code segment may be read

ITImOO M
wanonu
a0 20 =

S =0 System descriptor
S =1 Code or data segment descriptor

DLP = Sets the descriptor privilege level

P = 0 Descriptor is undefined
P =1 Segment contains a valid base and limit

Note: Some of the letters used to describe the bits in the access rights bytes vary in Intel documentation.

FIGURE 2-7 The access rights byte for the 80286, 80386, 80486, Pentium, and Pentium Pro

descriptor

because 10 is higher in priority than privilege level 11. Privilege levels are used in multi-user en-
vironments. If the privilege level is violated, the system normally indicates a privilege violation.

Figure 2-9 shows how the segment register, containing a selector, chooses a descriptor
from the global descriptor table. The entry in the global descriptor table selects a segment in the

memory system. In this illustration, DS contains 0008H, which accesses the descriptor number

1 from the global descriptor table using a requested privilege level of 00. Descriptor number 1

contains a descriptor that defines the base address as 00100000H with a segment limit of
000FFH. This means that a value of 0008H loaded into DS causes the microprocessor to use

memory locations 00100000H-001000FFH for the data segment with this example descriptor
table. Note that descriptor zero is called the null descriptor and may not be used for accessing

memory.

15

e —_—

————

Selector

3210
Tl RPL
|
RPL = Requested privilege level where
00 is the highest and 11 is the lowest
Tl = 0 Global descriptor table

Ti =1 Local descriptor table
Selects one descriptor from 8,192 descriptors

in either the global or the local descriptor table

FIGURE 2-8 The contents of a segment register during protected-mode operation of the
80286, 80386, 80486, Pentium, or Pentium Pro microprocessor

2-3 PROTECTED MODE MEMORY ADDRESSING 59

Memory system

FFFFFF
Global descriptor table
/__J
—
————__]
100100
1000FF
00 Data segment
00
Descriptor 1 9 2
8 8 100000
OFFFFF
00
DS 00
0008 FF L
- ~—
Ne————
000000

FIGURE 2-9 Using the DS register to select a descriptor from the global descriptor table. In this
example, the DS register accesses memory locations 100000H—1000FFH as a data segment.

Program-invisible Registers

The global and local descriptor tables are found in the memory system. In order to access and

cify the address of these tables, the 80286, 80386, 80486, Pentium, and Pentium Pro contain
program-invisible registers. The program invisible registers are not directly addressed by software,
so they are given this name, although some of these registers are accessed by the system software.
Figure 2-10 illustrates the program-invisible registers as they appear in the 80286 through the Pen-
tium Pro. These registers control the microprocessor when operated in the protected mode.

Each of the segment registers contains a program-invisible portion used in the protected
mode. The program-invisible portion of these registers is often called cache memory because a
cache is any memory that stores information. This cache is not to be confused with the normal
level 1 or level 2 caches found with the microprocessor. The program-invisible portion of the
segment register is loaded with the base address, limit, and access rights each time the number in
the segment register is changed. When a new segment number is placed in a segment register, the
microproééSsor accesses a descriptor table and loads the descriptor into the program invisible
cache portion of the segment register. It is held there and used to access the memory segment
until the segment number is again changed. This allows the microprocessor to access a memory
segment repeatedly without referring back to the descriptor table for each access, hence the term
cache. oo .

The GDTR (global descriptor table register) and IDTR (interrupt descriptor table reg-
ister) contain the base address of the descriptor table and its limit. The limit of each descriptor

60

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

Segment registers Descriptor cache

cs Base address Limit Access

[0}
w

TR Base address Limit Access

. Descriptor table addresses

GDTR Base address Limit

Program invisible

Notes:
1. The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.
4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium.

FIGURE 2-10 The program-invisible register within the 80286, 80386, 80486, Pentium, and
Pentium Pro microprocessor

table is 16-bits because the maximum table length is 64K bytes. When protected mode operation
is desired, the address of the global descriptor table and its limit are loaded into the GDTR. Be-
fore using protected mode, the interrupt descriptor table and the IDTR must also be initialized.
More detail is provided on protected mode operation in Chapters 16-17. At this point, the pro-
gramming and additional description of these registers are impossible.

The location of the local descriptor table is selected from the global descriptor table. One
of the global descriptors is set up to address the local descriptor table. To access the local de-
scriptor table, the LDTR (local descriptor table register) is loaded with a selector, just as a seg-
ment register is loaded with a selector. This selector accesses the global descriptor table and
loads the base address, limit, and access rights of the local descriptor table into the cache portion
of the LDTR.

The (task register) holds a selector that accesses a descriptor that defines a task. A task is
most often a procedure or application program. The descriptor for the procedure or application
program is stored in the global descriptor table, so access can be controlled through the privilege
levels. The task register allows a context or task switch in about 17 pus. Task switching allows the
microprocessor to switch between tasks in a fairly short amount of time. The task switch allows
multitasking systems to switch from one task to another in a simple and orderly fashion.

MEMORY PAGING

The memory paging mechanism located within the 80386 and above allows any physical
memory location to be assigned to any linear address. The linear address is defined as the address
generated by a program. With the memory paging unit, the linear address is invisibly translated
into any physical address. This allows an application written to function at a specific address to be

31

2-4 MEMORY PAGING 61

12
11

o
M| [P|D|TP|V
cl IslelslvimM| CR4 Pentium/Pentium Pro only
E E D! |E
PP
Page directory base address Clw CR3
D|T
Page fault linear address CR2
Reserved CR1
P|CIN Al W NIE|T|E|M|P
G|ow Ml P E|T|s|m|P|E| CRO
t [o¢] ©O
FIGURE 2-11 The control register structure of the microprocessor

relocated through the paging mechanism. It also allows memory to be placed into areas where no
memory exists. An example is the upper memory blocks provided by EMM386.EXE.

The EMM386.EXE program reassigns extended memory, in 4K blocks, to the system
memory between the video BIOS and the system BIOS ROMS to provide upper memory blocks.
Without the paging mechanism, the use of this area of memory is impossible.

Paging Registers

The paging unit is controlled by the contents of the microprocessor’s control registers. Refer to
Figure 2-11 for the contents of control registers CRO through CR3. Note that these registers are
only available to the 80386 through the Pentium Pro microprocessors. Also note that the Pen-
tium/Pentium Pro contain an additional control register labeled CR4 that controls extensions pro-
vided in the Pentium/Pentium Pro microprocessors. One of these features is a 4M byte page that
is enabled by setting bit position 4 or CR4. Refer to Chapter 17 for additional detail on 4M byte
memory paging. Note that at this time no operating system supports 4M byte memory paging.

The registers important to the paging unit are CR0 and CR3. The leftmost bit (PG) position
of CRO selects paging when placed at a logic 1 level. If the PG bit is cleared (0), the linear ad-
dress generated by the program becomes the physical address used to access memory. If the PG
bit is set (1), the linear address is converted to a physical address through the paging mechanism.
The paging mechanism functions in both the real and protected mode.

The contents of CR3 contain the page directory base address and the PCD and PWT bits.
The PCD and PWT bits control the operation of the PCD and PWT pins on the microprocessor.
If PCD is set (1), the PCD pin becomes a logic one during bus cycles that are not pages. This al-
lows the external hardware to control the level 2 cache memory. (Note that the level 2 cache
memory is an external high-speed memory. It functions as a buffer between the microprocessor
and the main DRAM memory system.) The PWT bit also appears on the PWT pin during bus cy-
cles that are not pages to control the write-through cache in the system. The page directory base
address locates the page directory for the page translation unit. Note that this address locates the
page directory at any 4K boundary in the memory system, because it is appended internally with
a 000H. The page directory contains 1,024 directory entries of four bytes each. Each page direc-
tory entry addresses a page table that contains 1,024 entries.

62

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

o YR S 0
Directory Page table Offset
(@)
b = 6543210
D|A|P|P{UW|P
Address C|wW
D|T

‘- Present
L Writable
» User defined
= Write-through
———————— Cache disable
» Acc d
(b) » Dirty (0 in page directory)

FIGURE 2-12 The format for the linear address (a) and a page directory or page table entry (b)

The linear address, as it is generated by the software, is broken into three sections that are
used to access the page directory entry, page table entry, and page offset address. Figure 2-12
shows the linear address and its makeup for paging. Notice how the leftmost 10 bits address an
entry in the page directory. For linear address 00000000H-003FFFFFH, the first entry of the page
directory is accessed. Each page directory entry represents a 4M byte section of the memory
system. The contents of the page directory select a page table that is indexed by the next 10 bits of
the linear address (bit positions 12-21). This means that address 00000000H-00000FFFH selects
page directory entry O and page table entry 0. Notice that this is a 4K byte address range. The offset
part of the linear address (bit positions 0~11) next selects a byte in the 4K byte memory page. In
Figure 2-12, if the page table 0 entry contains address 00100000H, then the physical address is
00100000H-00100FFFH for linear address 00000000H-00000FFFH. This means that when the
program accesses a location between 00000000H and 00000FFFH, the microprocessor physically
addresses location 00100000H-00100FFFH

Because the act of repaging a 4K byte section of memory requires access to the page di-
rectory and a page table, both located in memory, Intel has incorporated a cache called the TLB
(translation look-aside buffer). In the 80486 microprocessor, the cache holds the 32 most re-
cent page translation addresses. This means that the last 32 page table translations are stored in
the TLB, so if the same area of memory is accessed, the address is already present in the TLB
and access to the page directory and page tables is not required. This speeds program execution.
If a translation is not in the TLB, then the page directory and page table must be accessed, which
requires additional execution time. The Pentium and Pentium Pro both contain a separate TLB
for each of their instruction and data caches.

The Page Directory and Page Table

Figure 2-13 shows the page directory, a few page tables, and some memory pages. There is only
one page directory in the system. The page directory contains 1,024 doubleword addresses that

2-4 MEMORY PAGING 63

Memory pages

Dir Page Offset

Page tables e~

—

Page directory

CR3 T

FIGURE 2-13 The paging mechanism in the 80386, 80486, Pentium, and Pentium Pro microprocessor

locate up to 1,024 page tables. The page directory and each page table are 4K bytes in length. If
the entire 4G bytes of memory are paged, the system must allocate 4K bytes of memory for the
page directory and 4K times 1,024 or 4M bytes for the 1,024 page tables. This represents a con-
siderable investment in memory resources.

The DOS system and EMM386.EXE use page tables to redefine the area of memory be-
tween locations C8000H-EFFFFH as upper memory blocks. They do this by repaging extended
memory to back-fill this part of the conventional memory system to allow DOS access to addi-
tional memory. Suppose that the EMM386.EXE program allows access to 16M bytes of ex-
tended and conventional memory through paging, and locations C8000H-EFFFFH must be
repaged to locations 110000-138000H with all other areas of memory paged to their normal lo-
cations. Such a scheme is depicted in Figure 2-14.

Here the page directory contains four entries. Recall that each entry in the page directory
corresponds to 4M bytes of physical memory. The system also contains four page tables with
1,024 entries each. Recall that each entry in the page table repages 4K bytes of physical memory.
This scheme requires a total of 16K of memory for the four page tables and 16 bytes of memory
for the page directory.

As with DOS, the Windows program also repages the memory system. At present, Win-
dows 3.11 only supports paging for 16M bytes of memory because of the amount of memory re-
quired to store the page tables. On the Pentium and Pentium Pro microprocessors, pages can be
either 4K bytes in length or 4M bytes in length. Although no software currently supports the 4M
byte pages, as the Pentium Pro and more advanced versions such as the P7 pervade the personal
computer scene, operating systems of the future will undoubtedly begin to support 4M byte
memory pages.

64 CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

FIGURE 2-14 The page Page table 0

directory, page table 0

and two memory pages.

Note how the address of
page 000C8000-000C9000 00003FF4 0003D003 00110FFF
has been moved to 00003FF0 0003C003 00110FFE
00110000-00110FFF. — |
00003328 | 00112003 —~——
00003324 | 00111003
00003320 | 00110003 00110002
_,__\ 00110001
[T 00110000
00003008 | 00002003 Page 000C8
00003004 | 00001003 00000FFF
— 00003000 | 00000003 —
) R e
— _—
0000200C)
00002008 00000002
00002004 00000001
| 00002000 [00003003 00000000

; 00003FFC 0003F003
00003FF8 0003E003

Page directory Page 00000H

2-5 SUMMARY

. The programming model of the 8086 through 80286 contains 8- and 16-bit registers. The

programming model of the 80386 and above contains 8-, 16-, and 32-bit extended registers
as well as two additional 16-bit segment registers: FS and GS.

The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL. The 16-bit registers are AX,
BX, CX, DX, SP, BP, DI, and SI. The segment registers are CS, DS, ES, SS, FS, and GS. The
32-bit extended registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. In addition, the
microprocessor contains an instruction pointer (IP/EIP) and flag register (FLAGS or EFLAGS).

. All real mode memory addresses are a combination of a segment address plus an offset ad-

dress. The starting location of a segment is defined by the 16-bit number in the segment reg-
ister that is appended with a hexadecimal zero to its rightmost end. The offset address is a
16-bit number added to the 20-bit segment address to form the real mode memory address.

. All instructions (code) are accessed by the combination of CS (segment address) plus IP or

EIP (offset address).

Data are normally referenced through a combination of the DS (data segment) and either an
offset address or the contents of a register that contains the offset address. The 8086 through
the Pentium Pro use BX, DI, and SI as default offset registers for data if 16-bit registers are
selected. The 80386 and above can use the 32-bit registers EAX, EBX, ECX, EDX, EDI,
and ESI as default offset registers for data.

Protected mode operation allows memory above the first IM byte to be accessed by the
80286 through the Pentium Pro microprocessors. This extended memory system (XMS) is

2-6 QUESTIONS AND PROBLEMS 65

accessed via a segment address plus an offset address, just as in the real mode. The differ-
ence is that the segment address is not held in the segment register. In the protected mode,
the segment starting address is stored in a descriptor that is selected by the segment register.

7. A protected mode descriptor contains a base address, limit, and access rights byte. The base
address locates the starting address of the mernory segment. The limit defines the last loca-
tion of the segment. The access rights byte defines how the memory segment is accessed via
a program. The 80286 microprocessor allows a memory segment to start at any of its 16M
bytes of memory using a 24-bit base address. The 80386 and above allow a memory seg-
ment to begin at any of their 4G bytes of memory using a 32-bit base address. The limit is a
16-bit number in the 80286 and a 20-bit number in the 80386 and above. This allows an
80286 memory segment limit of 64K bytes and an 80386 and above memory segment limit
of either 1M byte (G = 0) or 4G bytes (G =1).

8. The segment register contains three fields of information in the protected mode. The leftmost
13 bits of the segment register address one of 8,192 descriptors from a descriptor table. The
TI bit accesses either the global descriptor table (TT = 0) or the local descriptor table (TI = 1).
The rightmost 2 bits of the segment register select the requested priority level for the
memory segment access.

9. The program invisible registers are used by the 80286 and above to access the descriptor ta-
bles. Each segment register contains a cache portion that is used in protected mode to hold
the base address, limit, and access rights acquired from a descriptor. The cache allows the
microprocessor to access the memory segment without again referring to the descriptor table
until the segment register’s contents are changed.

10. A memory page is 4K bytes in length. The linear address, as generated by a program, can be
mapped to any physical address through the | paomo mechanism found within the 80386
through the Pentium Pro microprocessors.

11. Memory paging is accomplished through control registers CRO and CR3. The PG bit of CRO
enables pa01n0 and the contents of CR3 addresses the page directory. The page directory
contains up to 1,024 page table addresses used to access paging tables. The page table con-
tains 1,024 entries that locate the physical address of a 4K byte memory page.

12. The TLB (translation look-aside buffer) caches the 32 most recent page table translations.
This precludes page table translation if the translation resides in the TLB, speeding the exe-
cution of software.

2-6

QUESTIONS AND PROBLEMS

. What are program-visible registers?

. The 80286 addresses registers that are 8- and __ _ - bits wide.
. The extended registers are addressable by which microprocessors?

. The extended BX register is addressed as

Which register holds a count for some instructions?

. What is the purpose of the IP/EIP register?

. The carry flag bit is set by what arithmetic operations?

. Will an overflow occur if a signed FFH is added to a signed 01H?

. A number that contains 3 one bits issaidtohave __________parity.
. Which flag bit controls the INTR pin on the microprocessor?

. Which microprocessors contain an FS segment register?

. What is the purpose of a segment register in the real mode operation of the microprocessor?

_.
SV AUL A WN

—
QO

t

66

CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE

13.

14.

15.
16.

17.

18.

19.
20.

21.

22.
23.
24.
25.
26.
217.
28.
29.

30.

In the real mode, show the starting and ending addresses of each segment located by the fol-
lowing segment register values:

(a) 1000H

(b) 1234H

(c) 2300H

(d) EO0OH

(e) ABOOH

Find the memory address of the next instruction executed by the microprocessor, when op-
erated in the real mode, for the following CS:IP combinations:

(a) CS =1000H and IP = 2000H

(b) CS =2000H and IP = 1000H

(c) CS =2300H and IP = 1A00H

(d) CS =1A00H and IP = BOOOH

(e) CS =3456H and IP = ABCDH

Real mode memory addresses allow access to memory below which address?

Which register or registers are used as an offset address for string instruction destinations in
the 80486 microprocessor?

Which 32-bit register or registers are used as an offset address for data segment data in the
80386 microprocessor?

The stack memory is addressed by a combination of the _____ segment plus
offset.
If the base pointer (BP) addresses memory.the____ segment contains the data.

Determine the memory location addressed by the following real mode 80286 register com-
binations:

(a) DS = 1000H and DI = 2000H

(b) DS =2000H and SI = 1002H

(c) SS =2300H and BP = 3200H

(d) DS = AOOOH and BX = 1000H

(e) SS =2900H and SP = 3A00H

Determine the memory location addressed by the following real mode 80386 register com-
binations:

(a) DS =2000H and EAX = 00003000H

(b) DS = 1A00H and ECX = 00002000H

(c) DS = CO000H and ESI = 0000A000H

(d) SS = 8000H and ESP = 00009000H

(e) DS =1239H and EDX = 0000A900H

Protected mode memory addressing allows access to which area of the memory in the 80286
microprocessor?

Protected mode memory addressing allows access to which area of the memory in the Pen-
tium microprocessor?

What is the purpose of the segment register in protected mode memory addressing?

How many descriptors are accessible in the global descriptor table in the protected mode?
For an 80286 descriptor that contains a base address of AOOOOOH and a limit of 1000H, what
starting and ending locations are addressed by this descriptor?

For an 80486 descriptor that contains a base address of 01000000H, a limit of OFFFFH, and
G =0, what starting and ending locations are addressed by this descriptor?

For a Pentium descriptor that contains a base address of 00280000H, a limit of 00010H, and
G =1, what starting and ending locations are addressed by this descriptor?

If the DS register contains 0020H, in a protected mode system, which global descriptor table
entry is accessed?

1f DS = 0103H, in a protected mode system, the requested privilege level is

2-6

31

32.
33.

34.

35.
36.
37.

38.
39.
40.
41.

42.
43.
44.

45.
46.
47.
48.

49.
50.

QUESTIONS AND PROBLEMS 67

If DS = 0105H, in a protected mode system, which entry, table, and requested privilege level
are selected?

What is the maximum length of the global descriptor table in the Pentium microprocessor?
Code a descriptor that describes a memory segment that begins at location 210000H and
ends at location 21001FH. This memory segment is a code segr :nt that can be read. The de-
scriptor is for an 80286 microprocessor.

Code a descriptor that describes a memory segment that begins at location 03000000H and
ends at location OSFFFFFFH. This memory segment is a data segment that grows upward in
the memory system and can be written. The descriptor is for an 80386 microprocessor.
Which register locates the global descriptor table?

How is the local descriptor table addressed in the memory system?

Describe what happens when a new number is loaded into a segment register when the mi-
croprocessor is operated in the protected mode.

What are the program-invisible registers?

What is the purpose of the GDTR?

How many bytes are found in a memory page?

What register is used to enable the paging mechanism in the 80386, 80486, Pentium, and
Pentium Pro microprocessors?

How many 32-bit addresses are stored in the page directory?

Each entry in the page directory translates how much linear memory into physical memory?
If the microprocessor sends linear address 00200000H to the paging mechanism, which
paging directory entry is accessed, and which page table entry is accessed?

What value is placed in the page table to redirect linear address 20000000H-30000000H?
What is the purpose of the TLB located within the 80486 microprocessor?

Use the Internet to locate the Texas Instruments web page and write a report that details the
types of memory devices manufactured by Texas Instruments.

Use the Internet to locate the Intel web page and list the types of embedded microprocessors
available.

Use the Internet to locate the AMD web page and list the types of microprocessors produced.
Use the Internet to find web sites that list facts about Intel microprocessors and write a paper
that details at least two microprocessors.

CHAPTER 3
Addressing Modes

68

INTRODUCTION

Efficient software development for the microprocessor requires a complete familiarity with
the addressing modes employed by each instruction. In this chapter, the MOV (meove data)
instruction is used to describe the data-addressing modes. The MOV instruction transfers bytes
or words of data between registers or between registers and memory in the 8086 through the
80286 and bytes, words, or doublewords in the 80386 and above. In describing the program
memory-addressing modes, the CALL and JMP instructions show how to modify the flow of
the program.

The data-addressing modes include register, immediate, direct, register indirect, base-
plus-index, register relative, and base relative-plus-index in the 8086 through the 80286 mi-
croprocessors. The 80386 and above also include a scaled-index mode of addressing memory
data. The program memory-addressing modes include program relative, direct, and indirect.
The operation of the stack memory is explained so that the PUSH and POP instructions are
understood.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Explain the operation of each data-addressing mode.

Use the data-addressing modes to form assembly language statements.

Explain the operation of each program memory-addressing mode.

Use the program memory-addressing modes to form assembly and machine language
statements.

Select the appropriate addressing mode to accomplish a given task.

Detail the difference between addressing memory data using real mode and protected mode
operation.

7. Describe the sequence of events that place data onto the stack or remove data from the stack.
8. Explain how a data structure is placed in memory and used with software.

NS

oo

3-1 DATA-ADDRESSING MODES 69

DATA-ADDRESSING MODES

Because the MOV instruction is common and flexible, it provides a basis for the explanation of
the data-addressing modes. Figure 3-1 illustrates the MOV instruction and defines the direction
of data flow. The source is to the right and the destination is to the left, next to the opcode MOV.
(An opcode or operation code tells the microprocessor which operation to perform) This direc-
tion of flow, which is applied to all instructions, initially seems awkward. We naturally assume
that things move from left to right, where as here they move from right to left. Notice that a
comma always separates the destination from the source in an instruction. Also note that memory-
to-memory transfers are not allowed by any instruction except for the MOVS instruction.

' In Figure 3-1, the MOV AX,BX instruction transfers the word contents of the source reg-
ister (BX) into the destination register (AX). The source never changes, but the destination al-
most always changes.! It is essential to remember that a MOV instruction always copies the
source data into the destination. The MOV never actually picks up the data and moves it. Also
note that the flag register remains unaffected by most data transfer instructions.

Floure 3-2 shows all p0351ble variations of the data-addressing modes using the MOV in-
struction. This illustration helps to show how each data-addressing mode is formulated with the
MOV instruction and also serves as a reference. Note that these are the same data-addressing
modes found with all versions of the Intel microprocessor, except for the scaled-index addressing
mode, which is only found in the 80386 through the Pentium Pro. The data-addressing modes are:

Register Transfers a copy of a byte or word from the source register or memory

addressing location to the destination register or memory location. (Example: the
MOV CX,DX instruction copies the word-sized contents of register
DX into register CX.) In the 80386 and above, a doubleword can be
transferred from the source register or memory location to the desti-
nation register or memory location. (Example: the MOV ECX,EDX
instruction copies the doubleword-sized contents of register EDX

into register ECX.)
Immediate Transfers the source-immediate byte or word of data into the destina-
addressing tion register or memory location. (Example: the MOV AL,22H instruc-

tion copies a byte-sized 22H into register AL.) In the 80386 and above,

a doubleword of immediate data can be transferred into a register or
memory location. (Example: the MOV EBX, 12345678H instruction
copies a doubleword-sized 12345678H into the 32-bit wide EBX register.)

Direct Moves a byte or word between a memory location and a register. The
addressing instruction set does not support a memory-to-memory transfer, except
for the MOVS instruction. (Example: the MOV CX,LIST instruction

FIGURE 3-1 The MOV in-

struction showing the source, MOV AX,BX
destination, and direction of
data flow T
L Source
Destination

'The exceptions are the CMP and TEST instructions. which never change the destination. These instructions are de-
scribed in later chapters.

CHAPTER 3 ADDRESSING MODES

70

HO0L01
ssaippe
fowspy

HOOS 1L
ssalppe
Kowapy

10
181s1bay

HO0S01
ssaippe
Aowapy

HOO0E0}
ssaippe
Aowsy

HPESHL
ssalppe
Kowapy

HO
19)s1bay

H0001 = SA pue ‘Ho00 | = AVHHY ‘H00200000 = IS3 ‘HO0E00000 = Xg3 :SS}ON

sepow Buissaippe-elep oid-wWniusd-9808 Z-€ IHNOIA

H00~00000 + HO0E00000 + HO000 L

XY
1918160y

uoneunsaq

T isaxgex@3atHoixsa T 3% xv(Is3 x z+xa3l AOW
HO020 + HOOE0 + HO0O} + HO000 ! <
T IstXatAvEHY+HOLXSa T X0 XQlIS+XalAvHEY AOW
¥ + HOOE0 + HO000 HvOE0!
+] ssauppe ¢
ST p+Xa+HoLxSQ Sooippe [+xal710 AOW
HO00Z0 + HOOE0 + HO000} =
=T Is+xg+Hoixsg 1isiboy da‘lis+xal AOW
HOOE0 + HO000 =
<~ xg+Hoixsd Josibey 10°xa] AOW
HPEZL + HO000 o
T dSIg+Holxsg v | JeisiBoy Xv'[HrezL] AOW
g HVE'HO AOW
Xg ‘
‘_wuw_awm XaxXv AOW
uoneIaUdY) SSAIPPY a2unosg uononysuj

Xopu| pajess

xapul-snid-aanejes aseg

aAlelal 19)sibay

xapui-snjd-aseg

yaupul 1oysiBay

o8i1Q

ajeipaww)

19)s1bay

adAy

3-1 DATA-ADDRESSING MODES 71

Register indirect
addressing

Base-plus-index
addressing

Register relative
addressing

Base relative-plus-
index addressing

Scaled-index
addressing

copies the word-sized contents of memory location LIST into register
CX.) In the 80386 and above, a doubleword-sized memory location can
also be addressed. (Example: the MOV ESLLIST instruction copies a
32-bit number, stored in four consecutive bytes of memory, from loca-
tion LIST into register ESI.)

Transfers a byte or word between a register and a memory location
addressed by an index or base register. The index and base registers are
BP, BX, DI, and SI. (Example: the MOV AX,[BX] instruction copies
the word-sized data from the data segment offset address indexed by
BX into register AX.) In the 80386 and above, a byte, word, or double-
word is transferred between a register and a memory location addressed
by any register: EAX, EBX, ECX, EDX, EBP, EDI, or ESI. (Example:
the MOV AL,[ECX] instruction loads AL from the data segment offset
address selected by the contents of ECX.)

Transfers a byte or word between a register and the memory location
addressed by a base register (BP or BX) plus an index register (DI or
SI). (Example: the MOV [BX+DI],CL instruction copies the byte-
sized contents of register CL into the data segment memory location
addressed by BX plus DI.) In the 80386 and above, any register EAX,
EBX, ECX, EDX, EBP, EDI, or ESI may be combined to generate the
memory address. (Example: the MOV [EAX+EBX],CL instruction
copies the byte-sized contents of register CL into the data segment
memory location addressed by EAX plus EBX.)

Moves a byte or word between a register and the memory location
addressed by an index or base register plus a displacement. (Example:
MOV AX,[BX+4] or MOV AX,ARRAY[BX]. The first instruction
loads AX from the data segment address formed by BX plus 4. The
second instruction loads AX from the data segment memory location
in ARRAY plus the contents of BX.) The 80386 and above use any
register to address memory. (Example: MOV AX,[ECX+4] or MOV
AX,ARRAY[EBX]. The first instruction loads AX from the data seg-
ment address formed by ECX plus 4. The second instruction loads
AX from the data segment memory location ARRAY plus the con-
tents of EBX.)

Transfers a byte or word between a register and the memory location
addressed by a base and an index register plus a displacement. (Example:
MOV AX,ARRAY[BX+DI] or MOV AX,[BX+DI+4]. These instruc-
tions both load AX from a data segment memory location. The first
instruction uses an address formed by adding ARRAY, BX, and DI;
the second, by adding BX, DI, and 4.) (An 80386 and above example:
MOV EAX,ARRAY[EBX+ECX] loads EAX from the data segment
memory location accessed by the sum of ARRAY, EBX, and ECX.)

Is available only in the 80386 through the Pentium Pro microprocessors.
The second register of a pair of registers is modified by the scale factor
of 2X, 4X, or 8X to generate the operand memory address. (Example:
a MOV EDX,[EAX+4*EBX] instruction loads EDX from the data
segment memory location addressed by EAX plus 4 times EBX.) Scal-
ing allows access to word (2X), doubleword (4X), or quadword (8X)
memory array data. Note that a scaling factor of 1X also exists, but it
is normally implied and does not appear in the instruction. The MOV

72

CHAPTER 3 ADDRESSING MODES

AL,[EBX+ECX] is an example where the scaling factor is a one. Al-
ternately, the instruction can be rewritten as MOV AL,[EBX+1*ECX].
Another example is a MOV AL,[2*EBX] instruction, which uses
only one scaled register to address memory.

Register Addressing

Register addressing is the most common form of data addressing and, once the register names
are learned, is the easiest to apply. The microprocessor contains the following 8-bit registers
used with register addressing: AH, AL, BH, BL, CH, CL, DH, and DL. Also present are the fol-
lowing 16-bit registers: AX, BX, CX, DX, SP, BP, SI, and DI. In the 80386 and above, the ex-
tended 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. With register
addressing, some MOV instructions and the PUSH and POP instructions also use the 16-bit seg-
ment registers (CS, ES, DS, SS, FS, and GS). It is important for instructions to use registers that
are the same size. Never mix an 8-bit register with a 16-bit register, an 8-bit register with a 32-bit
register, or a 16-bit register with 32-bit register, because this is not allowed by the micro-
processor and results in an error when assembled. This is even true when a MOV AX,AL or a
MOV EAX,AL instruction may seem to make sense. Of course, the MOV AX,AL or MOV
EAX,AL instructions are not allowed, because these registers are of different sizes. Note that a
few instructions, such as SHL DX,CL, are exceptions to this rule, as indicated in later chapters.
It is also important to note that none of the MOV instructions affect the flag bits.

Table 3-1 shows many variations of register move instructions. It is impossible to show all
of the many possible combinations. For example, just the 8-bit subset of the MOV instruction
has 64 different variations. A segment-to-segment register MOV instruction is virtually the only
type of register MOV instruction not allowed. Also note that the code segment register may not
be changed by a MOV instruction, because the address of the next instruction is found in both
IP/EIP and CS. If only CS were changed, the address of the next instruction would be unpre-
dictable. Therefore, changing the CS register with a MOV instruction is not allowed.

Figure 3-3 shows the operation of the MOV BX,CX instruction. Note that the source reg-
ister’s contents do not change, but the destination register’s contents do change. This instruction
moves (copies) a 1234H from register CX into register BX. This erases the old contents (76AFH)
of register BX, but the contents of CX remain unchanged. The contents of the destination register

TABLE 3-1 Examples of
the register-addressed Assembly Language Size Operation
instructions
MOV AL,BL 8-bits Copies BL into AL
MOV CH,CL 8-bits Copies CL into CH
MOV AX,CX 16-bits Copies CX into AX
MOV SP,BP 16-bits Copies BP into SP
MOV DS,AX 16-bits Copies AX into DS
MOV SI,DI 16-bits Copies Dl into SI
MOV BX,ES 16-bits Copies ES into BX
MOV ECX,EBX 32-bits Copies EBX into ECX
MOV ESP,EDX 32-bits Copies EDX into ESP
MO 7 ES,DS — Not allowed (segment-to-segment)
MOV BL,DX — Not allowed (mixed sizes)
MOV CS,AX — Not allowed (the code segment register

may not be the destination register)

3-1 DATA-ADDRESSING MODES 73

FIGURE 3-3 The effect of Register array

executing the MOV BX, CX
instruction at the point just EAX
before the BX register
changes. Note that only the
rightmost 16-bits of register

EBX change.

EBX 223 4 7 6 AF
ECX 11AC 102 34 1 234 /

or destination memory location change for all instructions except the CMP and TEST instruc-
tions. Note that the MOV BX,CX instruction does not affect the leftmost 16-bits of register EBX.

Example 3-1 shows a sequence of assembled instructions that copy various data between 8-,
16-, and 32-bit registers. As mentioned, the act of moving data from one register to another only
changes the destination register, never the source. The last instruction in this example (MOV CS,AX)
assembles without error, but causes problems if executed. If only the contents of CS change without

‘éhénging IP, the next step in the program is unknown and the program consequently goes awry.

EXAMPLE 3-1
0000 8B C3 MOV AX,BX ;copy contents of BX into AX

0002 8A CE MOV CL,DH ;copy the contents of DH into CL
0004 8A CD MOV CL,CH ;copy the contents of CH into CL
0006 6613B C3 MOV EAX, EBX ;copy the contents of EBX into EAX
0009 6613B D8 MOV EBX, EAX ;copy EAX into EBX, ECX, and EDX
000C 6613B C8 MOV ECX, EAX

000F 6618B DO MOV EDX, EAX

0012 8C C8 MOV AX,CS ;jcopy CS into DS

0014 8E D8 MOV DS, AX

0016 8E C8 MOV CS,AX ;assembles, but will cause problems

Immediate Addressing

Another data-addressing mode is immediate addressing. The term immediate implies that the data
immediately follow the hexadecimal opcode in the memory. Also note that immediate data are
constant data, while the data transferred from a register are variable data. Immediate addressing
operates upon a byte or word of data. In the 80386 through the Pentium Pro microprocessors im-
mediate addressing also operates on doubleword data. The MOV immediate instruction transfers a
copy of the immediate data into a register or a memory location. Figure 3—4 shows the operation of
a MOV EAX,13456H instruction. This instruction copies the 13456H from the instruction, located
in the memory immediately following the hexadecimal opcode, into register EAX. As with the
MOV instruction illustrated in Figure 3-3, the source data overwrite the destination data.

In symbolic assembly language, the symbol # precedes immediate data in some assem-
blers.? The MOV AX#3456H instruction is an example. Most assemblers do not use the #
symbol but represent immediate data as shown in the MOV AX,3456H instruction. In this text,
the # symbol is not used for immediate data. The most common assemblers—Intel ASM, Mi-
crosoft MASM?, and Borland TASM*“—do not use the # symbol for immediate data, but older
assemblers used with some Hewlett-Packard logic development systems do, as may others.

This is true for the assembler provided by Hewlett-Packard in some development systems.
*MASM (MACRO assembler) is a trademark of Microsoft Corporation.
*TASM (Turbo assembler) is a trademark of Borland Corporation.

74 CHAPTER 3 ADDRESSING MODES

FIGURE 3-4 The operation Register array Program

of the MOV EAX,3456H in-

struction. This instruction EAX 3333 6 2 9 1 MOV EAX,13456H

copies the immediate data

(13456H) into EAX. EBX ~ 13456H
——/'—_’\

The symbolic assembler portrays immediate data in many ways. The letter H appends
hexadecimal data. If hexadecimal data begin with a letter, the assembler requires that the data
start with a 0. For example, to represent a hexadecimal F2 F2, a OF2H is used in assembly language.
In some assemblers (though not in MASM, TASM, or this text), hexadecimal data are repre-
sented with an ‘h, as in MOV AX #’h1234. Decimal data are represented as is, and require no
special codes or adjustments. An example is the 100 decimal in the MOV AL,100 instruction.
An ASCII-coded character or characters may be depicted in the immediate form if the ASCII
data are enclosed in apostrophes. An example is the MOV BH,’A’ instruction, which moves an
ASCII-coded A (41H) into register BH. Be careful to use the apostrophe () for ASCII data, and
not the single quotation mark (*). Binary data are represented if the binary number is followed by
the letter B or, in some assemblers, the letter Y. Table 3-2 shows many different variations of
MOV instructions that apply immediate data.

Example 3-2 shows various immediate instructions in a short program that places a 0000H
into the 16-bit registers AX, BX, and CX. This is followed by instructions that use register ad-
dressing to copy the contents of AX into registers SI, DI, and BP. This is a complete program
that uses programming models for assembly and execution. The MODEL TINY statement di-
rects the assembler to assemble the program into a single segment. The .CODE statement or di-
rective indicates the start of the code segment; the .STARTUP statement indicates the starting
instruction in the program; and the .EXIT statement causes the program to exit to DOS. The
END statement indicates the end of the program file. This program can be assembled with
MASM and executed with CodeView? (CV) to view its execution. To store the program into the
system, use either the DOS EDIT program or Programmer’s WorkBench® (PWB). Note that a
TINY program assembles as a command (.COM) program.

EXAMPLE 3-2
.MODEL TINY ;choose single segment model

0000 .CODE ;indicate start of code segment
.STARTUP ;indicate start of program

0100 B8 0000 MOV AX,0 ;place 0000H into AX

0103 BB 0000 MOV BX,0000H ;place 0000H into BX

0106 BS 0000 MOV cx,0 ;place 0000H into CX

0109 8B FO MOV ST, AX ;copy AX into SI

010B 8B F8 MOV DI, AX ;copy AX into DI

010D 8B E8 MOV BP, AX ;copy AX into BP
JEXIT ;exit to DOS
END ;end of file

Each statement in a program consists of four parts or fields, as illustrated in Example 3-3.
The leftmost field is called the label; and it is used to store a symbolic name for the memory lo-
cation that it represents. All labels bein with a letter or one of the following special characters:
@, $, _, or 7. A label may be of any lulgth from 1 to 35 characters. The label appears in a pro-

e

3CodeView is a registered trademark of Microsoft Corporation.
®Programmer’s WorkBench is a registered trademark of Microsoft Corporation.

3-1 DATA-ADDRESSING MODES 75

TABLE 3-2 Examples of -
immediate addressing using Assembly Language Size Operation

the MOV instruction

MOV BL,44 8-bits Copies a 44 decimal (2CH) into BL
MOV AX,44H 16-bits Copies a 0044H into AX

MOV SI,0 16-bits Copies a 0000H into SI

MOV CH,100 8-bits Copies a 100 decimal (64H) into CH
MOV ALA’ 8-bits Copies an ASCII Ainto AL

MOV AX,AB’ 16-bits Copies an ASCIlI BA* into AX

MOV CL,11001110B 8-bits Copies a 11001110 binary into CL
MOV EBX,12340000H 32-bits Copies a 12340000H into EBX
MOV ESI,12 32-bits Copies a 12 decimal into ESI

MOV EAX,100Y 32-bits Copies a 100 binary into EAX

*Note: This is not an error. The ASCIl characters are stored as a BA, so care should be
exercised when using a word-sized pair of ASCII characters.

gram to identify the name of a memory location for storing data and for other purposes that are
explained in the text as they appear. The next field is called the opcode field; it is designed to
hold the instruction or opcode. The MOV instruction is an example of an opcode. To the right of
the opcode field is the operand field, which contains information used by the opcode. For ex-
ample, the MOV AL,BL instruction has the opcode MOV and operands AL and BL. Note that
some instructions contain between zero and three operands. The final field, the comment field,
contains a comment about an instruction or a group of instructions. A comment always begins
with a semicolon (;). i '

EXAMPLE 3-3
LABEL OPCODE OPERAND COMMENT
DATAL DB 23H ;define DATAl as a byte of 23H
DATA2 DW 1000H ;define DATA2 as a word of 1000H
START: MOV AL, BL ;copy BL into AL

MOV BH, AL ;copy AL into BH

MOV CX,200 ;copy 200 decimal into CX

/" When the program is assembled and the list (LST) file is viewed, it appears as the pro-
gram listed in Example 3-2. The hexadecimal number at the far left is the offset address of the
instruction or data. This number is generated by the assembler. The number or numbers to the
right of the offset address are the machine-coded instructions or data that are also generated by
the assembler. For example, if the MOV AX,0 instruction appears in a file and it is assembled, it
appears in memory location 0100 in Example 3-2. Its hexadecimal machine language form is B8
0000. When the program was written, only the MOV AX,0 instruction was typed into the editor;
the assembler generated the machine code and address and stored the program in a file ending
with the extension .LST. Note that all programs shown in this text are in the form generated by
the assembler.

Direct Data Addressing

Most instructions can use the direct data addressing mode. In fact, direct data addressing is ap-
plied to many instructions in a typical program. There are two basic forms of direct data ad-
dressing: (1) direct addressing, which applies to a MOV between a memory location and AL,
AX, or EAX, and (2) displacement addressing, which applies to almost any instruction in the
instruction set. In either case, the address is formed by adding the displacement to the default
data segment address or an alternate segment address. o

76

CHAPTER 3 ADDRESSING MODES

Memory
11235H
AH AL
EAX 8AH < 8AH 8 A |411234H
EBX 11233H
ECX 11232H
W \

FIGURE 3-5 The operation of the MOV AL,[1234H] instruction when DS = 1000H

Direct Addressing. Direct addressing, with a MOV instruction, transfers data between a mem-
ory location, located within the data segment, and the AL (8-bit), AX (16-bit), or EAX (32-bit)
register. A MOV instruction using this type of addressing is usually a 3-byte long instruction. (In
the 80386 and above, a register size prefix may appear before the instruction, causing it to ex-
ceed three bytes in length.)

The MOV AL,DATA instruction, as represented by most assemblers, loads AL from data
segment memory location DATA (1234H). Memory location DATA is a symbolic memory lo-
cation, while the 1234H is the actual hexadecimal location. With many assemblers, this instruc-
tion is represented as a MOV AL,[1234H] instruction.” The [1234H] is an absolute memory
location that is not allowed by all assembler programs. Note that this may need to be formed as
MOV AL,DS:[1234H] with some assemblers, to show that the adddress is in the data segment.
Figure 3-5 shows how this instruction transfers a copy of the byte-sized contents of memory lo-
cation 11234H into AL. The effective address is formed by adding 1234H (the offset address) to
10000H (the data segment address) in a system operating in the real mode.

Table 3-3 lists the three direct addressed instructions. These instructions often appear in
programs, so Intel decided to make them special 3-byte long instructions to reduce the length of
programs. All other instructions that move data from a memory location to a register, called dis-
placement addressed instructions, require four or more bytes of memory for storage in a program.

TABLE 3-3 Direct addressed instructions using EAX, AX and AL

Assembly Language Size Operation

MOV AL,NUMBER 8-bits Copies the byte contents of data segment memory
location NUMBER into AL

MOV AX,COW 16-bits Copies the word contents of data segment memory
location COW into AX

MOV EAX,WATER’ 32-bits Copies the doubleword contents of memory location
WATER into EAX

MOV NEWS,AL 8-bits Copies AL into data segment memory location NEWS

MOV THERE,AX 16-bits Copies AX into data segment memory location THERE

MOV HOME,EAX* 32-bits Copies EAX into data segment memory location HOME

“Note: The 80386—-Pentium Pro microprocessors will some times use more than three bytes of memory for
the 32-bit move between EAX and memory.

This form may be used with MASM, but most often appears when a program is entered or listed by DEBUG. a debug-
ging toll provided with DOS.

3-1 DATA-ADDRESSING MODES 77

Displacement Addressing. Displacement addressing is almost identical with direct addressing,
except that the instruction is four bytes wide instead of three. In the 80386 through the Pentium Pro,
this instruction can be up to seven bytes wide if a 32-bit register and a 32-bit displacement is spec-
ified. This type of direct data addressing is much more flexible because most instructions use it.

If the operation of the MOV CL,[1234H] instruction is compared to that of the MOV
AL,[1234H] instruction in Figure 3-5, both basically perform the same operation except for the
destination register (CL verses AL). Another difference only becomes apparent upon examining
the assembled versions of these two instructions. The MOV AL,[1234H] instruction is three bytes
long and the MOV CL,[1234H] instruction is four bytes long as illustrated in Example 3—4. This
example shows how the assembler converts these two instructions into hexadecimal machine
language.

EXAMPLE 34
0000 AO0 1234 R MOV AL, [1234H]
0003 8A OE 1234 R MOV CL, [1234H]

Table 34 lists some MOV instructions using the displacement form of direct addressing.
Not all variations are listed because there are many MOV instructions of this type. Note that the
segment registers can be stored or loaded from memory.

Example 3-5 shows a short program using models that address information in the data seg-
ment. Note that the data segment begins with a.DATA statement to inform the assembler where
the data segment begins. The model size is adjusted from TINY, as in Example 3-3, to SMALL
so that a data segment can be included. The SMALL model allows one data segment and one
code segment. The SMALL model is often used whenever memory data are required for a pro-
gram. A SMALL model program assembles as an execute (EXE) program. Notice how this ex-
ample allocates memory locations in the data segment using the DB and DW directives. Here the

STARTUP statement not only indicates the start of the code, but it also loads the data segment

reglster with the segment address of the data segment. If this program is assembled and executed
with CodeView, the instructions can be viewed as they execute and change registers and
memory locations.

EXAMPLE 3-5
.MODEL SMALL ;select SMALL model
0000 .DATA ;indicate start of DATA segment
,~ 0000 10 DATA1 DB 10H ;place 10H in DATAl
0001 00 DATA2 DB 0 ;place 0 in DATA2
0002 0000 DATA3 DW 0 ;place 0 in DATA3
0004 AAAA DATA4 DW OAAAAH ;place AAAAH in DATA4
0000 .CODE ;indicate start of CODE segment
. STARTUP ;indicate start of program
0017 A0 0000 R MOV AL,DATAl ;copy DATAl to AL
001Aa 8A 26 0001 R MOV AH, DATA2 ;copy DATA2 to AH
001E A3 0002 R MOV DATA3,AX ;save AX at DATA3
0021 8B 1E 0004 R MOV BX, DATA4 ;load BX with DATA4
EXIT ;exit to DOS
END ;end file

Register Indirect Addressing

Register indirect addressing allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI, and SI. For example, if register BX
contains a 1000H and the MOV AX,[BX] instruction executes, the word contents of data segment

78

CHAPTER 3 ADDRESSING MODES

TABLE 3-4 Examples of direct data addressing using a displacement

Assembly Language Size Operation

MOV CH,DOG 8-bits Copies the byte contents of data segment memory
location DOG into CH

MOV CH,[1000H]’ 8-bits Copies the byte contents of data segment offset address
1000H into CH

MOV ES,DATA6 16-bits Copies the word contents of data segment memory
location DATAG into ES

MOV DATA7,BP 16-bits Copies BP into data segment memory location DATA7

MOV NUMBER,SP 16-bits Copies SP into data segment memory location NUMBER

MOV DATA1,EAX 32-bits Copies EAX into data segment memory location DATA1

MOV EDI,SUM1 32-bits Copies the doubleword contents of data segment

memory location SUM1 into EDI

*Note: This form of addressing is seldom used with most assemblers because an actual numeric offset
address is rarely accessed.

offset address 1000H is copied into register AX. If the microprocessor is operated in the real mode
and DS = 0100H, this instruction addresses a word stored at memory bytes 2000H and 2001 H and
transfers it into register AX (see Figure 3—6). Note that the contents of 2000H are moved into AL
and the contents of 2001H are moved into"AH. The [] symbols denote indirect addressing in as-
sembly language. In addition to using the BP, BX, DI, and SI registers to indirectly address
memory, the 80386 and above allow register indirect addressing with any extended register ex-
cept ESP. Some typical instructions using indirect addressing appear in Table 3-5.

The data segment is used by default with register indirect addressing or any other addressing
mode that uses BX, DI, or SI to address memory. If register BP addresses memory, the stack seg-
ment is used by default. These are considered the default settings for these four index and base reg-
isters. For the 80386 and above, EBP addresses memory in the stack segment by default; EAX,

FJ_‘—’V/
00002002
EAX AH A, % 3 4 00002001
EBX 10 00 &) 19 00002000
1000’ 2000
ECX
/\,
M
00001002
cs 00001001
1000
DS 0100 00001000

FIGURE 3-6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS =
0100H. Note that this instruction is shown after the contents of memory are transferred to AX.

3-1 DATA-ADDRESSING MODES 79

TABLE 3-5 Example of register indirect addressing

Assembly Language Size Operation

MOV CX,[BX] 16-bits Copies the weid contents of the data segment memory
location address by BX into CX

MOV [BP],DL* 8-bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8-bits Copies BH into the data segment memory location
addressed by Di

MOV [DI},[BX] — Memory-to-memory moves are not allowed except with
string instructions

MOV AL,[EDX] 8-bits Copies the byte contents of the data segment memory
location addressed by EDX into AL

MOV ECX,[EBX] 32-bits Copies the doubleword contents of the data segment

memory location addressed by EBX into ECX

*Note: Data addressed by BP or EBP is by default located in the stack segment, while all other indirect
addressing modes use the data segment by default.

EBX, ECX, EDX, EDI, and ESI address memory in the data segment by default. When using a
32-bit register to address memory in the real mode, the contents of the 32-bit register must never
exceed 0000FFFFH. In the protected mode, any value can be used in a 32-bit register used to indi-
rectly address memory, as s long as it does not access a location outside of the segment as dictated by
the access_rights byte. An example 80386/80486/Pentium/Pentium Pro instruction is MOV
EAX,[EBX]. This instruction loads EAX with the doubleword-sized number stored at the data seg-
ment offset address indexed by EBX.

In some cases, indirect addressing requires specifying the size of the data with the special
assembler directive BYTE PTR, WORD PTR, or DWORD PTR. These directives indicate the
size of the memory data addressed by the memory pointer (PTR). For example, the MOV AL,[DI]
instruction is clearly a byte-sized move instruction, but the MOV [DI},10H instruction is am-
biguous. Does the MOV [DI],10H instruction address a byte-, word-, or doubleword sized
memory locatlon" The assembler can’t determme the size of the 10H. The MOV BYTE PTR
canon Likewise, the MOV DWORD PTR [DI],10H instruction clearly 1dent1ﬁes the memory lo-
cation as doubleword-sized. The BYTE PTR, WORD PTR, and DWORD PTR directives are
used only with instructions that address a memory location through a pointer or index register
with immediate data and for a few other instructions, which are described in subsequent chapters.

Indirect addressing often allows a program to refer to tabular data located in the memory
system. For example, suppose that you must create a table of information that contains 50 sam-
ples taken from memory location 0000:046C. Location 0000 046C contains a counter that is
maintained by the personal computer’s real-time clock. Flcure 3-7 shows the table and the BX
register used to address each location in the table sequentially. To accomplish this task, load the
starting location of the table into the BX register with a MOV immediate instruction, After ini-
‘tializing the starting address of the table, use register indirect addressing to store the 50 samples
sequentially.

The sequence shown in Example 3-6 loads register BX with the starting address of the
table and initializes the count, located in register CX, to 50. The OFFSET directive tells the as-
sembler to load BX with the offset address of memory location TABLE, not the contents of
TABLE. For example the MOV BX,DATAS instruction copies the contents of memory location
DATAS into BX, while the MOV BX,OFFSET DATAS instruction copies the offset address of

80 CHAPTER 3 ADDRESSING MODES
FIGURE 3-7 An array Memory
(TABLE) containing 50 bytes]
that are indirectly addressed
through register BX
Table + 49
—
]
Table + 2
Table + 1
eBx| 0000 TABLE Table
M

DATAS into BX. When the OFFSET directive is used with the MOV instruction, the assembler
calculates the offset address and then uses a MOV immediate instruction to load the address into
the specified 16-bit register.

EXAMPLE 3-6
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0032 [DATAS DW 50 DUP (?) ;setup array of 50 bytes
0000
]
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 B8 0000 MOV AX, 0
001A B8E CO MOV ES,AX ;address segment 0000 with ES
001C BB 0000 R MOV BX,OFFSET DATAS ;address DATAS array
001F B9 0032 MOV CX,50 ;load counter with 50
0022 AGAIN:
0022 26:A1 046C MOV AX,ES:[046CH] ;get clock value
0026 89 07 MOV [BX],AX ;save clock value in DATAS
0028 43 INC BX ;increment BX to next element
0029 E2 F7 LOOP AGAIN ;repeat 50 times
.EXIT ;exit to DOS
END ;end file

Once the counter and pointer are initialized a repeat -until CX =0 loop executes. Here data
and stored in memory that is mdlrect]y addresﬁ's'ed by the offset address located in register B BX
Next, BX is incremented (one is added to BX) to the next table location. Finally, the LOOP in-
struction repeats the LOOP 50 times. The LOOP instruction decrements (subtracts one from) the
counter (CX); if CX is not zero, LOOP causes a jump to memory location AGAIN. If CX be-
comes zero, no jump occurs and this sequence of instructions ends. This example copies the 50
most recent values from the clock into the memory array DATAS. This program will often show
the same data in each location because the contents of the clock are changed only 18.2 times per
second. To view the program and its execution, use the CodeView program. To use CodeView,
type CV FILE.EXE or CV FILE.COM or access it as DEBUG from the Programmer’s Work-
Bench program under the RUN menu. Note that CodeView functions only with .EXE or .COM

EAX
EBX

ECX

EDX

ESP

EBP

ESI

EDI

3-1 DATA-ADDRESSING MODES 81

files. Some useful CodeView switches are /50 for a 50-line display and /S for use of high-reso-
lution video displays in an application. To debug the file TEST.COM with 50 lines, type CV /50
TEST.COM at the DOS prompt.

Base-Plus-Index Addressing

Base-plus-index addressing is similar to indirect addressing because it indirectly addresses
memory data. In the 8086 through the 80286, this type of addressing uses one base register (BP
or BX) and one index register (DI or SI) to indirectly address memory. The base register often
holds the beginning location of a memory array, while the index register holds the relative posi-
tion of an element in the array. Remember that whenever BP addresses memory data, both the
stack segment register and BP generate the effective address.

In the 80386 and above, this type of addressing allows the combination of any two 32-bit
extended registers except ESP. For example, the MOV DL,[EAX+EBX] instruction is an ex-
ample using EAX (as the base) plus EBX (as the index). If the EBP register is used, the data are
located in the stack segment instead of in the data segment.

. Locating Data with Base-plus-index Addressing. Figure 3-8 shows how data are addressed by
. the MOV DX,[BX+DI] instruction when the microprocessor operates in the real mode. In this

example, BX = 1000H, DI = 0010H, and DS = 0100H, which translate into memory address
02010H. This instruction transfers a copy of the word from location 02010H into the DX reg-
ister. Table 3—6 lists some instructions used for base-plus-index addressing. Note that the Intel
assembler requires that this addressing mode appear as [BX][DI] instead of [BX+DI]. The MOV
DX, [BX+DI] instruction is MOV DX, [BX][DI] for a p}égram written for the Intel ASM assem-
bler. This text uses the first form in all example programs, but the second form can be used in
many assemblers, including MASM from Microsoft.

Locating Array Data Using Base-plus-index Addressing. A major use of the base-plus-index ad-
dressing mode is to address elements in a memory array. Suppose that the elements in an array

Memory
M
02015H
02014H
10 00 02013H
02012H
| 02011H
AB | 03 /‘——-—-""ABOS A B
\l 03 02010H ~—
0200FH
~——~—
1000H
0010H ¥ . 2010H
cot1o oo &
1000H
DS x 10H

FIGURE 3-8 An example showing how the base-plus-index addressing mode functions for the MOV DX, [BX+DI]
instruction. Notice that memory address 02010H is accessed because DS = 0100H, BX = 100H, and DI = 0010H.

82

CHAPTER 3 ADDRESSING MODES

TABLE 3-6 Examples of base-plus-index addressing

Assembly Language Size Operation

MOV CX,[BX+DI] 16-bits Copies the word contents of the data segment memory
location address by BX plus DI into CX

MOV CH,[BP+Sl] 8-bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16-bits Copies SP into the data segment memory location
addresses by BX plus Sl

MOV [BP+DI],AH 8-bits Copies AH into the stack segment memory location
addressed by BP plus DI

MOV CL,[EDX+EDI} 8-bits Copies the byte contents of the data segment memory

MOV [EAX+EBX],ECX 32-bits

location addressed by EDX plus EDI into CL

Copies ECX into the data segment memory location
addressed by EAX plus EBX

located in the data segment at memory location ARRAY must be accessed. To accomplish this,
load the BX register (base) with the beginning address of the array and the DI register (index)
with the element number to be accessed. Figure 3-9 shows the use of BX and DI to access an el-

ement in an array of data.

A short program listed in Example 3—7 moves array element 10H into array element 20H.
Notice that the array element number, loaded into the DI register, addresses the array element.
Also notice how the contents of the ARRAY have been initialized so element 10H contains a 29H.

EXAMPLE 3-7
.MODEL SMALL
0000 .DATA
0000 0010 [AFRAY DB 16 DUP (?)
00
]
0010 29 DB 29H
0011 O0O01E [DB 30 DUP (?)
00
]
0000 .CODE
. STARTUP
0017 BB 0000 R MOV BX, OFFSET ARRAY
001A BF 0010 MOV DI,10H
001D 8A 01 MOV AL, [BX+DI]
001F BF 0020 MOV DI, 20H
0022 88 01 MOV [BX+DI], AL
LEXIT
END

Register Relative Addressing

;select SMALL model
;start of DATA segment

;setup ARRAY

;sample data at element 10H

;start of CODE segment
;start of program

;address ARRAY
;address element 10H
;get element 10H
;address element 20H
;save in element 20H

;exit to DOS
;end of file

Register relative addressing is similar to base-plus-index addressing and displacement ad-
dressing. In register relative addressing, the data in a segment of memory are addressed by
adding the displacement to the contents of a base or an index register (BP, BX, DI, or SI).
Figure 3-10 shows the operation of the MOV AX,[BX+1000H] instruction. In this example,
BX = 0100H and DS = 0200H, so the address generated is the sum of DS X 10H, BX, and the

FIGURE 3-10 The Memory
operation of the MOV e
AX,[BX+1000H] instruction,
when BX = 0100H and

DS = 0200H

3-1 DATA-ADDRESSING MODES 83

Memory
T T~
ARRAY +5
ol ARRAY +4
Element ARRAY +3
BX ARRAY +2
ARRAY +1
ARRAY ARRAY
TN

FIGURE 3-9 An example of the base-plus-index addressing mode. Here an element (DI) of an
ARRAY (BX) is addressed.

displacement of 1000H or 03100H. Remember that BX, DI, or SI address the data segment and
BP addresses the stack segment. In the 80386 and above, the displacement can be a 32-bit
number and the register can be any 32-bit register except the ESP register. Remember that the
size of a real mode segment is 64K bytes long. Table 3-7 lists a few instructions that use reg-
ister relative addressing.

The displacement can be a number added to the register within the [], as in MOV
AL,[DI+2], or it can be a displacement subtracted from the register, as in MOV AL,[SI-1]. A
displacement also can be an offset address appended to the front of the [], as in MOV
AL,DATAI[DI]. Both forms of displacements also can appear simultaneously, as in MOV
AL,DATA[DI+3]. In all cases, both forms of the displacement add to the base or base and index
register within the []. In the 8086-80286 microprocessors, the value of the displacement is lim-
ited to a 16-bit signed number with a value ranging between +32,767 (7FFFH) and -32,768
(8000H); in the 80386 and above, a 32-bit displacement is allowed with a value ranging between
+2,147,483,647 (TFFFFFFFH) and -2,147,483,648 (80000000H).

Register array

N]
Eax| 2222 [Ao0| 76 A076 A0 | 03101H
eex| 0000 |o1| 00 7 6 | 03100H
| 0100H
1000H
1100H
DS x 10H -

2000H 3100H

84 CHAPTER 3 ADDRESSING MODES

TABLE 3-7 Examples of register relative addressing

Assembly Language Size Operation

MOV AX,[DI+100H] 16-bits Copies the word contents of the data segment memory location
addressed by DI plus 100H into AX

MOV ARRAYISI],BL 8-bits Copies BL into the data segment memory location addressed by
ARRAY plus S!

MOV LIST[SI+2],CL 8-bits Copies CL into the data segment memory location addressed by
sum of LIST, SI, and 2

MOV DI,SET_IT[BX] 16-bits Copies the word contents of the data segment memory location
addressed by the sum of SET_IT and BX into DI

MOV DI,[EAX+10H] 16-bits Copies the word contents of the data segment memory location
addressed by the sum of EAX and 10H into DI

MOV ARRAY[EBX],EAX 32-bits Moves EAX into the data segment memory location addressed by the
sum of ARRAY and EBX

Addressing Array Data with Register Relative Addressing. 1t is possible to address array data with
register relative addressing such as one does with base-plus-index addressing. In Figure 3-11,
register relative addressing is illustrated with the same example as for base-plus-index ad-
dressing. This shows how the displacement ARRAY adds to index register DI to generate a ref-
erence to an array element.

Example 3-8 shows how this new addressing mode can transfer the contents of array ele-
ment 10H into array element 20H. Notice the similarity between this example and Example 3-7.
The main difference is that, in Example 3-8, register BX is not used to address memory area
ARRAY; instead, ARRAY is used as a displacement to accomplish the same task.

EXAMPLE 3-8
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0010 [ARRAY DB 16 DUP (?) ;setup ARRAY
00
1
0010 29 DB 29H ;sample data at element 10H
0011 0QO01E [DB 30 DUP (?)
00
]
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 BF 0010 MOV DI, 10H ;address element 10H
001Aa 8A 85 0000 R MOV AL,ARRAY [DI] ;get element 10H
001E BF 0020 MOV DI, 20H ;address element 20H
0021 88 85 0000 R MOV ARRAY[DI),AL ;save in element 20H
EXIT ;exit to DOS
END ;jend of file

Base Relative-Plus-Index Addressing

The base relative-plus-index addressing mode is similar to the base-plus-index addressing mode,
but adds a displacement besides using a base register and an index register to form the memory
address. This type of addressing mode often addresses a two-dimensional array of memory data.

3-1 DATA-ADDRESSING MODES 85

Memory

ARRAY + 6
ARRAY +5
ARRAY + 4
Element ARRAY +3

Displacement ARRAY +2
ARRAY + 1
ARRAY

ARRAY

T — A

FIGURE 3—-11 Register relative addressing used to address an element of ARRAY. The dis-
placement addresses the start of ARRAY, and DI accesses an element.

Addressing Data with Base Relative-plus-index Addressing. Base relative-plus-index addressing
is the least-used addressing mode. Figure 3—12 shows how data are referenced if the instruction
executed by the microprocessor is a MOV AX,[BX+SI+100H]. The displacement of 100H adds
to BX and SI to form the offset address within the data segment. Registers BX = 0020H, SI =
0010H, and DS = 1000H, so the effective address for this instruction is 10130H—the sum of
these registers plus a displacement of 100H. This addressing mode is too complex for frequent
use in a program. Some typical instructions using base relative-plus-index addressing appear in
Table 3-8. Note that with the 80386 and above, the effective address is generated by the sum of
two 32-bit registers plus a 32-bit displacement.

Memory
. [N ——
Register array
/1 A3 10131H
EAX A3l16 A316
N———— | 16 |10130H=~—
EBX 00}20
ECX
EDX
0020H
ESP
EBP y 0030H 0130H
™ et
ESI 0010 + +
0010H 10130H
— 10000H

0100H ps x 10H

FIGURE 3-12 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H]
instruction. Note: DS = 1000H.

86 CHAPTER 3 ADDRESSING MODES

TABLE 3-8 Example base relative-plus-index instructions

Assembly Language Size Operation

MOV DH,[BX+DI+20H] 8-bits Copies the byte contents of the data segment memory location
addressed by the sum of BX, DI, and 20H into DH

MOV AX,FILE[BX+DI] 16-bits Copies the word contents of the data segment memory location
addressed by the sum of FILE, BX, and Dl into AX

MOV LIST[BP+DI},CL 8-bits Copies CL into the stack segment memory location addressed
by the sum of LIST, BP, and DI

MOV LIST[BP+SI+4],DH 8-bits Copies DH into the stack segment memory location addressed
by the sum of LIST, BP, SI, and 4

MOV EAX,FILE[EBX+ECX+2] 32-bits Copies the doubleword contents of the data segment memory

location addressed by the sum of FILE, EBX, ECX, and 2 into EAX

Addressing Arrays with Base Relative-plus-index Addresssing. Suppose that a file of many
records exists in memory and each record contains many elements. This displacement addresses
the file, the base register addresses a record, and the index register addresses an element of a
record. Figure 3-13 illustrates this very complex form of addressing.

Example 3-9 provides a program that copies element O of record A into element 2 of
record C using the base relative-plus-index mode of addressing. This example FILE contains
four records, and each record contains ten elements. Notice how the THIS BYTE statement is
used to define the labels FILE and RECA as the same memory location.

EXAMPLE 3-9
.MODEL SMALL ; SMALL model
0000 .DATA ;start of DATA segment
0000 = 0000 FILE EQU THIS BYTE ;assign FILE to this byte
0000 000A [RECA DB 10 DUP (?) ;reserve 10 bytes for RECA
00
]
000Aa 000Aa [RECB DB 10 DUP (?) ;reserve 10 bytes for RECB
00
]
0014 000a [RECC DB 10 DUP (?) ;reserve 10 bytes for RECC
00
001E 000Aa [RECD DB 10 DUP (?) ireserve 10 bytes for RECD
00
]
0000 .CODE ;start of CODE segment
.STARTUP ;jstart of program
0017 BB 0000 R MOV BX,OFFSET RECA ;address RECA
001A BF 0000 MOV DI,0 ;address element 0
001D 8aA 81 0000 R MOV AL, FTLE[BX+DI] ;jget data
0021 BB 0014 R MOV BX,0rFSET RECC ;address RECC
0024 BF 0002 MOV DI, 2 ;address element 2
0027 88 81 0000 R MOV FILE[BX+DI],AL ;save data
.EXIT ;exit to DOS

END ;end of file

3-1 DATA-ADDRESSING MODES

87

FIGURE 3-13 Base rela- Memory
tive-plus-index addressing —]
used to access a FILE that
contains multiple records
(REC) [
EDI Element
L I r —l REC C
REC B
EBX L RECC J
REC A
Displacement
—
| FILE | NS

Scaled-Index Addressing

Scaled-index addressing is the last type of data-addressing mode discussed. This data-addressing
mode is unique to the 80386 through the Pentium Pro microprocessors. Scaled-index addressing
uses two 32-bit registers (a base register and an index register) to access the memory. The second
register (index) is multiplied by a scaling factor. The scaling factor can be 1X, 2X, 4X, or 8X. A
scaling factor of 1X is implied and need not be included in the assembly language instruction
(MOV AL,[EBX+ECX]). A scaling factor of 2X is used to address word-sized memory arrays; a
scaling factor of 4X is used with doubleword-sized memory arrays; and a scaling factor of 8X is
used with quadword-sized memory arrays.

An example instruction is MOV AX,[EDI+2*ECX]. This instruction uses a scaling factor
of 2X, which multiplies the contents of ECX by 2 before adding it to the EDI register to form the
memory address. If ECX contains a 00000000H, word-sized memory element 0 is addressed; if
ECX contains a 00000001H, word-sized memory element 1 is addressed, and so forth. This
scales the index (ECX) by a factor of 2 for a word-sized memory array. Refer to Table 3-9 for
some examples of scaled-index addressing. As you can imagine, there are an extremely large
number of scaled-index addressed register combinations.

Example 3-10 shows a sequence of instructions that uses scaled-index addressing to access a
word-sized array of data called LIST. Note that the offset address of LIST is loaded into register EBX
with the MOV EBX,OFFSET LIST instruction. Once EBX addresses array LIST, the elements (lo-
cated in ECX) of 2, 4, and 7 of this word-wide array are added using a scaling factor of 2 to access the
elements. This program stores the 2 at element 2 into elements 4 and 7. Also notice the .386 directive
to select the 80386 microprocessor. This directive must follow the MODEL statement for the assem-
bler to process 80386 instructions for DOS. If the 80486 is in use, the .486 directive appears after the
.MODEL statement; if the Pentium or Pentium Pro is in use, the .586 directive appears after the
.MODEL statement. If the microprocessor selection directive appears before the MODEL statement,
the microprocessor executes instructions in the 32-bit mode, which is not compatible with DOS.

EXAMPLE 3-10

.MODEL SMALL ;select SMALL model
.386 ;use the 80386
0000 .DATA ;start of DATA segment

88

CHAPTER 3 ADDRESSING MODES

TABLE 3-9 Examples of scaled-index addressing

Assembly Language Size Operation
MOV EAX,[EBX+4*ECX] 32-bits Copies the doubleword contents of the data segment memory
location addressed by the sum of 4 times ECX plus EBX into EAX
MOV [EAX+2*EDI+100H],CX 16-bits Copies CX into the data segment memory location addressed by
the sum of EAX, 100H, and 2 times EDI
MOV AL,[EBP+2*EDI-2] 8-bits Copies the byte contents of the stack segment memory location
addressed by the sum of EBP, -2, and 2 times EDI into AL
MOV EAX,ARRAY[4*ECX] 32-bits Copies the doubleword contents of the data segment memory
location addressed by the sum of ARRAY plus 4 times ECX into EAX
0000 0000 0001 0002 LIST DW 0,1,2,3,4 ;define array list
0003 0004
000A 0005 0006 0007 DW 5,6,7,8,9
0008 0009
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0010 66] BB 00000000 R MOV EBX,OFFSET LIST ;address array LIST
0016 661 B9 00000002 MOV ECX,2 ;get element 2
001C 67& 8B 04 4B MOV AX, [EBX+2*ECX]
0020 661 B9 00000004 MOV ECX, 4 ;store in element 4
0026 67& 89 04 4B MOV [EBX+2*ECX],AX
002A 661 B9 00000007 MOV ECX,7 ;store in element 7
0030 67& 89 04 4B MOV [EBX+2*ECX],AX

EXAMPLE 3-11

0057

0000

0020

0040

0050

0052

0020

0020

0010

0002

0005

Data Structures

A data structure is used to specify how information is stored in a memory array; it can be quite
useful with applications that use arrays. It is best to think of a data structure as a template for data.
The start of a structure is identified with the STRUC assembly language directive and the end
with the ENDS statement. A typical data structure is defined and used three times in Example
3-11. Notice that the name of the structure appears with both the STRUC and ENDS statements.

00

00

00

00

.EXIT
END

;Define INFO data structure

INFO STRUC
NAMES DB
STREET DB
CITY DB
STATE DB
Z1p DB

;jexit to DOS
;end of file

32 DUP (?) ;32 bytes for name
32 DUP (?) ;32 bytes for street
16 DUP (?) ;16 bytes for city
2 DUP (?) ;2 bytes for state

5 DUF (?) ;5 bytes for zip-code

0000

3-1 DATA-ADDRESSING MODES

00

42 6F 62 20 53 6D

69 74 68
0017 [
00
1
31 32 33 20 4D
61 69 6E 20 53
72 65 65 74
0011 [
00
]
57 61 6E 64 61
000B [
00
]
4F 48 34 34 34
34 34

0057 53 74 65 76 65 20

44 6F 65
0017 [
00
]
32 32 32 20 4D
6F 75 73 65 20
61 6E 65
0012 [
00
1
4D 69 6C 6C 65
72
000A [
00
1
50 41 31 38 31
30 30

00AE 42 65 6E 20 44 6F

76 65 72
0017 [
00
]
33 30 33 20 4D
61 69 6E 20 53
72 65 65 74
0011 [
00
]
4F 72 65 6E 64
65 72
0009 [
00
]
43 41 39 30 30
30 30

INFO ENDS

NAME1 INFO <'Bob Smith’,'123 Main Street’, ‘Wanda’, ‘OH',’'44444'>

74

NAME2 INFO <’Steve Doe’,’'222 Mouse Lane’, 'Miller’,’PA’,’18100'>

4c

NAME3 INFO <‘Ben Dover’,’303 Main Street’, 'Orender’,’'CA’,’90000'>

74

89

The data structure in Example 3-11 defines five fields of information. The first is 32 bytes
long and holds a name; the second is 32 bytes long and holds a street address; the third is 16
bytes long for the city; the fourth is 2 bytes long for the state; and the fifth is 5 bytes long for the
ZIP Code. Once the structure is defined (INFO), it can be filled as illustrated with names and ad-
dresses. Three examples of use for INFO are illustrated. Note that literals are surrounded with
apostrophes and the entire field is surrounded with < > symbols when the data structure is used
to define data.

90 CHAPTER 3 ADDRESSING MODES

When data are addressed in a structure, use the structure name and the field name to select
a field from the structure. For example, to address the street field in NAME2, use the operand
NAME2.STREET, where the name of the structure is first followed by a period and then by the
name of the field. Likewise, use NAME3.CITY to refer to the city field in structure NAMES3.

A short sequence of instructions appears in Example 3-12 that clears the name ficld in
structure NAMEI, the address field in structure NAMEZ2, and the ZIP Code field in structure
NAMES3. The function and operation of the instructions in this program are defined in later chap-
ters. You may wish to refer back to this example once these instructions are learned.

EXAMPLE 3-12

;Clear names in array NAME1
0000 B9 0020 MOV CX,32
0003 BO 00 MOV ~ AL,O0
0005 BE 0000 R MOV SI,OFFSET NAME1.NAMES
0008 F3/AA REP STOSB

;Clear street in array NAME2
000A B9 0020 MOV ~ CX,32
000D BO 00 MOV AL,0
0010 BE 0077 R MOV ~ SI,OFFSET NAMEZ2.STREET
0013 F3/RA REP STOSB

;Clear zip-code in array NAME3
0015 B2 0005 MOV CX,5
0018 BO 00 MOV AL, O
001A BE 0100 R MOV ~ SI,OFFSET NAME3.ZIP
001D F3/AA REP STOSB
3-2 PROGRAM MEMORY-ADDRESSING MODES

Program memory-addressing modes, used with the JMP and CALL instructions, consist of three
distinct forms: direct, relative, and indirect. This section introduces these three addressing forms,
using the JMP instruction to illustrate their operation.

Direct Program Memory Addressing

. Direct program memory addressing is what many early microprocessors used for all jumps and

calls. Direct program memory addressing is also used in high-level languages, such as the
BASIC language GOTO and GOSUB instructions. The microprocessor uses this form of ad-
dressing, but not as often as relative and indirect program memory addressing are used.

The instructions for direct program memory addressing store the address with the opcode.
For example, if a program jumps to memory location 10000H for the next instruction, the address
(10000H) is stored following the opcode in the memory. Figure 3-14 shows the direct interseg-
ment JMP instruction and the four bytes required to store the address 10000H. This JMP instruc-
tion loads CS with 1000H and IP with 0000H to jump to memory location 10000H for the next
instruction. (An intersegment jump is a jump to any memory location within ihe entire memory
system.) The direct jump is often called a far jump because it can jump to any memory location
for the next instruction. In the real mode, a far jump accesses any location within the first 1M byte
of memory by changing both CS and IP. In protected mode operation, the far jump accesses a new
code segment descriptor from the descriptor table, allowing it to jump to any memory location in
the entire 4G byte address range in the 80386 through Pentium Pro microprocessors.

3-2 PROGRAM MEMORY-ADDRESSING MODES 91

FIGURE 3-14 The 5-byte Opcode Offset (low) Offset (high) Segment (low) Segment (high)
machine language version of
a JMP [10000H] instruction E A 00 | oo 00 1o

The only other instruction that uses direct program addressing is the intersegment or far
CALL instruction. Usually. the name of a memory address, called a label, refers to the location
that is called or jumped to instead of the actual numeric address. When using a label with the
CALL or JMP instruction, most assemblers select the best form of program addressing.

Relative Program Memory Addressing

Relative program memory addressing is not available in all early microprocessors, but it is
available to the Intel family of microprocessors. The term relative means “relative to the in-
struction pointer (IP).” For example, if a JMP instruction skips the next two bytes of memory,
the address in relation to the instruction pointer is a 2 that adds to the instruction pointer. This
develops the address of the next program instruction. An example of the relative JMP instruc-
tion is shown in Figure 3-15. Notice that the JMP instruction is a one-byte instruction with a
one-byte or a two-byte displacement that adds to the instruction pointer. A one-byte displace-
ment is used in short j jumps, and a two-byte displacement is used in near jumps and calls. Both
types are considered intrasegment jumps. (An intrasegment jump is a jump anywhere within
the current code segment.) In the 80386 and above, the displacement can also be a 32-bit value,
allowing these microprocessors to use relative addressing to any location within their 4G byte
code segments.

Relative JMP and CALL instructions contain either an 8-bit or a 16-bit signed displace-
ment that allows a forward memory reference or a reverse memory reference. (The 80386 and
above can have an 8-bit or a 32-bit displacement.) All assemblers automatically calculate the dis-
tance for the displacement and select the proper one-, two- or, four-byte form. If the distance is
too far for a two-byte displacement in the 8086 through 80286 microprocessors, some assem-
blers use the direct jump. An 8-bit dlsplacement (short) has a jump range of between +127 and
—128 bytes from the next instruction, while a 16-bit displacement (near) has a range of £32K
bytes. In the 80386 and above, a 32-bit dlsplacement allows a range of +2G bytes.

Indirect Program Memory Addressing

The microprocessor allows several forms of indirect program memory addressing for the JMP
and CALL instructions. Table 3-10 lists some acceptable indirect program jump instructions,
which can use any 16-bit register (AX, BX, CX, DX, SP, BP, DI, or SI), any relative register
([BP], [BX], [DI], or [SI]), and any relative register with a displacement. In the 80386 and above,
an extended register can also be used to hold the address or indirect address of a relative JMP or
CALL. For example, the JMP EAX instruction jumps to the location address by register EAX.

If a 16-bit register holds the address of a JMP instruction, the jump is near. For example, if
the BX register contains a 1000H and a JMP BX instruction executes, the microprocessor jumps
to offset address 1000H in the current code segment.

If a relative register holds the address, the jump is also considered an indirect jump. For ex-
ample, a JMP [BX] instruction refers to memory location within the data segment at the off-
set address contained in BX. At this offset address is a 16-bit number that is used as the offset

FIGURE 3-15 A JMP [2] 10000 EB } IMP [2
instruction. This instruction 10001 02 I
skips over the two bytes of 10002 —

memory that follow the JMP 10003 —
instruction. 10004

92

CHAPTER 3 ADDRESSING MODES

TABLE 3-10 Examples of indirect program memory addressing

Assembly Language Operation
JMP AX Jumps to the current code segment location addressed by the contents of AX
JMP CX Jumps to the current code segment location addressed by the contents of CX
JMP NEAR PTR [BX] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by BX
JMP NEAR PTR[DI+2] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by DI plus 2
JMP TABLE[BX] Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by TABLE plus BX
JMP ECX Jumps to the current code segment location addressed by the contents of ECX
FIGURE 3-16 Ajumptable TABLE DW LOCO
that stores addresses of var- DW LOC1
ious programs. The exact ad- DW LOC2
dress chosen from the DW LOC3
TABLE is determined by an
index stored with the jump
instruction.
address in the intrasegment jump. This type of jump is sometimes called an indirect-indirect or
double-indirect jump.

Figure 3—-16 shows a jump table that is stored beginning at memory location TABLE. This
jump table is referenced by the short program of Example 3-13. In this example, the BX register
is loaded with a 4 so, when it combines in the JIMP TABLE[BX] instruction with TABLE, the ef-
fective address is the contents of the second entry in the jump table.

—
EXAMPLE 3-13
;Using indirect addressing for a jump
0000 BB 0004 ' MOV BX, 4 ;address LOC2
0003 FF A7 23Al R JMP TABLE[BX] ;jump to LOC2
3-3 STACK MEMORY-ADDRESSING MODES

The stack plays an important role in all microprocessors. It holds data temporarily and stores re-
turn addresses for procedures. The stack memory is a LIFO (last-in, first-out) memory, which
describes the way that data are stored and removed from the stack. Data are placed onto the stack
with a PUSH instruction and removed with a POP instruction. The CALL instruction also uses
the stack to hold the return address for procedures and a RET (return) instruction to remove the
return address from the stack.

The stack memory is maintained by two registers: the stack pointer (SP or ESP) and the
stack segment register (SS). Whenever a word of data is pushed onto the stack [see Figure 3-17
(a)], the high-order 8-bits are placed in the location addressed by SP - 1. The low-order 8-bits are
placed in the location addressed by SP — 2. The SP is then decremented by 2 so the next word of
data is stored in the next available stack memory location. The SP/ESP register always points to

3-3 STACK MEMORY-ADDRESSING MODES 93

Memory
Register array — |
EAX | \
EBX 12134 1234 12
.
ECX %t
EDX
’_/\/'
ESP ®
L~ \r
SS x 10H
(a)
Register array Memory
EAX
EBX
ECX 12|34 ¢ 1234 12
EDX o4
/&-
ESP —>
P—— T
SS x 10H

(b)
FIGURE 3-17 The PUSH and POP instructions. (a) PUSH BX places the contents of BX onto

the stack, (b) POP CX removes data from the stack and places them into CX. Both instructions
are shown after execution.

an area of memory located within the stack segment. The SP/ESP register adds to SS x 10H to
form the stack memory address in the real mode. In protected mode operation, the SS register
holds a selector that accesses a descriptor for the base address of the stack segment.

Whenever data are popped from the stack [see Figure 3—17 (b)], the low-order 8-bits are
removed from the location addressed by SP. The high-order 8-bits are removed from the location
addressed by SP + 1. The SP register is then incremented by 2. Table 3-11 lists some of the
PUSH and POP instructions available to the microprocessor. Note that PUSH and POP instruc-
tions always store or retrieve words of data—never bytes—in the 8086 through the 80286 mi-
croprocessors. The 80386 and above allow words or doublewords to be transferred to and from
the stack. Data may be pushed onto the stack from any 16-bit register or segment register and, in
the 80386 and above, any 32-bit extended register. Data may be popped off the stack into any
16-bit register or any segment register except CS. The reason that data may not be popped from
the stack into CS is that this changes only part of the address of the next instruction.

94

CHAPTER 3 ADDRESSING MODES

TABLE 3-11 Example PUSH and POP Instructions

Assembly Language Operation
POPF Removes a word from the stack and places it into the flags
POPFD Removes a doubleword from the stack and places it into the
EFLAG register
PUSHF Copies the flags onto the stack
PUSHFD Copies the EFLAG register to the stack
PUSH AX Copies AX to the stack
POP BX Removes a word from the stack and places it into BX
PUSH DS Copies DS to the stack
PUSH 1234H Copies a 1234H to the stack
POP CS lllegal instruction

PUSH WORD PTR [BX]
PUSHA

POPA

PUSHAD

POPAD

POP EAX
PUSH EDI

Copies a word from the data segment memory location addressed
by BX onto the stack

Copies the word contents of AX, CX, DX, BX, SP, BP, DI, and SI
onto the stack

Removes data from the stack and places it into SI, DI, BP, SP,
BX, DX, CX, and AX

Copies the doubleword contents of EAX, ECX, EDX, EBX, ESP,
EBP, EDI, and ESI onto the stack

Removes data from the stack and places it into ESI, EDI, EBP,
ESP, EBX, EDX, ECX, and EAX

Removes data from the stack and places it into EAX
Copies EDI to the stack

The PUSHA and POPA instructions either push or pop all of the registers, except the seg-
ment registers, on the stack. These instructions are not available on the early 8086/8088 micro-
processors. The push immediate instruction is also new to the 80286 through the Pentium Pro
microprocessors. Note the examples in Table 3-11 that show the order of the registers trans-
ferred by the PUSHA and POPA instructions. The 80386 and above also allow extended regis-

ters to be pushed or popped.

Example 3-14 lists a short program that pushes the contents of AX, BX, and CX onto the
stack. The first POP retrieves the value that was pushed onto the stack from CX and places it into
AX. The second POP places the original value of BX into CX. The last POP places the original

value of AX into BX.

EXAMPLE 3-14

0000

0100 B8 1000
0103 BB 2000
0106 B9 3000

0109 50
010A 53
010B 51
010C 58

010D 59

.MODEL TINY ;select TINY model
.CODE ;start CODE segment
. STARTUP ;start of program
MoV A¥,1000H ;load test data
MOV BZ,2000H

MOV CZ,3000H

PUSH AZ ;1000H to stack
PUSH BZ ;2000H to stack
PUSH CZ ;3000H to stack
POP AZ ;3000H to AX

POP CZ ;2000H to CX

3-4 SUMMARY 95

01NE 5B POP BX ;Z300H to BX
JEXIT ;exit to DOS
END ;end of file

1. The data-addressing modes include register, immediate, direct, register indirect, base-plus-index,

10.

register relative, and base relative-plus-index addressing. An additional addressing mode, called
scaled-index addressing, exists in the 80386 through the Pentium Pro microprocessor.

. The program memory-addressing modes include direct, relative, and indirect addressing.
. Table 3-12 lists all real mode data-addressing modes available to the 8086 through the

80286 microprocessors. Note that the 80386 and above also use these modes, in addition to
the many defined throughout this chapter. In the protected mode, the function of the segment
register is to address a descriptor that contains the base address of the memory segment.

. The 80386, 80486, Pentium, and Pentium Pro microprocessors have additional addressing

modes that allow the extended registers EAX, EBX, ECX, EDX, EBP, EDI, and ESI to ad-
dress memory. These addressing modes are too numerous to list in tabular form, but in gen-
eral any of these registers function in the same way as those listed in Table 3-12. For
example, the MOV AL, TABLE[EBX+2*ECX+10H] instruction is a valid addressing mode
for the 80386/80486/Pentium/Pentium Pro microprocessors.

. The MOV instruction copies the contents of the source operand into the destination operand.

The source never changes for any instruction.

. Register addressing specifies any 8-bit register (AH, AL, BH, BL, CH, CL, DH, or DL) or

any 16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI). The segment registers (CS, DS,
ES, or SS) are also addressable for moving data between a segment register and a 16-bit reg-
ister/memory location or for PUSH and POP. In the 80386 through the Pentium Pro micro-
processors, the extended registers also are used for register addressing and consist of EAX,
EBX, ECX, EDX, ESP, EBP, EDI, and ESI. Also available to the 80386 and above are the
FS and GS segment registers.

. The MOV immediate instruction transfers the byte or word immediately following the op-

code into a register or a memory location. Immediate addressing manipulates constant data
in a program. In the 80386 and above, a doubleword immediate data may also be loaded into
a 32-bit register or memory location.

. The MODEL statement is used with assembly language to identify the start of a file and the

type of memory model used with the file. If the size is TINY, the program exists in one seg-
ment, the code segment, and is assembled as a command (.COM) program. If the SMALL
model is used, the program uses a code and data segment and assembles as an execute
(.EXE) program. Other model sizes and their attributes are listed in Appendix A.

. Direct addressing occurs in two forms in the microprocessor: (1) direct addressing and

(2) displacement addressing. Both forms of addressing are identical except that direct ad-
dressing is used to transfer data between EAX, AX, or AL and memory, while displacement
addressing is used with any register-memory transfer. Direct addressing requires three bytes
of memory, while displacement addressing requires four bytes. Note that some of these in-
structions in the 80386 and above may require additional bytes in the form of prefixes for
register and operand sizes.

Register indirect addressing allows data to be addressed at the memory location pointed to
by either a base (BP and BX) or index register (DI and SI). In the 80386 and above, extended
registers EAX, EBX, ECX, EDX, EBP, EDI, and ESI are used to address memory data.

. Base-plus-index addressing often addresses data in an array. The memory address for this

mode is formed by adding a base register, index register, and the contents of a segment register

96

CHAPTER 3 ADDRESSING MODES

TABLE 3-12 Example real
mode data-addressing modes

Assembly Language Address Generation
MOV AL,BL 8-bit register addressing
MOV AX,BX 16-bit register addressing
MOV EAX,ECX 32-bit register addressing
MOV DS,CX Segment register addressing
MOV AL,LIST (DS x 10H) + LIST

MOV CH,DATA1
MOV ES,DATA2

MOV AL, 12

MOV AL,[BP]

MOV AL,[BX]

MOV AL,[DI]

MOV AL,[S]

MOV AL,[BP+2]

MOV AL,[BX—4]

MOV AL,[DI+1000H]
MOV AL,[SI+300H]
MOV AL,LIST[BP]

MOV AL,LIST[BX]

MOV AL,LIST[DI]

MOV AL,LIST[SI]

MOV AL,LIST[BP+2]
MOV AL,LIST[BX-6]
MOV AL, LIST[DI+100H]
MOV AL,LIST[SI+200H]
MOV AL,[BP+DI]

MOV AL,[BP+SI]

MOV AL,[BX+DI]

MOV AL,[BX+SI]

MOV AL,[BP+DI+4]
MOV AL,[BP+SI-8]
MOV AL,[BX+DI+10H]
MOV AL,[BX+ SI-10H]
MOV AL,LIST[BP+DI]
MOV AL,LIST[BP+SI]
MOV AL,LIST[BX+DI]
MOV AL,LIST[BX+S]
MOV AL,LIST[BP+DI+2]
MOV AL,LIST[BP+SI-7]
MOV AL,LIST[BX+DI+3]
MOV AL,LIST[BX+SI-2]

(DS x 10H) + DATAt

(DS x 10H) + DATA2
Immediate data of 12H

(SS x 10H) + BP

{DS x 10H) + BX

(DS x 10H) + DI

(DS x 10H) + SI
(SSx 10H) + BP + 2

(DS x 10H) + BX -4

(DS x 10H) + DI + 1000H

(DS x 10H) + SI + 300H

(SSx 10H) + LIST + BP

(DS x 10H) + LIST + BX

(DS x 10H) + LIST + DI

(DS x 10H) + LIST + Sl

(SSx 10H) + LIST+BP + 2
(DS x 10H) + LIST+BX -6
(DS x 10H) + LIST + DI + 100H
(DS x 10H) + LIST + Sl + 200H
(SS x 10H) + BP + DI

(SS x 10H) + BP + SI

(DS x 10H) + BX + DI

(DS x 10H) + BX + Sl

(SS x 10H) + BP + DI +4
(SSx10H) +BP + Sl -8

(DS x 10H) + BX + DI + 10H
(DS x 10H) + BX + SI — 10H
(SS x 10H) + LIST + BP + DI
(SS x 10H) + LIST + BP + S
(DS x 10H) + LIST + BX + DI
(DS x 10H) + LIST + BX + S
(SSx10H) + LIST+BP + DI + 2
(SSx10H) + LIST+BP + SI -7
(DS x 10H) + LIST +BX + DI + 3
(DS x 10H) + LIST + BX + Sl -2

times 10H. In the 80386 and above, the base and index registers may be any 32-bit register ex-

cept EIP and ESP.

12. Register relative addressing uses either a base or index register plus a displacement to access

memory data.

13. Base relative-plus-index addressing is useful for addressing a two-dimensional memory
array. Th- address is formed by adding a base register, an index register, displacement, and
the contents of a segment register times 10H.

14. Scaled-index addressing is unique to the 80386 through the Pentium Pro. The second of two
registers (index) is scaled by a factor of 2X, 4X, or 8X to access words, doublewords, or
quadwords in memory arrays. The MOV AX,[EBX+2*ECX] and the MOV [4*ECX],EDX
are examples of scaled-index instructions.

3-4 SUMMARY 97
15. Data structures are templates for storing arrays of data and are addressed by array name and field.
For example, array NUMBER and field TEN of array NUMBER is addressed as NUMBER.TEN.

16. Direct program memory addressing is allowed with the JMP and CALL instructions to any
location in the memory system. With this addressing mode, the offset address and segment
address are stored with the instruction.

17. Relative program addressing allows a JMP or CALL instruction to branch forward or back-
ward in the current code segment by 32K bytes. In the 80386 and above, the 32-bit dis-
placement allows a branch to any location in the current code segment using a displacement
value of +2G bytes.

18. Indirect program addressing allows the JMP or CALL instructions to address another por-
tion of the program or subroutine indirectly through a register or memory location.

19. The PUSH and POP instructions transfer a word between the stack and a register or memory

location. A PUSH immediate instruction is available to place immediate data on the stack. The

PUSHA and POPA instructions transfer AX, CX, DX, BX, BP, SP, SI, and DI between the

stack and these registers. In the 80386 and above, the extended register and extended flags can

also be transferred between registers and the stack. A PUSHFD stores the EFLAGS, while a

PUSHF stores the FLAGS.

Example 3~15 shows many of the addressing modes presented in the chapter. This example

program fills the ARRAY1 from locations 0000:0000-0000:0009. It then fills ARRAY?2 with

0-9. Finally, it exchanges the contents of ARRAY1 element 2 with ARRAY?2 element 3.

20.

EXAMPLE 3-15

.MODEL SMALL ;select SMALL model

0000 .DATA ;start of DATA segment
0000 000A [ARRAY1 DB 10 DUP (?) ;reserve for ARRAY1
00
]
000A 000A [ARRAY2 DB 10 DUP (?) ;reserve for ARRAY2
00
]

0000 .CODE ;jstart of CODE segment

.STARTUP ;start of program
0017 B8 0000 MOV AX,0 ;segment ES is 0000H
001A B8E CO MOV ES,AX
001C BF 0000 MOV DI,O0 ;address element 0
001F B9 000A MOV CX,10 ;count of 10
0022 LABL:
0022 26:8A 05 MOV AL,ES:[DI] ;copy data
0025 88 85 0000 R MOV ARRAY1[DI],AL ;into ARRAY1
0029 47 INC DI
002A E2 F6 LOOP LAB1
002C BF 0000 MOV DI,0 ;address element 0
002F B9 000A MOV CX, 10 ;count of 10
0032 BO 00 MOV AL, O ;initial value
0034 LAB2:
0034 88 85 000A R MOV ARRAY2 [DI],AL ;£i11 ARRAY2
0038 FE CO INC AL
003A 47 INC DI
003B E2 F7 LOOP LAB2
003D BF 0003 MOV DI,3 ;exchange array data
0040 8a 85 0000 R MOV AL, ARRAY1 [DI]
0044 8A A5 000B R MOV AH, ARRAY2 [DI+1]
0048 88 A5 0000 R MOV ARRAY1 [DI],AH
004C 88 85 000B R MOV ARRAY2 [DI+1],AL

LEXIT ;exit to DOS

END ;end of file

98

CHAPTER 3 ADDRESSING MODES

3-5

QUESTIONS AND PROBLEMS

1.

W

0 3w

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.
23.
24.
25.
26.

What do the following MOV instructions accomplish?

(a) MOV AX.,BX

(b) MOV BX,AX

(c) MOV BL,CH

(d) MOV ESP.EBP

(e) MOV AX,CS

List the 8-bit registers used for register addressing.

List the 16-bit registers used for register addressing.

List the 32-bit registers used for register addressing in the 80386 through the Pentium Pro
microprocessors.

. List the 16-bit segment registers used for register addressing by MOV, PUSH, and POP.

What is wrong with the MOV BL,CX instruction?

. What is wrong with the MOV DS,SS instruction?
. Select an instruction for each of the following tasks:

(a) copy EBX into EDX
(b) copy BL into CL

(c) copy Slinto BX

(d) copy DS into AX
(e) copy AL into AH

. Select an instruction for each of the following tasks:

(a) move a 12H into AL

(b) move a 123AH into AX

(c) move a OCDH into CL

(d) move a 1000H into SI

(e) move a 1200A2H into EBX

What special symbol is sometimes used to denote immediate data?

What is the purpose of the MODEL TINY statement?

What assembly language directive indicates the start of the CODE segment?

What is a label?

The MOV instruction is placed in what field of a statement?

A label may begin with what characters?

What is the purpose of the .EXIT directive?

Does the . MODEL TINY statement cause a program to assemble an execute program?
What tasks does the .STARTUP directive accomplish in the small memory model?

What is a displacement? How does it determine the memory address in a MOV [2000H],AL
instruction?

What do the symbols [] indicate?

Suppose that DS = 0200H, BX = 0300H, and DI = 400H. Determine the memory address ac-
cessed by each of the following instructions, assuming real mode operation:

(a) MOV AL,[1234H]

(b) MOV EAX,[BX]

(c) MOV [DI],AL

What is wrong with a MOV [BX],[DI] instruction?

Choose an instruction th: t requires BYTE PTR.

Choose an instruction that requires WORD PTR.

Choose an instruction that requires DWORD PTR.

Explain the difference between the MOV BX,DATA instruction and the MOV BX,OFFSET
DATA instruction.

3-5

27.

QUESTIONS AND PROBLEMS 99

Suppose that DS = 1000H, SS = 2000H, BP = 1000H, and DI = 0100H. Determine the memory
address accessed by each of the following, assuming real mode operation:

(a) MOV AL,[BP+DI]

(b) MOV CX,[DI]

(c) MOV EDX,[BP]

28. What, if anything, is wrong with a MOV AL,[BX][SI] instruction?

30.

31.

32.
33.

34.
35.
36.
37.

38.
39.

40.
41.
42.

43.

44.
45.

29. Suppose thai DS = 1200H, BX = 0100}, and SI = 0250H. Determine the address accessed

by each of the following instructions assuming real mode operation:

(a) MOV [100H],DL

(b) MOV [SI+100H],EAX

(c) MOV DL,[BX+100H]

Suppose that DS = 1100H, BX = 0200H, LIST = 0250H, and SI = 0500H. Determine the ad-
dress accessed by each of the following instructions assuming real mode operation:

(a) MOV LIST[SI],.EDX

(b) MOV CL,LIST[BX+SI]

(c) MOV CH,[BX+SI]

Suppose that DS = 1300H, SS = 1400H, BP = 1500H, and SI = 0100H. Determine the ad-
dress accessed by each of the following instructions, assuming real mode operation:

(a) MOV EAX,[BP+200H]

(b) MOV AL,[BP+SI-200H]

(c) MOV AL,[SI-0100H]

Which base register addresses data in the stack segment?

Suppose that EAX = 00001000H, EBX = 00002000H, and DS = 0010H. Determine the ad-
dress accessed by the following instructions, assuming real mode operation:

(a) MOV ECX,[EAX+EBX]

(b) MOV [EAX+2*EBX],CL

(c) MOV DH,[EBX+4*EAX+1000H]

Develop a data structure that has five fields of one word each named F1, F2, F3, F4, and F5
with a structure name of FIELDS.

Show how field F3 of the data structure constructed in question 34 is addressed in a program.
List all three program memory-addressing modes.

How many bytes of memory store a far direct jump instruction? What is stored in each of the
bytes?

What is the difference between an intersegment jump and an intrasegment jump?

If a near jump uses a signed 16-bit displacement, how can it jump to any memory location
within the current code segment?

The 80386 and above use a ____ -bit displacement to jump to any location
within the 4G byte code segment.

What is a far jump?

If a JMP instruction is stored at memory location 100H within the current code segment, it
cannotbea__ jump if it is jumping to memory location 200H within the cur-
rent code segment.

Show which JMP instruction (short, near, or far) assembles if the JMP THERE instruction is
stored at memory address 10000H and the address of THERE is:

(a) 10020H

(b) 11000H

(c) OFFFEH

(d) 30000H

Form a JMP instruction that jumps to the address pointed to by the BX register.

Select a JMP instruction that jumps to the location stored in memory at the location table.
Assume that it is a near jump.

100

CHAPTER 3 ADDRESSING MODES

46.
47.
48.

49.
50.
S1.
52.
53.

How many bytes are stored on the stack by the PUSH instruction?

Explain how the PUSH [DI] instruction functions.

What registers are placed on the stack by the PUSHA instruction? In what order are they
placed?

What does the PUSHAD instruction accomplish?

Which instruction places the EFLAGS on the stack in the Pentium microprocessor?

Use the Internet to write a report detailing the Intel 80196 embedded controller.

Use the Internet to write a report detailing the Intel 8051 embedded controller.

Use the Internet to write a report detailing the Motorola 6811 microprocessor.

CHAPTER 4

Data Movement Instructions

INTRODUCTION

This chapter concentrates on the data movement instructions. The data movement instructions
include MOV, MOVSX, MOVZX, PUSH, POP, BSWAP, XCHG, XLAT, IN, OUT, LEA,
LDS, LES LFS, LGS, LSS, LAHF, SAHF, and the string instructions MOVS, LODS, STOS,
INS, and OUTS The la£e;st data transfer instruction implemented on the Pentium Pro is the
CMOV (conditional move) instruction. The data movement instructions are presented first
‘because they are more commonly used in programs and are easy to understand.

The microprocessor requires an assembler program, which generates machine language,
because machine language instructions are too complex to generate efficiently by hand. This
chapter describes the assembly language syntax and some of its directives. (This text assumes
that the user is developing software on an IBM personal computer or clone. It is recommended
that the Microsoft MACRO assembler (MASM) be used as the development tool, but the Intel
Assembler (ASM), Borland Turbo assembler (TASM), or similar software functions equally as
well. This text presents information that functions with the Microsoft MASM assembler, but
most programs assemble without modification with other assemblers. Appendix A explains the
Microsoft assembler and provides details on the linker program and Programmer’s WorkBench.)

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Explain the operation of each data movement instruction with applicable addressing modes.

2. Explain the purposes of the assembly language pseudo-operations and key words such as
ALIGN, ASSUME, DB, DD, DW, END, ENDS, ENDP, EQU, .MODEL, OFFSET, ORG,
PROC, PTR, SEGMENT, USE16, USE32, and USES.

3. Select the appropriate assembly language instruction to accomplish a specific data move-
ment task.

4. Determine the symbolic opcode, source, destination, and addressing mode for a hexadecimal

machine language instruction.

. Use the assembler to set up a data segment, stack segment, and code segment.

. Show how to set up a procedure using PROC and ENDP.

7. Explain the difference between memory models and full segment definitions for the MASM
assembler.

AN W

101

102

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

MOV REVISITED

The MOV instruction, introduced in Chapter 3, explains the diversity of 8086-80486/Pentium
Pro addressing modes. In this chapter, the MOV instruction introduces the machine language in-
structions available with various addressing modes and instructions. Machine code is introduced
because it may occasionally be necessary to interpret machine language programs generated by
an assembler. Interpretation of the machine’s native language (machine language) allows de-
bugging or modification at the machine language level. Occasionally, machine language patches
are made using the DEBUG program available with DOS, which requires some knowledge of
machine language. Conversion between machine and assembly language instructions is illus-
trated in Appendix B.

Machine Language

Machine language is the native binary code that the microprocessor understands and uses as its
instructions to control its operation. Machine language instructions for the 8086 through the Pen-
tium Pro vary in length from one to as many as thirteen bytes. Although machine language ap-
pears to be complex, there is order to this microprocessor’s machine language. There are well
over 100,000 variations of machine language instructions, which means that no complete list of
these variations exists. Because of this, some binary bits in a machine language instruction are
given, and the remainder are determined for each variation of the instruction.

Instructions for the 8086 through the 80286 are 16-bit mode instructions that take the form
found in Figure 4-1 (a). The 16-bit mode instructions are compatible with the 80386 and above
if they are programmed to operate in the 16-bit instruction mode, but they may be prefixed as
shown in Figure 4-1 (b). The 80386 and above assume that all instructions are 16-bit mode in-
structions when the machine is operated in the real mode. In the protected mode, the upper byte
of the descriptor contains the D-bit that selects either the 16- or 32-bit instruction mode. At pre-
sent, only Windows NT, Windows 95, and OS/2 operate in the 32-bit instruction mode. The 32-
bit mode instructions are in the form shown in Figure 4-1 (b). These instructions occur in the
16-bit instruction mode by the use of prefixes, which are explained later in this chapter.

The first two bytes of the 32-bit instruction mode format are called override prefixes be-
cause they are not always present. The first modifies the size of the operand address used by the
instruction, and the second modifies the register size. If the 80386 through the Pentium Pro op-
erate as 16-bit instruction mode machines (real or protected mode) and a 32-bit register is used,
the register-size prefix (66H) is appended to the front of the instruction. If operated in the 32-bit
instruction mode (protected mode only) and a 32-bit register is used, the register-size prefix is

16-bit instruction mode

Opcode

1-2 bytes

MOD-REG-R/M
0-1 bytes

Immediate
0-2 bytes

Displacement
0-1 bytes

(a)

32-bit instruction mode (80386, 80486, Pentium, or Pentium Pro only)

FIGURE 4-1

Opcode
1-2 bytes

MOD-REG-RM
0-1 bytes

Displacement
04 bytes

Immediate
04 bytes

The formats of the 8086—Pentium Pro instructions. (a) The 16-bit form and (b) the 32-bit form.

4-1 MOV REVISITED 103

FIGURE 4-2 Byte 1 of S
many machine language in- : : : : : D[w
structions, showing the posi- : N
tion of the D- and W-bits

Opcode

absent. If a 16-bit register appears in an instruction in the 32-bit instruction mode, the register-
size prefix is present to select a 16-bit register. The address-size prefix (67H) is used in a sim-
ilar fashion, as explained later in this chapter. The prefixes toggle the size of the register and
operand address from 16-bit to 32-bit or 32-bit to 16-bit for the prefixed instruction. Note that
the 16-bit instruction mode uses 8- and 16-bit registers and addressing modes, while the 32-bit
instruction mode uses 8- and 32-bit registers and addressing modes by default. The prefixes
override these defaults so that a 32-bit register can be used in the 16-bit mode or a 16-bit register
can be used in the 32-bit mode. The mode of operation (16- or 32-bits) should be selected to
conform with the application at hand. If 8- and 32-bit data pervade the application, then the 32-
bit mode should be selected; likewise, if 8- and 16-bit data pervade, then the 16-bit mode should
be selected. Normally, mode selection is a function of the operating system.

The Opcode. The opcode selects the operation (addition, subtraction, move, etc.) performed by
the microprocessor. The opcode is either one or two bytes long for most machine language in-
structions. Figure 4-2 illustrates the general form of the first opcode byte of many, but not all,
machine language instructions. Here, the first six bits of the first byte are the binary opcode. The
remaining two bits indicate the direction (D)—not to be confused with the instruction mode bit
(16/32) or direction flag bit (used with string instructions)—of the data flow and whether the
data are a byte or a word (W). In the 80386 and above, words and doublewords are both speci-
fied when W = 1. The instruction mode and register-size prefix (66H) determine whether W rep-
resents a word or a doubleword.

If the direction bit (D) = 1, data flow zo the register (REG) field from the R/M field located
in the second byte of an instruction. If the D-bit = 0 in the opcode, data flow to the R/M field
from the REG field. If the W-bit = 1, the data size is a word or doubleword; if the W-bit = 0, the
data size is a byte. The W-bit appears in most instructions, while the D-bit appears mainly with
the MOV and some other instructions. Refer to Figure 4-3 for the binary bit pattern of the
second opcode byte (reg-mod-r/m) of many instructions. Figure 4-3 shows the location of the
MOD (mode), REG (register), and R/M (register/memory) fields.

MOD Field. The MOD field specifies the addressing mode (MOD) for the selected instruction.
The MOD field selects the type of addressing and whether a displacement is present with the se-
lected type. Table 4-1 lists the operand forms available to the MOD field for the 16-bit instruction
mode, unless the operand address-size override prefix (67H) appears. If the MOD field contains a
11, it selects the register-addressing mode. Register addressing uses the R/M field to specify a reg-
ister instead of a memory location. If the MOD field contains a 00, 01, or 10, the R/M field selects
one of the data memory-addressing modes. When MOD selects a data memory-addressing mode,
it indicates that the addressing mode contains no displacement (00), an 8-bit sign-extended dis-
placement (01), or a 16-bit displacement (10). The MOV AL,[DI] instruction is an example

FIGURE 4-3 Byte 2 of MOD REG R/M
many machine language in- : : : : :
structions, showing the posi-
tion of the MOD, REG, and
R/M fields

104

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-1 MOD field for

the 16-bit instruction mode MoD Function
00 No displacement
01 8-bit sign-extended displacement
10 16-bit displacement
11 R/Mis a register

showing no displacement; a MOV AL,[DI + 2] instruction uses an 8-bit displacement (+ 2); and a
MOV AL,[DI + 1000H] instruction uses a 16-bit displacement (+ 1000H).

All 8-bit displacements are sign-extended into 16-bit displacements when the micro-
processor executes the instruction. If the 8-bit displacement is 00H-7FH (positive), it is sign-
extended to 0000H-007FH before adding to the offset address. If the 8-bit displacement is
80H-FFH (negative), it is sign-extended to FF8OH-FFFFH. To sign-extend a number, its sign-
bit is copied to the next higher-order byte, which generates either a 00H or an FFH in the higher-
order byte. Note that some assembler programs do not use the 8-bit displacements.

In the 80386 through the Pentium Pro microprocessors, the MOD field may be the same as
shown in Table 4-1; if the instruction mode is 32-bits, the MOD field is as appears in Table 4-2.
The MOD field is interpreted as selected by the address-size override prefix or the operating mode
of the microprocessor. This change in the interpretation of the MOD field and instruction supports
many of the numerous additional addressing modes allowed in the 80386 through the Pentium
Pro. The main difference is when the MOD field is a 10. This causes the 16-bit displacement to
become a 32-bit displacement to allow any protected mode memory location (4G bytes) to be ac-
cessed. The 80386 and above allow only an 8- or 32-bit displacement when operated in the 32-bit
instruction mode, unless the address-size override prefix appears. Note that if an 8-bit displace-
ment is selected, it is sign-extended into a 32-bit displacement by the microprocessor.

Register Assignments. Table 4-3 lists the register assignments for the REG field and the R'M
field (MOD = 11). This table contains three lists of register assignments: one is used when the
W-bit = 0 (bytes), and the other two are used when the W-bit = 1 (words or doublewords). Note
that doubleword registers are used only available to the 80386 through the Pentium Pro.

Suppose that a 2-byte instruction, 8BECH, appears in a machine language program. Be-
cause neither a 67H (operand address-size override prefix) nor 66H (register-size override
prefix) appears as the first byte, the first byte is the opcode. Assuming that the microprocessor is
operated in the 16-bit instruction mode, this instruction is converted to binary and placed in the
instruction format of bytes 1 and 2, as illustrated in Figure 4—4. The opcode is 100010. If you
refer to Appendix B, which lists the machine language instructions, you will find that this is the
opcode for a MOV instruction. Also notice that both the D- and W-bits are a logic 1, which
means that a word moves into the destination register specified in the REG field. The REG field
contains a 101, indicating register BP, so the MOV instruction moves data into register BP. Be-
cause the MOD field contains a 11, the R/M field also indicates a register. Here, R/M = 100 (SP);
therefore, this instruction moves data from SP into BP and is written in symbolic form as a MOV
BP,SP instruction.

TABLE 4-2 MOD field for -
the 32-bit instruction mode MOoD Function
(80386-Pentium Pro only)

00 No displacement
01 8-bit sign-extended displacement
10 32-bit displacement

11 R/M is a register

TABLE 4-3 REG and

4-1 MOV REVISITED 105

Opcode D W MOD REG R/M

1i0i0i0i1i0]| 1] 1i1f1i0i1|1io0io0

Opcode = MOV

D = Transfer to register (REG)
W = Word

MOD = R/M is a register

REG = BP

R/M = SP

FIGURE 4-4 The 8BEC instruction placed into Byte 1 and 2 formats from Figure 4-2 and 4-3.
This instruction is a MOV BP,SP.

Suppose that a 668BE8H instruction appears in an 80386 or above operated in the 16-bit
instruction mode. The first byte (66H) is the register-size override prefix that selects 32-bit reg-
ister operands for the 16-bit instruction mode. The remainder of the instruction indicates that the
opcode is a MOV with a source operand of EAX and a destination operand of EBP. This in-
struction is a MOV EBP,EAX. The same instruction becomes a MOV BP,AX instruction in the
80386 and above if it is operated in the 32-bit instruction mode because the register-size override
prefix selects a 16-bit register. Luckily, the assembler program keeps track of the register- and
address-size prefixes and the mode of operation. Recall that if the .386 switch is placed before
the MODEL statement, the 32-bit mode is selected; if it is placed after the MODEL statement,
the 16-bit mode is selected.

R/M Memory Addressing. 1f the MOD field contains a 00, 01, or 10, the R/M field takes on a
new meaning. Table 4—4 lists the memory-addressing modes for the R/M field when MOD is a
00, 01, or 10 for the 16-bit instruction mode.

All of the 16-bit addressing modes presented in Chapter 3 appear in Table 4—4. The dis-
placement, discussed in Chapter 3, is defined by the MOD field. If MOD = 00 and R/M = 101,
the addressing mode is [DI]. If MOD = 01 or 10, the addressing mode is [DI + 33H] or LIST [DI
+ 22H)] for the 16-bit instruction mode. This example uses LIST, 33H, and 22H as arbitrary
values for the displacement.

Figure 4-5 illustrates the machine language version of the 16-bit instruction MOV DL, [DI]
or instruction (8A15H). This instruction is two bytes long and has an opcode 100010, D =1 (to
REG from R/M), W = 0 (byte), MOD = 00 (no displacement), REG = 010 (DL), and R/M = 101
([DI]). If the instruction changes to MOV DL,[DI + 1], the MOD field changes to 01 for an 8-bit
displacement, but the first two bytes of the instruction otherwise remain the same. The instruction
now becomes 8A5501H instead of 8A15H. Notice that the 8-bit displacement appends to the first
two bytes of the instruction to form a 3-byte instruction instead of two bytes. If the instruction is
again changed to a MOV DL,[DI+1000H], the machine language form becomes a 8A750010H.
Here the 16-bit displacement of 1000H (coded as 0010H) appends the opcode.

R/M (when MOD = 11) Code W=0 (Byte) W=1 (Word) W=1 (Doubleword)
assignments

000 AL AX EAX

001 CL CX ECX

010 DL DX EDX

011 BL BX EBX

100 AH SP ESP

101 CH BP EBP

110 DH Sl ESI

111 BH DI EDI

106

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

Opcode D W MOD REG R/M

1io0io0ioi1io|1]o0 oiofloitiol1ioi

Opcode = MOV

D = Transfer to register (REG)
W= Byte

MOD = No displacement

REG =DL

R/M = DS:[DI]

FIGURE 4-5 A MOV DL,[Dl] instruction converted to its machine language form

Special Addressing Mode. There is a special addressing mode that does not appear in Tables
4-2, 4-3, or 4—4 that occurs whenever memory data are referenced by only the displacement
mode of addressing for 16-bit instructions. Examples are the MOV [1000H],DL and MOV
NUMB,DL instructions. The first instruction moves the contents of register DL into data seg-
ment memory location 1000H. The second instruction moves register DL into symbolic data seg-
ment memory location NUMB.

Whenever an instruction has only a displacement, the MOD field is always a 00 and the
R/M field is always a 110. As indicated in the tables, this combination shows that the instruction
contains no displacement and uses addressing mode [BP]. You cannot actually use addressing
mode [BP] without a displacement in machine language. The assembler takes care of this by using
an 8-bit displacement (MOD = 01) of 00H whenever the [BP] addressing mode appears in an in-
struction. This means that the [BP] addressing mode assembles as a [BP + 0] even though a [BP]
is used in the instruction. The same special addressing mode is also available to the 32-bit mode.

Figure 4-6 shows the binary bit pattern required to encode the MOV [1000H],DL instruc-
tion in machine language. If the individual translating this symbolic instruction into machine lan-
guage does not know about the special addressing mode, the instruction would incorrectly
translate to a MOV [BP],DL. Figure 4-7 shows the actual form of the MOV [BP],DL instruction.
Notice that this is a 3-byte instruction with a displacement of 00OH.

32-bit Addressing Modes. The 32-bit addressing modes found in the 80386 and above are ob-
tained by either running these machines in the 32-bit instruction mode or in the 16-bit instruction
mode by using the address-size prefix 67H. Table 4-5 shows the coding for R/M used to specify
the 32-bit addressing modes. Notice that when R/M = 100, an additional byte appears in the in-
struction called a scaled-index byte. The scaled-index byte indicates the additional forms of
scaled-index addressing that do not appear in Table 4-5. The scaled-index byte is mainly used
when two registers are added to specify the memory address in an instruction. Because the

TABLE 4-4 16-bit R/M)
memory-addressing modes R/M code Addressing Mode

000 DS:[BX+Sl]
001 DS:[BX+DI]
010 SS:[BP+SI]
011 SS:{BP+DI]
100 DS:[S]

101 DS:[DI]
110 SS:[BP]*
111 DS:[BX]

*Note: See text section, Special
Addressing Mode.

4-1 MOV REVISITED ‘ 107

Opcode D wW MOD REG R/M
1io0ioioitiololo o:iofloitiolt1itio
Byte 1 Byte 2
Displacement—low Displacement—high
oioioioioioio:o oio0ioit1i0i0:0io0
Byte 3 Byte 4

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG =DL

R/M = DS:[BP]

Displacement = 1000H

FIGURE 4-6 The MOV [1000H],DL instruction uses the special addressing mode.

scaled-index byte is added to the instruction, there are seven bits in the opcode to define and
eight bits in the scaled-index byte. This means that a scaled-index instruction has 2'3 (32K) pos-
sible combinations. There are over 32,000 different variation of the MOV instruction alone in
the 80386 through the Pentium Pro microprocessors.

Figure 4-8 shows the format of the scaled-index byte as selected by a value of 100 in the
R/M field of an instruction when the 80386 and above use a 32-bit address. The leftmost two bits
select a scaling factor (multiplier) of 1X, 2X, 4X, or 8X. Note that a scaling factor of 1X is im-
plicit if none is used in an instruction that contains two 32-bit indirect address registers. The index
and base fields both contain register numbers, as indicated in Table 4-3 for 32-bit registers.

Opcode D W MOD REG R/M
1io0iofoitioflo]o oit1foitiol1i1io
Byte 1 Byte 2

8-bit displacement

0oioioioioioioio

Byte 3

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG =DL

R/M = DS:[BP]

Displacement = 00H

FIGURE 4-7 The MOV [BP],DL instruction converted to binary machine language

108

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-5 32-bit address-

ing modes selected by R/M R/M Code Function

000 DS:[EAX]

001 DS:[ECX[

010 DS:[EDX]

011 DS:[EBX]

100 Uses scaled-index byte
101 SS:[EBP]*

110 DS:[ESI]

111 DS:[EDI]

*Note: See text section, Special Addressing Mode.

The MOV EAX,[EBX+4*ECX] instruction is encoded as 67668B048BH. Notice that both
the address size (67TH) and register size (66H) override prefixes appear in the instruction. This
coding (67668B048BH) is used when the 80386 and above are operated in the 16-bit instruction
mode for this instruction. If the microprocessor operates in the 32-bit instruction mode, both pre-
fixes disappear and the instruction becomes a 8B048BH instruction. The use of the prefixes de-
pends on the mode of operation of the microprocessor. Scaled-index addressing can also use a
single register multiplied by a scaling factor. An example is the MOV AL,[2*ECX] instruction.
The contents of the data segment location addressed by two times ECX is copied into AL.

An Immediate Instruction. Suppose the MOV WORD PTR [BX+1000H],1234H instruction is
chosen as an example of a 16-bit instruction using immediate addressing. This instruction moves a
1234H into the word-sized memory location addressed by the sum of 1000H, BX, and DS x 10H.
This six-byte instruction uses two bytes for the opcode, W, MOD, and R/M fields. Two of the six-
bytes are the data of 1234H. Two of the six bytes are the displacement of 1000H. Figure 4-9 shows
the binary bit pattern for each byte of this instruction.

This instruction, in symbolic form, includes WORD PTR. The WORD PTR directive indi-
cates to the assembler that the instruction uses a word-sized memory pointer. If the instruction
moves a byte of immediate data, then BYTE PTR replaces WORD PTR in the instruction. Like-
wise, if the instruction uses a doubleword of immediate data, the DWORD PTR directive re-
places BYTE PTR. Most instructions that refer to memory through a pointer do not need the
BYTE PTR, WORD PTR, or DWORD PTR directives. These are only necessary when it is not
clear if the operation is a byte or a word. The MOV [BX],AL instruction is clearly a byte move,
while the MOV [BX],1 instruction is not exact and could therefore be a byte-, word-, or double-
word-sized move. Here the instruction must be coded as MOV BYTE PTR [BX],1, MOV
WORD PTR [BX],1, or MOV DWORD PTR [BX],1. If not, the assembler flags it as an error be-
cause it cannot determine the intent of this instruction.

Segment MOV Instructions. If the contents of a segment register are moved by the MOV,
PUSH, or POP instructions, a special set of register bits (REG field) selects the segment register
(see Table 4-6).

FIGURE 4-8 The MOV s s Index Base
[BP],DL instr::ction converted : : : : :
to binary machine language

SSs

00=x1
01=x2
10= x4

11=x8

4-1 MOV REVISITED ' 109

Opcode W MOD R/M
1ti1io0ioioi i 1ioloioio| 11
Byte 1 Byte 2
Displacement—Ilow Displacement—high
0oioioioioioio:io oioioit1ioioioio
Byte 3 Byte 4
Data—Ilow Data—high
0ioit1itioitioio oiofioitioioitio
Byte 5 Byte 6

Opcode = MOV (immediate)

W = Word

MOD = 16-bit displacement

REG = 000 (not used in immediate addressing)
R/M = DS:[BX]

Displacement = 1000H

Data = 1234H

FIGURE 4-9 A MOV WORD PTR [BX+1000H],1234H instruction converted to binary machine
language

Figure 4-10 shows a MOV BX,CS instruction converted to binary. The opcode for this
type of MOV instruction is different for the prior MOV instructions. Segment registers can be
moved between any 16-bit register or 16-bit memory location. For example, the MOV [DI],DS
instruction stores the contents of DS into the memory location addressed by DI in the data seg-
ment. An immediate segment register MOV is not available in the instruction set. To load a seg-
ment register with immediate data, first load another register with the data and then move it to a
segment register.

Although this has not been a complete coverage of machine language coding, it should give
you a good start in machine language programming. Remember that a program written in sym-
bolic assembly language (assembly language) is rarely assembled by hand into binary machine
language. An assembler program converts symbolic assembly language into machine language.

Opcode MOD REG RM
1:0:0:0:1 1]101]0 1 1lo:0:1]0:1 1
Opcode = MOV
MOD = R/M is a register
REG =CS
R/M = BX

FIGURE 4-10 A MOV BX,CS instruction converted to binary machine language

110 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS
TABLE 4-6 Segment regis-)
ter selection Code Segment Register
000 ES
001 cs*
010 SS
011 DS
100 FS
101 GS
*Note: MOV CS,R/M(16) and
POP CS are not allowed by the
microprocessor. The FS and GS
segments are only available to
the 80386—-Pentium Pro micro-
processors.
With the microprocessor and its over 100,000 instruction variations, let us hope that an assem-
bler is available for the conversion, because the process is very time-consuming, although not
impossible.
4-2 PUSH/POP

The PUSH and POP instructions are important instructions that store and retrieve data from the
LIFO (last-in, first-out) stack memory. The microprocessor has six forms of the PUSH and POP
instructions: register, memory, immediate, segment register, flags, and all registers. The PUSH
and POP immediate and the PUSHA and POPA (all registers) forms are not available in the ear-
lier 8086/8088 microprocessors, but are available to the 80286 through the Pentium Pro.

Register addressing allows the contents of any 16-bit register to be transferred to or from
the stack. In the 80386 and above, the 32-bit extended registers and flags (EFLAGS) can also be
pushed or popped from the stack. Memory addressing PUSH and POP instructions store the con-
tents of a 16-bit memory location (or 32-bits in the 80386 and above) on the stack or stack data
into a memory location. Immediate addressing allows immediate data to be pushed onto the
stack, but not popped off the stack. Segment register addressing allows the contents of any seg-
ment register to be pushed onto the stack or removed from the stack (CS may be pushed, but data
from the stack may never be popped into CS). The flags may be pushed or popped from that
stack, and the contents of all the registers may be pushed or popped.

PUSH

The 8086-80286 PUSH instruction always transfers two bytes of data to the stack; the 80386 and
above transfer two or four bytes, depending on the register or size of the memory location. The
source of the data may be any internal 16-bit/32-bit register, immediate data, any segment reg-
ister, or any two bytes of memory data. There is also a PUSHA instruction that copies the con-
tents of the internal register set, except the segment registers, to the stack. The PUSHA (push
all) instruction copies the registers to the stack in the following order: AX, CX, DX, BX. SP, BP,
SI, and DI. The value of SP p:shed to the stack is whatever it was before the PUSHA instruction
executes. The PUSHF (push flags) instruction copies the contents of the flag register to the
stack. The PUSHAD and POPAD instructions push and pop the contents of the 32-bit register set
found in the 80386 through the Pentium Pro.

4-2 PUSH/POP 111

Stack segment

12FFF
\/\/
03800
N 6a 037FF
EAX 6ABS3 6ABS3
/ B 3 037FE ——
M 7
— S~——
ESP 07FE
W_‘—,
cs 03000
DS 07FE
ss 0300 P
3000 — 37FE
e ——]

FIGURE 4-11 The effect of the PUSH AX instruction on ESP and stack memory location
37FFH and 37FEH. This instruction is shown at the point after execution.

Whenever data are pushed onto the stack, the first (most-significant) data byte moves into
the stack segment memory location addressed by SP — 1. The second (least-significant) data byte
moves into the stack segment memory location addressed by SP — 2. After the data are stored by
a PUSH, the contents of the SP register decrement by 2. The same is true for a doubleword push,
except that four bytes are moved to the stack memory (most-significant byte first), often which
the stack pointer decrements by 4. Figure 4-11 shows the operation of the PUSH AX instruction.
This instruction copies the contents of AX onto the stack where address SS:[SP - 1] = AH,
SS:[SP -2] = AL, and afterwards SP = SP - 2.

The PUSHA instruction pushes all of the internal 16-bit registers onto the stack, as illus-
trated in Figure 4-12. This instruction requires 16 bytes of stack memory space to store all eight
16-bit registers. After all registers are pushed, the contents of the SP register are decremented by
16. The PUSHA instruction is very useful when the entire register set (microprocessor environ-
ment) of the 80286 and above must be saved during a task. Note that the PUSHAD instruction
places the 32-bit register on the stack in the 80386 through the Pentium Pro. PUSHAD requires
32 bytes of stack storage space.

The PUSH immediate data instruction has two different opcodes, but in both cases a 16-bit
immediate number moves onto the stack; if PUSHD is used, a 32-bit immediate datum is pushed.
If the value of the immediate data is 0OH-FFH, the opcode is a 6AH; if the value of the data is
0100H-FFFFH, the opcode is 68H. The PUSH 8 instruction, which pushes an 0008H onto the
stack, assembles as a 6AO8H; the PUSH 1000H instruction assembles as a 680010H. Another
example of PUSH immediate is the PUSH ‘A’ instruction, which pushes a 0041H onto the stack.
Here the 41H is the ASCII code for the letter A.

Table 4-7 lists the forms of the PUSH instruction that include PUSHA and PUSHF. Notice
how the instruction set is used to specify different data sizes with the assembler.

112

TABLE 4-7 The PUSH

instructions

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

FIGURE 4-12 The opera- ~<— 16-bits —»
tion of the PUSHA instruction,

showing the location and AX
order of stack data cx

DX

BX

SP

BP

Sl

SP after PUSHA ———» DI

—

POP

The POP instruction performs the inverse operation of a PUSH instruction. The POP instruction
removes data from the stack and places it into the target 16-bit register, segment register, or a 16-
bit memory location. In the 80386 and above, a POP can also remove 32-bit data from the stack
and use a 32-bit address. The POP instruction is not available as an immediate POP. The POPF
(pop flags) instruction removes a 16-bit number from the stack and places it into the flag reg-
ister; the POPFD instruction removes a 32-bit number from the stack and places it into the ex-
tended flag register. The POPA (pop all) instruction removes 16 bytes of data from the stack and
places it into the following registers in the order shown: DI, SI, BP, SP, BX, DX, CX, and AX.
This is the reverse order from the way they are placed on the stack by the PUSHA instruction,
causing the same data to return to the same registers. In the 80386 and above, a POPAD instruc-
tion reloads the 32-bit registers from the stack.

Suppose that a POP BX instruction executes. The first byte of data removed from the stack
(the memory location addressed by SP in the stack segment) moves into register BL. The second
byte is removed from stack segment memory location SP + 1 and is placed into register BH.

Symbolic Example Note
PUSH reg16 PUSH BX 16-bit register
PUSH reg32 PUSH EDX 32-bit register
PUSH mem16 PUSH WORD PTR [BX] 16-bit pointer
PUSH mem32 PUSH DWORD PTR [EBX] 32-bit pointer
PUSH seg PUSH DS Segment register
PUSH imm8 PUSH 8-bit immediate
PUSHW imm16 PUSHW 1000H 16-bit immediate
PUSHD imm32 PUSHD 20 32-bit immediate
PUSHA PUSHA Save all 16-bit registers
PUSHAD PUSHAD Save all 32-bit registers
PUSHF PUSHF Save flags

PUSHFD PUSHFD Save EFLAGs

TABLE 4-8 The POP

instructions

4-2 PUSH/POP 113

Stack segment

OFFFF
\/_/—’_-
T~
EAX 01008 ~<—
n__——— | _39 01007
EBX 392F 392F > F 01006
N
r\/——_\.’
ESP 1008
M
(ofS}
DS 1008 00000
Ss 0000 @
00000 1008
—\"\.’—_\/

FIGURE 4-13 The POP BX instruction, showing how data are removed from the stack. This
instruction is shown after execution.

After both bytes are removed from the stack, the SP register increments by 2. Figure 4-13 shows
how the POP BX instruction removes data from the stack and places them into register BX.

The opcodes used for the POP instruction and all of its variations appear in Table 4-8.
Note that a POP CS instruction is not a valid instruction in the instruction set. If a POP CS in-
struction executes, only a portion of the address (CS) of the next instruction changes. This makes
the POP CS instruction unpredictable and therefore not allowed.

Initializing the Stack

When the stack area is initialized, load both the stack segment register (SS) and the stack pointer
(SP) register. It is normal to designate an area of memory as the stack segment by loading SS
with the bottom location of the stack segment.

For example, if the stack segment is to reside in memory locations 10000H-1FFFFH, load
SS with a 1000H. (Recall that the rightmost end of the stack segment register is appended with a

Symbolic Example Note
POP reg16 POP CX 16-bit register
POP reg32 POP EBP 32-bit register
POP mem16 POP WORD PTR[BX+1] 16-bit pointer
POP mem32 POP DATA3 32-bit memory address
POP seg POP FS Segment register
POPA POPA Pop all 16-bit registers
POPAD POPAD Pop all 32-bit registers
POPF POPF Pop flags

POPFD POPFD Pop EFLAGs

114

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

EAX
EBX Stack segment
N 1FFFF
AQ037 A037
ECX 1FFFE
B L,
ESP 0000
— " —
Cs e~
—~— ~~—
DS 0000
ss 1000 @
10000
e —]
10000
10000 <—

FIGURE 4-14 The PUSH CX instruction, showing the cyclical nature of the stack segment.
This instruction is shown just before execution, to illustrate that the stack bottom is contiguous to
the top.

OH for real mode addressing.) To start the stack at the top of this 64K byte stack segment, the stack
pointer (SP) is loaded with a 0000H. Likewise, to address the top of the stack at location 10FFFH,
use a value of 1000H in SP. Figure 4-14 shows how this value causes data to be pushed onto the
top of the stack segment with a PUSH CX instruction. Remember that all segments are cyclical—
that is, the top location of a segment is contiguous with the bottom location of the segment.

In assembly language, a stack segment is set up as illustrated in Example 4-1. The first
statement identifies the start of the stack segment, and the last statement identifies the end of the
stack segment. The assembler and linker programs place the correct stack segment address in SS
and the length of the segment (top of the stack) into SP. There is no need to load these registers
into your program unless you wish to change their initial values for some reason.

EXAMPLE 4-1
0000 STACK_SEG SEGMENT STACK
0000 0100 DW 100H DUP (?)
2222
]
0200 STACK_SEG ENDS

An alternative method for defining the stack segment is used with one of the memory
models for the MASM assembler only (refer to Appendix A). Other assemblers do not use
models or, if they do, they are not exactly the same as with MASM. Here th= .STACK statement,
followed by the number of bytes allocated to the stack, defines the stack area (see Example 4-2).
The function is identical to Example 4-1. The .STACK statement also initializes both SS and SP.
Note this text uses memory models designed to be uscd with the Microsoft MACRO assembler
program MASM.

4-3 LOAD-EFFECTIVE ADDRESS 115

EXAMPLE 4-2

.MODEL SMALL
.STACK 200H ;set stack size

If the stack is not specified using either method, a warning will appear when the program
is linked. The warning may be ignored if the stack size is 128 bytes or less. The system automat-
ically assigns (through DOS) at least 128 bytes of memory to the stack. This memory section is
located in the program segment prefix (PSP), which is appended to the beginning of each pro-
gram file. If you use more memory for the stack, you will erase information in the PSP that is
critical to the operation of your program and the computer. This error often causes the computer
program to crash. If the TINY memory model is used, the stack is automatically located at the
very end of the segment, which allows for a larger stack area.

4-3

LOAD-EFFECTIVE ADDRESS

There are several LEA (load-effective address) instructions in the microprocessor instruction
set. The LEA instruction loads any 16-bit register with the address as determined by the ad-
dressing mode selected for the instruction. The LDS and LES variations load any 16-bit register
with the offset address retrieved from a memory location and then loads either DS or ES with a
segment address retrieved from memory. In the 80386 and above, LFS, LGS, and LSS are added
to the instruction set, and a 32-bit register can be selected to receive a 32-bit offset from memory.
Table 4-9 lists the load-effective address instructions.

LEA

The LEA instruction loads a 16~ or 32-bit register with the offset address of the data specified by
the operand. As the first example in Table 4-9 shows, the operand address NUMB is loaded into
register AX, not the contents of address NUMB.

By comparing LEA with MOV, it is observed that LEA BX,[DI] loads the offset address
specified by [DI] (contents of DI) into the BX register; MOV BX,[DI] loads the data stored at the
memory location addressed by [DI] into register BX.

Earlier in the text, several examples are presented using the OFFSET directive. The
OFFSET directive performs the same function as an LEA instruction if the operand is a dis-
placement. For example, the MOV BX,OFFSET LIST performs the same function as LEA
BX,LIST. Both instructions load the offset address of memory location LIST into the BX reg-
ister. Refer to Example 4-3 for a short program that loads SI with the address of DATA1 and DI

TABLE 4-9 Load-effective address instructions

Assembly Language Operation
LEA AX,NUMB Loads AX with the address of NUMB
LEA EAX,NUMB Loads EAX with the address of NUMB
LDS DI,LIST Loads DS and DI with the 32-bit contents of data segment memory location LIST
LDS EDI,LIST Loads DS and EDI with the 48-bit contents of data segment memory location LIST
LES BX,CAT Loads ES and BX with the 32-bit contents of data segment memory location CAT
LFS DI,DATA1 Loads FS and DI with the 32-bit contents of data segment memory location DATA1
LGS SI,DATAS Loads GS and S| with the 32-bit contents of data segment memory location DATA5
LSS SP,MEM Loads SS and SP with the 32-bit contents of memory location MEM

116

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

with the address of DATA2. It then exchanges the contents of these memory locations. Note that
the LEA and MOV with OFFSET instructions are both the same length (three bytes).

EXAMPLE 4-3
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 2000 DATAL DW 2000H ;jdefine DATAl
0002 3000 DATA2 DW 3000H ;define DATA2
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 BE 0000 R LEA SI,DATAl ;address DATAl with SI
001A BF 0002 R MOV DI,OFFSET DATA2 ;address DATA2 with DI
001D 8B 1C MOV BX, [SI] ;exchange DATAl with DATA2
001F 8B 0D MOV CX, [DI]
0021 89 0C MoV [S1],CX
0023 89 1D MOV [DI],BX
.EXIT ;jexit to DOS
END ;end of file

But why is the LEA instruction available if the OFFSET directive accomplishes the same
task? First, OFFSET functions only with simple operands such as LIST. It may not be used for
an operand such as [DI], LIST [SI], etc. The OFFSET directive is more efficient than the LEA
instruction for simple operands. It takes the microprocessor longer to execute the LEA BX,LIST
instruction than the MOV BX,OFFSET LIST instruction. The 80486 microprocessor, for ex-
ample, requires two clocks to execute LEA BX,LIST and only one clock to execute MOV
BX,0OFFSET LIST. The reason that the MOV BX,OFFSET LIST instruction executes more
quickly is that the assembler calculates the offset address of LIST, while the microprocessor cal-
culates the LEA instruction. The MOV BX,OFFSET LIST instruction is actually assembled as a
move immediate instruction and is therefore more efficient.

Suppose that the microprocessor executes an LEA BX,[DI] instruction and DI contains a
1000H. Because DI contains the offset address, the microprocessor transfers a copy of DI into
BX. A MOV BX,Dl instruction performs this task in less time and is often preferred to the LEA
BX,[DI] instruction.

Another example is LEA SI,[BX + DI]. This instruction adds BX to DI and stores the sum
in the SI register. The sum generated by this instruction is a modulo-64K sum. If BX = 1000H
and DI = 2000H, the offset address moved into SI is 3000H. If BX = 1000H and DI = FFOOH, the
offset address is OFOOH instead of 10FOOH. Notice that the second result is a modulo-64K sum
of OFOOH. (A modulo-64K sum drops any carry out of the 16-bit result.)

LDS, LES, LFS, LGS, and LSS

The LDS, LES, LFS, LGS, and LSS instructions load any 16-bit or 32-bit register with an offset
address and load the DS, ES, FS, GS, or SS segment register with a segment address. These in-
structions use any of the memory-addressing modes to access a 32- or 48-bit section of memory
that contains both the segment and offset address. The 32-bit section of memory contains a 16-bit
offset and segment address, while the 48-bit section contains a 32-bit offset and segment address.
These instructions may not use the register-addressing mode (MOD = 11). Note that the LFS,
LGS, and LSS instructions are available only on the 80386 and above, as are the 32-bit registers.

Figure 4-15 illustrates an example LDS BX,[DI] instruction. This instruction transfers the
32-bit number, addressed by DI in the data segment, into the BX and DS registers. The LDS,
LES, LFS, LGS, and LSS instructions obtain a new far address from memory. The offset address
appears first, followed by the segment address. This format is used for storing all 32-bit memory
addresses.

4-3 LOAD-EFFECTIVE ADDRESS 117

Data segment

1FFFF
EAX
EBX 6 F2A L
\/M_J\,\ T ~——
30 11003
ESP 00 11002
EBP 12 11001
Es) 7 A 11000
___—-\
EDI 1000 ——~—
~—~————TTN————
1000
cs
DS 1000 __—.Q
10000 10000
L 11000

FIGURE 4-15 The LDS BX,[DI] instruction loads register BX from addresses 11000H and
11001H and register DS from locations 11002H and 11003H. This instruction is shown at the
point just before DS changes to 3000H and BX changes to 127AH.

A far address can be stored in memory by the assembler. For example, the ADDR DD
FAR PTR FROG instruction stores the offset and segment address (far address) of FROG in 32-
bits of memory at location ADDR. The DD directive tells the assembler to store a doubleword
(32-bit number) in memory address ADDR.

In the 80386 and above, an LDS EBX,[DI] instruction loads EBX from the 4-byte section
of memory addressed by DI in the data segment. Following this 4-byte offset is a word that is
loaded to the DS register. Notice that instead of addressing a 32-bit section of memory, the
80386 and above address a 48-bit section of the memory whenever a 32-bit offset address is
loaded to a 32-bit register. The first four bytes contain the offset value loaded to the 32-bit reg-
ister, and the last two bytes contain the segment address.

EXAMPLE 4-4
.MODEL SMALL ;select SMALL model
.386 ;select 80386
0000 .DATA ;start of DATA segment
0000 00000000 SADDR DD ? ;0ld stack address
0004 1000 [SAREA DW 1000H DUP (?) ;new stack area
0000
]
2004 = 2004 STOP EQU THIS WORD ;define to of new stack
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0010 FA CLI ;disable interrupt

0011 8B C4 MOV AX, SP ;save old SP

118

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

0013 A3 0000 R MOV WORD PTR SADDR, AX

0016 8C DO MOV AX, SS ;save old SS

0018 A3 0002 R MOV WORD PTR SADDR+2,AZ

001B 8C D8 MOV AX,DS ;load new 5SS

001D 8E DO MOV SS, AX

001F B8 2004 R MOV AX,OFFSET STOP ;load new SP

0022 8B EO MOV SP, AX

0024 FB STI ;enable interrupt

0025 8B CO MOV AX,AX ;do dummy instructions

0027 8B CO MOV AX, AX

0029 OF B2 26 0000 R LSS SP, SADDR ;load old SS and SP
LEXIT ;exit to DOS
END ;end of file

The most useful of the load instructions is the LSS instruction. Example 4—4 shows a short
program that creates a new stack area after saving the address of the old stack area. After exe-
cuting some dummy instructions, the old stack area is reactivated by loading both SS and SP
with the LSS instruction. Note that the CLI (disable interrupts) and STI (enable interrupts) in-
structions must be included to disable interrupts, a topic discussed near the end of this chapter.
Because the LSS instruction functions in the 80386 or above, the .386 statement appears after the
.MODEL statement to select the 80386 microprocessor. Also notice how the WORD PTR direc-
tive is used to override the doubleword (DD) definition for the old stack address memory loca-
tion. If an 80386 or newer microprocessor is in use, it is suggested that the .386 switch be used
to develop software for the 80386 microprocessor. This is true even if the microprocessor is a
Pentium or Pentium Pro, because the 80486-Pentium Pro add only a few additional instructions
to the 80386 instruction set, which are seldom used in software development. If the need arises
to use any of the CMPXCHG, CMPXCHGS (new to the Pentium), XADD, or BSWAP instruc-
tions, then select either the .486 switch for the 80486 microprocessor or the .586 switch for the
Pentium or Pentium Pro.

STRING DATA TRANSFERS

There are five string data transfer instructions: LODS, STOS, MOVS, INS, and OUTS. Each
string instruction allows data transfers that are either a single byte, word, or doubleword (or, if
repeated, a block of bytes, words, or doublewords). Before the string instructions are presented,
the operation of the D flag-bit (direction), DI, and SI must be understood as they apply to the
string instructions.

The Direction Flag

The direction flag (D) (Jocated in the flag register) selects the auto-increment (D = 0) or the auto-
decrement (D = 1) operation for the DI and SI registers during string operations. The direction
flag is used only with the string instructions. The CLD instruction clears the D flag (D = 0), and
the STD instruction sets it (D = 1). Therefore, the CLD instruction selects the auto-increment
mode (D = 0), and STD selects the auto-decrement mode (D = 1).

Whenever a string instruction transfers a byte, the contents of DI and/or SI increment or
decrement by 1. If a word is transferred, the contents of DI and/or SI increment or decrement by
2. Doubleword transfers cause DI and/or SI to increment or decrement by 4. Only the actual reg-
isters used by the string instruction increment or decrement. For example, the STOSB instruction

TABLE 4-10 Forms of the

LODS instruction

4-4 STRING DATA TRANSFERS 119

uses the DI register to address a memory location. When STOSB executes, only DI increments or
decrements without effecting SI. The same is true of the LODSB instruction, which uses the SI
register to address memory data. LODSB only increments/decrements SI without effecting DI.

Dl and Sl

During the execution of a string instruction, memory accesses occur through either or both of the
DI and SI registers. The DI offset address accesses data in the extra segment for all string in-
structions that use it. The SI offset address accesses data, by default, in the data segment. The
segment assignment of SI may be changed with a segment override prefix, as described later in
this chapter. The DI segment assignment is always in the extra segment when a string instruction
executes. This assignment cannot be changed. The reason that one pointer addresses data in the
extra segment and the other in the data segment is so the MOVS instruction can move 64K bytes
of data from one segment of memory to another.

LODS

The LODS instruction loads AL, AX, or EAX with data stored at the data segment offset address
indexed by the SI register. (Note that only the 80386 and above use EAX.) After loading AL
with a byte, AX with a word, or EAX with a doubleword, the contents of SI increment (if D = 0)
or decrement (if D = 1). A 1 is added to or subtracted from SI for a byte-sized LODS; a 2 is
added or subtracted for a word-sized LODS; and a 4 is added or subtracted for a doubleword-
sized LODS.

Table 4-10 lists the permissible forms of the LODS instruction. The LODSB (loads a
byte) instruction causes a byte to be loaded into AL; the LODSW (loads a word) instruction
causes a word to be loaded into AX; and the LODSD (loads a doubleword) instruction causes a
doubleword to be loaded into EAX. Although rare, as an alternative to LODSB, LODSW, and
LODSD, the LODS instruction may be followed by a byte-, word-, or doubleword-sized operand
to select a byte, word, or doubleword transfer. Operands are often defined as bytes with DB, as
words with DW, and as doublewords with DD. The DB pseudo-operation defines byte(s); the
DW pseudo-operation defines word(s); and the DD pseudo-operation defines doubleword(s).

Figure 4-16 shows the effect of executing the LODSW instruction if the D flag =0, SI =
1000H, and DS = 1000H. Here a 16-bit number, stored at memory locations 11000H and
11001H, moves into AX. Because D = 0, and this is a word transfer, the contents of SI increment
by 2 after AX loads with memory data.

STOS

The STOS instruction stores AL, AX, or EAX at the extra segment memory location addressed by
the DI register. (Note only the 80386—Pentium Pro use EAX and doublewords.) Table 4-11 lists

Assembly Language Operation
LODSB AL=DS:[SI]; SI=SI£1
LODSW AX=DS:SI];SI=8SIt£2
LODSD EAX =DS:[SI]; SI=SI+ 4
LODS LIST AL = DS:[SI]; Sl = SI £ 1 (if LIST is a byte)
LODS DATA1 AX = DS:[SI], Sl = Sl £ 2 (if DATA1 is a word)
LODS FROG EAX = DS:[SI]; Sl = Sl + 4 (if FROG is a doubleword)

Note: The segment can be overridden with a segment override prefix as in LODS
ES:DATA4.

120 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

EAX

ESP
EBP
ESI

EDI

Data segment

1FFFF
~———_
\-/\H
/4______———;-"——-——__ AO 11001
A032 \“ 032 32 11000
EE—————
M
\
1000
10000
\,\’—v—
1000
Cs
10000 11000
DS| 1000 ®
fﬁ

FIGURE 4-16 The operation of the LODSW instruction if DS = 1000H, D = 0, 11000H = 32,
and 11001H = AO. This instruction is shown after AX is loaded from memory, but before Sl in-

crements by 2.

all forms of the STOS instruction. As with LODS, a STOS instruction may be appended with a B,
W, or D for byte, word, or doubleword transfers. The STOSB (stores a byte) instruction stores
the byte in AL at the extra segment memory location addressed by DI. The STOSW (stores a
word) instruction stores AX in the extra segment memory location addressed by DI. A double-
word is stored in the extra segment location addressed by DI with the STOSD (stores a double-
' word) instruction. After the byte (AL), word (AX), or doubleword (EAX) is stored, the contents
of DI increments or decrements.

TABLE 4-11 Forms of the

STOS Instruction

Assembly Language Operation
STOSB ES:[DI}=AL; DI=DI £ 1
STOSW ES:[Dl] = AX;DI=DI+2
STOSD ES:[Dl]= EAX;DI=DI+ 4
STOS LIST ES:[DI] = AL; DI = DI + 1 (if list is a byte)
STOS DATAS3 ES:[DI] = AX; DI = DI + 2 (if DATAS is a word)
STOS DATA4

ES:[DI] = EAX; DI = DI + 4 (if DATA4 is a doubleword)

4-4 STRING DATA TRANSFERS 12

STOS with a REP. The repeat prefix (REP) is added to any string data transfer instruction ex-
cept the LODS instruction. It doesn’t make any sense to perform a repeated LODS operation.
The REP prefix causes CX to decrement by 1 each time the string instruction executes. After CX
decrements, the string instruction repeats. If CX reaches a value of 0, the instruction terminates
and the program continues with the next sequential instruction. Thus, if CX is loaded with a 100,
and a REP STOSB instruction executes, the microprocessor automatically repeats the STOSB
instruction 100 times. Since the DI register is automatically incremented or decremented after
each datum is stored, this instruction stores the contents of AL in a block of memory instead of a
single byte of memory.

Suppose that the STOSW instruction is used to clear the video text display (see Example
4-5). This is accomplished by addressing video text memory that begins at memory location
B800:0000. Each character position on the 25-line-by-80-character per line display comprises
two bytes. The first byte contains the ASCII-coded character and the second contains the color
and attributes of the character. In this example, AL is the ASCII-coded space (20H) and AH is
the color code for white text on a black background (07H). Notice how this program uses a count
of 25*80 and the REP STOSW instruction to clear the screen with ASCII spaces.

EXAMPLE 4-5
.MODEL TINY ;select TINY model
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0100 FC CLD ;select increment mode
0101 B8 B800 MOV AX,0B800H ;address segment B800
0104 B8E CO MOV ES, AX
0106 BF 0000 MOV DI,O0 ;address offset 0000
0109 B9 07D0 MOV CX,25*80 ;load count
010C B8 0720 MOV AX,0720H ;load data
010F F3/AB REP STOSW ;clear the screen
JEXIT ;exit to DOS
END jend of file

The operands in a program can be modified by using arithmetic or logic operators such as
multiplication (*). Other operators appear in Table 4-12.

The REP prefix precedes the STOSW instruction in both assembly language and hexadec-
imal machine language. In machine language, the F3H is the REP prefix and ABH is the
STOSW opcode.

If the value loaded to AX is changed to 0731H, the video display fills with white ones on
a black background. If AX is changed to 0132H, the video display fills with blue twos on a

TABLE 4-12 Common operand operators

Operator Example Comment
+ MOV AL,6+3 Copies 9 into AL
- MOV AL,8-2 Copies 6 into AL
* MOV AL,4*3 Copies 12 into AL
/ MOV AX,12/5 Copies 2 into AX (remainder is lost)
MOD MOV AX, 12 MOD 7 Copies 5 into AX (quotient is lost)
" AND MOV AX,12 AND 4 Copies 4 into AX (1100 AND 0100 = 0100)
OR MOV AX,12 OR 1 Copies 13 into AX (1100 OR 0001 = 1101)
NOT MOV AL,NOT 1 Copies 254 into AL (0000 0001 NOT equals 1111 1110 or 254)

122

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

black background. By changing the value loaded to AX, the display can be filled with any char-
acter and any color combination. More information on accessing video displays appears in
Chapter 7.

MOVS

One of the more useful string data transfer instructions is MOVS, because it transfers data from
one memory location to another. This is the only memory-to-memory transfer allowed in the
8086—-Pentium Pro microprocessors. The MOVS instruction transfers a byte, word, or double-
word from the data segment location addressed by SI to the extra segment location addressed by
DI. As with the other string instructions, the pointers then increment or decrement as dictated by
the direction flag. Table 4-13 lists all of the permissible forms of the MOVS instruction. Note
that only the source operand (SI), located in the data segment, may be overridden so that another
segment may be used. The destination operand (DI) must always be located in the extra segment.

Suppose that the video display needs to be scrolled up one line. Because we now know the
location of the video display, a repeated MOVSW instruction can be used to scroll the video dis-
play up a line. Example 4-6 lists a short program that addresses the video text display beginning
at location B800:0000 with the DS:SI register combination and location B800:00A0 with the
ES:DI register combination. Next, the REP MOVSW instruction is executed 24*80 times to
scroll the display up a line. This is followed by a sequence that addresses the last line of the dis-
play so that it can be cleared. The last line is cleared in this example by storing spaces on a black
background. The last line could be cleared by changing only the ASCII code to a space without
modifying the attribute by reading the code and attribute into a register. Once in a register, the
code is modified, and both the code and attribute are stored in memory.

EXAMPLE 4-6
.MODEL TINY ;select TINY model
0000 .CODE ;indicate start of CODE segment
. STARTUP ;indicate start of program
0100 FC CLD ;select increment
0101 B8 B80O MOV AX, 0B80OH ;load ES and DS with B80O
0104 B8E CO MOV ES, AX
0106 8E D8 MOV DS, AX
0108 BE 00AOQ MOV SI,160 ;address line 1
010B BF 0000 MOV DI,O ;address line 0
010E B9 0780 MOV CX,24*80 ;load count
0111 F3/A5 REP MOVSW ;scroll screen
0113 BF 0F00 MOV DI,24*80%*2 ;clear bottom line
0116 BS 0050 MOV CX, 80
0119 B8 0720 MOV AX,0720H
011C F3/AB REP STOSW
VEXIT ;exit to DOS
END ;end of file
INS

The INS (input string) instruction (not available on the 8086/8088 microprocessors) transfers a
byte, word, or doubleword of data from an I/O device into the extra segment memory location
addressed by the DI register. The I/O address is contained in the DX register. This instruction is
useful for inputting a block of data from sn external I/O device directly into the memory. One
application transfers data from a disk drive to memory. Disks drives are often considered and in-
terfaced as I/O devices in a computer system.

As with the prior string instructions, there are two basic forms of the INS. The INSB in-
struction inputs data from an 8-bit I/O device and stores them in the byte-sized memory location

TABLE 4-14 Forms of the

INS instruction

4-4 STRING DATA TRANSFERS 123

TABLE 4-13 Forms of the MOVS instruction

Assembly Language Operation

MOVSB ES:[DI] = DS:[SI]; DI = DI = 1; SI = Sl £ 1 (byte transferred)

MOVSW ES:[DI] = DS:[SI]; DI = DI + 2; Sl = Sl £ 2 (word ransferred)

MOVSD ES:[DI] = DS:[SI]; DI = DI £ 4; Sl = Sl £+ 4 (doubleword
transferred)

MOVS BYTE1,BYTE2 ES:[DI] = DS:[SI]; DI=DI £ 1; SI =Sl + 1 (if BYTE1 and BYTE2
are bytes)

MOVS WORD1,WORD2 ES:[DI] = DS:[SI]; DI =DI £ 2, SI = Sl + 2 (if WORD1 and
WORD?2 are words)

MOVS DWORD1, DWORD2 ES:[DI] = DS:[SI]; DI = DI + 4; S| = Sl + 4 (if DWORD1 and
DWORD?2 are doublewords)

indexed by SI. The INSW instruction inputs 16-bit I/O data and stores them in a word-sized
memory location. The INSD instruction inputs a doubleword. These instructions can be repeated
using the REP prefix. This allows an entire block of input data to be stored in the memory from
an /O device. Table 4-14 lists the various forms of the INS instruction.

Example 4-7 shows a sequence of instructions that input 50 bytes of data from an /O de-
vice whose address is 03ACH and stores the data in extra segment memory array LISTS. This
software assumes that data are available from the I/O device at all times. Otherwise, the software
must check to see if the /O device is ready to transfer data precluding the use of a REP prefix.

EXAMPLE 4-7

;Using the REP INSB to input data to a memory array
0000 BF 0000 R MOV DI,OFFSET LISTS ;address array
0003 BA 03AC MOV DX, 3ACH ;address I/0
0006 FC CLD ;auto-increment
0007 B9 0032 MOV CX,50 ;load count
000A F3/6C REP INSB ;input data

The OUTS (output string) instruction (not available on the 8086/8088 microprocessors) trans-
fers a byte, word, or doubleword of data from the data segment memory location address by SI
to an I/O device. The /O device is addressed by the DX register as it was with the INS instruc-
tion. Table 4-15 shows the variations available for the OUTS instruction.

Assembly Language Operation
INSB ES:[DI] = [DX]; DI = DI + 1 (byte transferred)
INSW ES:[DI] = [DX]; DI = DI + 2 (word transferred)
INSD ES:[DI] = [DX]; DI = DI £ 4 (doubleword transferred)
INS LIST ES:[DI] = [DX]; DI = DI £ 1 (if LIST is a byte)
INS DATA4 ES:[DI] = [DX]; DI = DI + 2 (if DATA4 is a word)
INS DATAS ES:[DI] = [DX]; DI = DI + 4 (if DATAS is a doubleword)

Note: [DX] indicates that DX contains the I/O device address. These instructions are not
available on the 8086/8088 microprocessors.

124

TABLE 4-15 Forms of the

OUTS instruction

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

Assembly Language Operation
ouTSsB [DX] = DS:[SI]; Sl = Sl £ 1 (byte transferred)
ouTsSw [DX] = DS:[SI]; Sl = SI £ 2 (word transferred)
OUTSD [DX] = DS:[SI]; Sl = SI £ 4 (doubleword transferred)
OUTS DATA7 [DX] = DS:[SI]; SI = SI £ 1 (if DATA7 is a byte)
OUTS DATAS [DX] = DS:[SI]; Sl = Sl £ 2 (if DATAS is a word)
OUTS DATA9 [DX] = DS:[SI]; Sl = Sl £ 4 (if DATA9 is a doubleword)

Note: [DX] indicates that DX contains the I/O device address. These instructions are not
available on the 8086/8088 microprocessors.

Example 4-8 shows a short sequence of instructions that transfer data from a data segment
memory array (ARRAY) to an I/O device at I/O address 3ACH. This software assumes that the
I/O device is always ready for data.

EXAMPLE 4-8

;Using the REP OUTS to output data from a memory array
0000 BE 0064 R MOV SI,OFFSET ARRAY ;address array
0003 BA 03AC MOV DX, 3ACH ;address I/0
0006 FC CLD ;auto-increment
0007 BYS 0064 MOV CX,100 ;load count
000A F3/6E REP OUTSB

MISCELLANEOUS DATA TRANSFER INSTRUCTIONS

Don’t be fooled by the term miscellaneous; these instructions are used in programs. The data
transfer instructions detailed in this section are XCHG, LAHF, SAHF, XLAT, IN, OUT,
MOVSX, MOVZX, BSWAP, and CMOV. Because the miscellaneous instructions are not used
as often as a MOV instruction, they have been grouped together and represented in this section.

XCHG

The XCHG (exchange) instruction exchanges the contents of a register with the contents of any
other register or memory location. The XCHG instruction cannot exchange segment registers or
memory-to-memory data. Exchanges are byte-, word-, or doubleword-sized (80386 and above)
and use any addressing mode discussed in Chapter 3, except immediate addressing. Table 4-16
shows some examples of the XCHG instruction.

The XCHG instruction, using the 16-bit AX register with another 16-bit register, is the
most efficient exchange. This instruction occupies one byte of memory. Other XCHG instruc-
tions require two or more bytes of memory, depending on the addressing mode selected.

TABLE 4-16 Forms of the XCHG instruction

Assembly Language Operation.
XCHG AL,CL Exchanges the contents of AL with CL
XCHG CX,BP Exchanges the contents of CX with BP
XCHG EDXESI Exchanges the contents of EDX with ESI

XCHG AL,DATA2 Exchanges the contents of AL with data segment memory location DATA2

4-5 MISCELLANEOUS DATA TRANSFER INSTRUCTIONS 125

When using a memory addressing mode and the assembler, it doesn’t matter which
operand addresses memory. The XCHG AL,[DI] instruction is identical to the XCHG [DI], AL
instruction as far as the assembler is concerned.

The XCHG instruction can exchange doubleword data in the 80386 through the Pentium
Pro microprocessors. For example, the XCHG EAX,EBX instruction exchanges the contents ~f
the EAX register with the EBX register.

LAHF and SAHF

The LAHF and SAHF instructions are seldom used because they were designed as bridge in-
structions. These instructions allowed 8085 (an early 8-bit microprocessor) software to be trans-
lated into 8086 software by a translation program. Because any software that required translation
was probably completed many years ago, these instructions have little application today. The
LAHEF instruction transfers the rightmost 8-bits of the flag register into the AH register. The
SAHF instruction transfers the AH register into the rightmost 8-bits of the flag register.

At times, the SAHF instruction may find some application with the numeric coprocessor.
The numeric coprocessor contains a status register that is copied into the AX register with the
FSTSW AX instruction. The SAHF instruction is then used to copy from AH into the flag reg-
ister. The flags are then tested for some of the conditions of the numeric coprocessor. This is de-
tailed in Chapter 8, which explains the operation and programming of the numeric coprocessor.

XLAT

The XLAT (translate) instruction converts the contents of the AL register into a number stored
in a memory table. This instruction performs the direct table lookup technique, which is often
used to convert one code to another. An XLAT instruction first adds the contents of AL to BX to
form a memory address within the data segment. It then copies the contents of this address into
AL. This is the only instruction that adds an 8-bit number to a 16-bit number.

Suppose that a 7-segment LED display lookup table is stored in memory at address
TABLE. The XLAT instruction then translates the BCD number in AL to a 7-segment code in
AL. Example 4-9 provides a short program that converts from a BCD code to 7-segment code.
Figure 4-17 shows the operation of this example program if TABLE = 1000H, DS = 1000H, and
the initial value of AL = 05H (a 5 BCD). After the translation, AL = 6DH.

EAX 05 :)05 11006
6 D 11005 ~——
+

EBX 1tofo0o0 1000 11004
] 11003
11002
1005 11001
cs 11000

I

ps| 1000 p——a(® ~——

10000

11005 10000

FIGURE 4-17 The operation of the XLAT instruction at the point just before 6DH is loaded
into AL

126

TABLE 4-17
instructions

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

EXAMPLE 4-9
;Using an XLAT to convert frcm BCD to 7-segment code
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 3F 06 5B 4F TABLE DB 3FH, 6, 5BH, 4FH ;7-segment lookup table
0004 66 6D 7D 27 DB 66H, 6DH, 7DH, 27H
0008 7F €F DB 7FH, 6FH
000a 00 CODE7 DB ? ;reserve for result
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 BO 04 MOV AL, 4 ;load test data
0019 BB 0000 R MOV BX,OFFSET TABLE ;address lookup table
001c D7 XLAT ;jconvert to 7-segment
001D A2 000A R MOV CODE7, AL ;save 7-segment code
.EXIT ;exit to DOS
END ;end of file
IN and OUT

Table 4-17 lists the forms of the IN and OUT instructions, which perform I/O operations. Notice
that the contents of AL, AX, or EAX are transferred only between the I/O device and the micro-
processor. An IN instruction transfers data from an external I/O device to AL, AX, or EAX; an
OUT instruction transfers data from AL, AX, or EAX to an external I/O device. (Note that only
the 80386 and above contain EAX.)

Two forms of I/O device (port) addressing exist for IN and OQUT: fixed-port and variable-port.
Fixed-port addressing allows data transfer between AL, AX, or EAX using an 8-bit I/O port address.
It is called fixed-port addressing because the port number follows the instruction’s opcode. Instruc-
tions are often stored in a ROM. A fixed port instruction stored in a ROM has its port number per-
manently fixed because of the nature of read-only memory. A fixed-port address stored in a RAM
can be modified, but such a modification does not conform to good programming practices.

The port address appears on the address bus during an I/O operation. For the 8-bit fixed-
port I/O instructions, the 8-bit port address is zero-extended into a 16-bit address. For example,
if the IN AL,6AH instruction executes, data from I/O address 6AH is input to AL. The address
appears as a 16-bit 006AH on pins A0-A15 of the address bus. Address bus bits A16-A19
(8086/8088), A16-A23 (80286/80386SX), A16-A24 (80386SL/80386SLC/80386EX), or
A16-A32 (80386-Pentium Pro) are undefined for an IN or OUT instruction. Note that Intel re-
serves the last 16 I/O ports for use with some of its peripheral components.

IN and OUT
Assembly Language Operation

IN AL,p8 8-bits are input to AL from 1/O port p8
IN AX,p8 16-bits are input to AX from |/O port p8
IN EAX,p8 32-bits are input to EAX from 1/O port p8
IN AL,DX 8-bits are input to AL from I/O port DX
IN AX,DX 16-bits are input to AX from 1/O port DX
IN EAX,DX 32-bits are input to EAX from 1/O port DX
OUT p8,AL 8-bits are output from AL to I/O port p8
OUT p8,AX 16-bits are output from AX to I/O port p8
OUTp8,EAX 32-bits are output from EAX to I/O port p8
OUT DX,AL 8-bits are output from AL to I/O port DX
OUT DX,AX 16-bits are output from AX to I/O port DX
OUT DX,EAX 32-bits are output from EAX to I/O port DX

Note: p8 = an 8-bit I/O port number and DX = the 16-bit port address held in DX.

4-5 MISCELLANEOUS DATA TRANSFER INSTRUCTIONS 127

Microprocessor-based system

(Port data)
Contents of register AX Data bus (D0-D15)
(Port address)
0019H \ Address bus (A0-A15)

(Port control) —_
IOWC

FIGURE 4-18 The signals found in the microprocessor-based system for an OUT 19H,AX
instruction

Variable-port addressing allows data transfers between AL, AX, or EAX and a 16-bit port
address. It is called variable-port addressing because the I/O port number is stored in register
DX, which can be changed (varied) during the execution of a program. The 16-bit I/O port ad-
dress appears on the address bus pin connections AO—A15. The IBM PC uses a 16-bit port ad-
dress to access its I/O space. The I/O space for a PC is located at I/O port OOOOH—O3FFH Note
‘that some plug-in adapter cards m may use I/O addresses above 03FFH.

Figure 4-18 illustrates the execution of the OUT 19H,AX instruction, which transfers the
contents of AX to I/O port 19H. Note that the I/O port number appears as a 0019H on the 16-bit
address bus and that the data from AX appears on the data bus of the microprocessor. The system
control signal, IOWC (I/O write control), is a logic O to enable the I/O device.

A short program that clicks the speaker in the personal computer appears in Example 4-10.
The speaker is controlled by accessing I/O port 61H. If the rightmost two bits of this port are set
(11) and then cleared (00), a click is heard on the speaker. Note that this program uses a logical
OR instruction to set these two bits and a logical AND instruction to clear them. These logic op-
eration instructions are described in Chapter 5. The MOV CX,1000H instruction followed by the
LOOP L1 instruction is used as a time delay. If the count is increased, the click will become
longer; if shortened, the click will become shorter.

EXAMPLE 4-10

.MODEL TINY ;select TINY model
0000 .CODE ;indicate start of code segment
.STARTUP ;indicate start of program
0100 E4 61 IN AL, 61H ;read port 61H
0102 0C 03 OR AL, 3 ;set rightmost two bits
0104 E6 61 ouT 61H, AL ; speaker is on
0106 B9 1000 MOV CX,1000H ;delay count
0109 Ll:
0109 E2 FE LOOP Ll ;time delay
0l10B E4 61 IN AL, 61H ;read port 61H
010D 24 FC AND AL, OFCH ;clear rightmost two bits
010F E6 61 ouT 61H, AL ;speaker is off
EXIT ;exit to DOS

END ;end of file

128

TABLE 4-18 The MOVSX

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

MOVSX and MOVZX

The MOVSX (move and sign-extend) and MOVZX (move and zero-extend) instructions are
found in the 80386—Pentium Pro instruction sets. These instructions move data and at the same
time either sign- or zero-extend it. Table 4-18 illustrates these instructions with several exam-
ples of each.

When a number is zero-extended, the most significant part fills with zeros. For example, if
an 8-bit 34H is zero-extended into a 16-bit number, it becomes 0034H. Zero-extension is often
used to convert unsigned 8- or 16-bit numbers into unsigned 16- or 32-bit numbers using the
MOVZX instruction.

A number is sign-extended when its sign-bit is copied into the most-significant part. For
example, if an 8-bit 84H is sign-extended into a 16-bit number, it becomes FF84H. The sign-bit
of an 84H is a one, which is copied into the most-significant part of the sign-extended result.
Sign-extension is most often used to convert 8- or 16-bit signed numbers into 16- or 32-bit
signed numbers using the MOVSX instruction.

BSWAP

The BSWAP (byte swap) instruction is available only in the 80486 and both versions of the Pen-
tium microprocessors. This instruction takes the contents of any 32-bit register and swaps the
first byte with the fourth and the second with the third. For example, the BSWAP EAX instruc-
tion with EAX = 00112233H swaps bytes in EAX, resulting in EAX = 33221100H. Note that the
order of all four bytes is reversed by this instruction. This instruction is used to convert data from
big endian form to little endian form or vice versa.

CMOV

The CMOV (conditional move) class of instruction is new to the Pentium Pro microprocessor
instruction set. Actually, there are many variations of the CMOV instruction. Table 4-19 lists
these variations of CMOV. These instructions only move the data if the condition is true. For ex-
ample, the CMOVZ instruction only moves data if the result from some prior instruction was a
zero. The destination is limited to 16- or 32-bit registers, but the source can be a 16- or 32-bit
register or memory location.

Because this is a new instruction, you cannot use it with the assembler until a .686 switch is
provided. In the interim, the instruction can be coded in hexadecimal form using the DB directive.

and MOVZX instructions Assembly Language Operation

MOVSX CX,BL Sign-extends BL into CX

MOVSX ECX,AX Sign-extends AX into ECX

MOVSX BX,DATA1 Sign-extends the byte at DATAT1 into BX

MOVSX EAX,[EDI] Sign-extends the word at the data segment memory
location addressed by EDI into EAX

MOVZX DX,AL Zero-extends AL into DX

MOVZX EBP,DI Zero-extends Dl into EBP

MOVZX DX,DATA2 Zero-extends the byte at data segment memory
location DATAZ2 into DX

MOVZX EAX,DATA3 Zero-extends the word at data segment memory

location DATAS into EAX

4-6 SEGMENT OVERRIDE PREFIX

TABLE 4-19 The conditional move instructions

129

Assembly Language

Condition Tested

Operation

CMOVvB C=1 Move if below

CMOVAE C=0 Move if above or equal

CMOVBE Z=1orC=1 Move if below or equal

CMOVA Z=0andC=0 Move if above

CMOVE or CMOVZ Z=1 Move if equal or set if zero
CMOVNE or CMOVNZ Z=0 Move if not equal or set if not zero
CMOVL S<>0 Move if less than

CMOVLE Z=10orS<>0 Move if less than or equal
CMOVG Z=0andS=0 Move if greater than

CMOVGE S=0 Move if greater than or equal
CMOVS S=1 Move if sign (negative)

CMOVNS S=0 Move if no sign (positive)

CMovC C=1 Move if carry

CMOVNC C=0 Move if no carry

CMOVO O0=1 Move if overflow

CMOVNO 0=0 Move if no overflow

CMOVP or CMOVPE P=1 Move if parity or set if parity even
CMOVNP or CMOVPO P=0 Move if no parity or set if parity odd

The opcode for the CMOYV instruction is an OF4XH where X is the condition code 0000-1111
(refer to Appendix B for the codes). This is followed by a mod-reg-r/m byte. Example 4-11 shows
how the CMOVB instruction is coded into hexadecimal using the DB directive.

EXAMPLE 4-11
0000 OF 42 C3 DB OFH, 42H, 0C3H ;same as CMOVB AX,BX

SEGMENT OVERRIDE PREFIX

The segment override prefix, which may be added to almost any instruction in any memory-
addressing mode, allows the programmer to deviate from the default segment. The segment
override prefix is an additional byte that appends the front of an instruction to select an alternate
segment register. About the only instructions that cannot be prefixed are the jump and call in-
structions that must use the code segment register for address generation. The segment override
is also used to select the FS and GS segments in the 80386 through the Pentium Pro micro-
processors.

For example, the MOV AX,[DI] instruction accesses data within the data segment by de-
fault. If required by a program, this can be changed by prefixing the instruction. Suppose that the
data are in the extra segment instead of the data segment. This instruction addresses the extra
segment if changed to MOV AX,ES:[DI].

Table 4-20 shows some altered instructions that address different memory segments than
normal. Each time an instruction is prefixed with a segment override prefix, the instruction be-
comes one byte longer. Although this is not a serious change to the length of the instruction, it
does add to the instruction’s execution time. It is usually customary to limit the use of the seg-
ment override prefix and remain in the default segments so that shorter and more efficient soft-
ware can be written.

130 CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

TABLE 4-20 Instructions

that include segment override Assembly Language Segment Accessed Default Segment

fixe

pretixes MOV AX,DS:[BP] Data Stack
MOV AX,ES:[BP] Extra ‘ Stack
MOV AX,SS:[Dl] Stack Data
MOV AX,CS:LIST Code Data
MOV AX,ES:[SI] Extra Data
LODS ES:DATAT1 Data Extra
MOV EAX,FS:DATA2 Data FS
MOV BL,GS:[ECX] Data GS

4-7 ASSEMBLER DETAIL

The assembler! for the microprocessor can be used in two ways: (1) with models (used in most
examples in this text) that are unique to a particular assembler and (2) with full segment defini-
tions that allow complete control over the assembly process and are universal to all assemblers.
This section of the text presents both methods and explains how to organize a program’s memory
space using the assembler. It also explains the purpose and use of some of the more important di-
rectives used with this assembler. Appendix A provides additional details about the assembler.

Directives

Before the format of an assembly language program is discussed, some details about the direc-
tives (pseudo-operations) that control the assembly process must be mentioned. Some common
assembly language directives appear in Table 4-21. Directives indicate how an operand or sec-
tion of a program is to be processed by the assembler. Some directives generate and store infor-
mation in the memory, while others do not. The DB (define byte) directive stores bytes of data
in the memory, while the BYTE PTR directive never stores data. The BYTE PTR directive in-
dicates the size of the data referenced by a pointer or index register.

Note that the assembler by default accepts only 8086/8088 instructions, unless a program
is preceded by the .386 or .386P directive or one of the other microprocessor selection switches.
The .386 directive tells the assembler to use the 80386 instruction set in the real mode, while the
.386P directive tells the assembler to use the 80386 protected mode instruction set.

Storing Data in a Memory Segment. The DB (define byte), DW (define word), and DD (define
doubleword) directives, first presented in Chapter 1, are most often used with the micro-
processor to define and store memory data. If a numeric coprocessor executes software in the
system, the DQ (define quadword) and DT (define ten bytes) directives are also common.
These directives label a memory location with a symbolic name and indicate its size.

Example 4-12 shows a memory segment that contains various forms of data definition di-
rectives. It also shows the full segment definition with the first SEGMENT statement to indicate
the start of the segment and its symbolic name. Alternately, as in previous examples, the
SMALL model can be used with the .DATA statement. The last statement in this example con-
tains the ENDS directive that indicates the end of the segment. The name of the segment
(LIST_SEG) can be anything that the programmer desires to call it. This allows a program to
contain as many segments as required.

'The assembler used throughout this text is the Microsoft MACRO assembler MASM, version 6.X

4-7 ASSEMBLER DETAIL 131

TABLE 4-21 Common assembler directives
Directive Function
.286 Selects the 80286 instruction set
.286P Selects the 80286 protected mode instruction set
.386 Selects the 80386 instruction set
.386P Selects the 80386 protected mode instruction set
.486 Selects the 80486 instruction set
.486P Selects the 80486 protected mod instruction set
.586 Selects the Pentium instruction set
.586P Selects the Pentium protected mode instruction set
.287 Selects the 80287 math coprocessor
.387 Selects the 80387 math coprocessor
EXIT Exits to DOS
.MODEL Selects the programming model
.STARTUP Indicates the start of the program when using program models
ALIGN 2 Starts data on a word boundary (4 starts data on a doubleword boundary)
ASSUME Informs the assembler of the name of each segment for full segment definitions
BYTE Indicates byte-sized, as in BYTE PTR
DB Defines byte(s) (8-bits)
DD Defines doubleword(s) (32-bits)
DQ Defines quadword(s) (64-bits)
DT Defines ten byte(s) (80-bits)
DUP Generates duplicates
DW Defines word(s) (16-bits)
DWORD Indicates doubleword-sized, as in DWORD PTR
END Ends a program file
ENDM Ends a macro sequence
ENDP Ends a procedure
ENDS Ends a segment or data structure
EQU Equates data to a label
FAR Defines a far pointer
MACRO Designates the start of a macro sequence
NEAR Defines a near pointer
OFFSET Specifies an offset address
ORG Sets the origin within a segment
PROC Starts a procedure
PTR Designates a pointer
SEGMENT Starts a segment
STACK Starts a stack segment
STRUC Defines the start of a data structure
USES Automatically pushes and pops registers within a procedure
USE16 Directs the assembler to use 16-bit instruction mode and data sizes for the 80386—Pentium Pro
USE32 Directs the assembler to use 32-bit instruction mode and data sizes for the 80386—-Pentium Pro
WORD Indicates word-sized, as in WORD PTR

EXAMPLE 4-12
;Using the DB, DW, and DD directives
0000 £IST__SEG SEGMENT
0000 01 02 03 DATAL DB 1,2,3 ;define bytes
0003 45 DB 45H ;hexadecimal

0004 41 DB ‘A’ ;ASCII

132

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

0005 FO DB 11110000B ;binary
0006 000C 000D DATAZ2 DVi 12,13 ;define words
000A 0200 Dw LIST1 ;symbolic
000C 2345 DW 2345H ;hexadecimal
000E 00000300 DATA3 DD 300H ;hexadecimal
0012 4007DF3B DD 2.123 ;real
0016 544269E1 DD 3.34E+12 ;real
001A 00 LISTA DB ? ;reserve 1 byte
001B 000A[LISTB DB 10 DUP (?) ;reserve 10 bytes

27

]

0025 00 ALIGN 2 ;set word boundary
0026 0100[LISTC DW 100H DUP (0) ;word array

0000

]

0226 0016[LIST_S9 DD 22 DUP (?) ;doubleword array

222272227

]

027E 0064[SIXES DB 100 DUP (6) ibyte array

06

]

02E2 LIST_SEG ENDS

Example 4-12 shows various forms of data storage for bytes at DATA1. More than one
byte can be defined on a line in binary, hexadecimal, decimal, or ASCII code. The DATA2 label
shows how to store various forms of word data. Doublewords are stored at DATA3, including
floating-point, single-precision real numbers.

Memory is reserved for use in the future by using a ? as an operand for a DB, DW, or DD
directive. When a ? is used in place of a numeric or ASCII value, the assembler sets aside a lo-
cation and does not initialize it to any specific value. (Actually, the assembler usually stores a
zero into locations specified with a ?). The DUP (duplicate) directive creates an array as shown
in several ways in Example 4-12. A 10 DUP (?) directive reserves 10 locations of memory, but
stores no specific value in any of the 10 locations. If a number appears within the () part of the
DUP statement, the assembler initializes the reserved section of memory with the data indicated.
For example, the DATA1 DB 10 DUP (2) instruction reserves 10 bytes of memory for array
DATALI and initializes each location with a 02H.

The ALIGN directive, used in this example, makes sure that the memory arrays are stored
on word boundaries. An ALIGN 2 places data on word boundaries, and an ALIGN 4 places data
on doubleword boundaries. In the Pentium and Pentium Pro, quadword data for double-preci-
sion floating-point numbers should use ALIGN 8. It is important that word-sized data be placed
at word boundaries and doubleword-sized data at doubleword boundaries. If not, the micro-
processor spends additional time accessing these data types. A word stored at an odd-numbered
memory location takes twice as long to access as a word stored at an even-numbered memory lo-
cation. Note that the ALIGN directive cannot be used with memory models, because the size of
the model determines the data alignment. If all doubleword data are defined first, followed by
word and then byte-sized data, the ALIGN statement is not necessary to align data correctly.

ASSUME, EQU, and ORG. The equate directive (EQU) equates a numeric, ASCII, or label to an-
other label. Equates make a program clearer and simplify debugging. Example 4-13 shows sev-
eral equate statements and a few instructions that show how they function in a program.
EXAMPLE 4-13

;Using equate directive

= 000A TEU EQU 10
= 0009 NINE EQU 9

0000 BO 0OA MOV AL,TEN
0002 04 0% ADD AL,NINE

4-7 ASSEMBLER DETAIL 133

The THIS directive always appears as THIS BYTE, THIS WORD, or THIS DWORD. In
certain cases, data must be referred to as both a byte and a word. The assembler can only assign
either a byte or a word address to a label. To assign a byte label to a word, use the software listed
in Example 4-14.

EXAMPLE 4-14
;Using the THIS and ORG directives

0000 DATA_SEG SEGMENT

0100 ORG 100H

= 0100 DATAl EQU THIS BYTE
0100 0000 DATA2 DW ?

0102 DATA_SEG ENDS

0000 CODE_SEG SEGMENT ‘CODE’

ASSUME CS:CODE_SEG, DS:DATA_SEG

0000 8A 1E 0100 R MOV BL, DATAL
0004 Al 0100 R MOV AX, DATA2
0007 8A 3E 0101 R MOV BH, DATAl+1
000B CODE_SEG ENDS

This example also illustrates how the ORG (origin) statement changes the starting offset
address of the data in the data segment to location 100H. At times, the origin of data or the code
must be assigned to an absolute offset address with the ORG statement. The ASSUME state-
ment tells the assembler what names have been chosen for the code, data, extra, and stack seg-
ments. Without the ASSUME statement, the assembler assumes nothing and automatically uses
a segment override prefix on all instructions that address memory data. The ASSUME statement
is only used with full-segment definitions, as described later in this section of the text.

PROC and ENDP. The PROC and ENDP directives indicate the start and end of a pro-
cedure (subroutine). These directives force structure because the procedure is clearly defined.
Note that if structure is to be violated for any reason, the CALLF, CALLN, RETF, and RETN in-
structions should be used. Both the PROC and ENDP directives require a label to indicate the
name of the procedure. The PROC directive, which indicates the start of a procedure, must also
be followed with a NEAR or FAR. A NEAR procedure is one that resides in the same code seg-
ment as the program. A FAR procedure may reside at any location in the memory system. Often,
the call NEAR procedure is considered local, and the call FAR procedure is considered global.
The term global denotes a procedure that can be used by any program, while local defines a pro-
cedure that is used only by the current program. Any labels that are defined within the procedure
block are also defined as either local (NEAR) or global (FAR).

Example 4-15 shows a procedure that adds BX, CX, and DX and stores the sum in register
AX. Although this procedure is short, and may not be particularly useful, it does illustrate how to
use the PROC and ENDP directives to delineate the procedure. Note that information about the
operation of the procedure should appear as a grouping of comments that show the registers
changed by the procedure and the result of the procedure.

EXAMPLE 4-15
;A procedure that adds BX, CX, and DX with the sum
;stored in AX

0000 ADDEM PROC FAR ;start procedure

0000 03 D9 ADD BX,CX

134

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

0002 03 DA ADD BX, DX

0004 8B C3 MOV AX,BX

0006 CB RET

0007 ADDEM ENDP ;end procedure

If version 6.X of the Microsoft MASM assembler program is available, the PROC direc-
tive specifies and automatically saves any registers used within the procedure. The USES state-
ment indicates which registers are used by the procedure so that the assembler can automatically
save them before your procedure begins and restore them before the procedure ends with the
RET instruction. For example, the ADDS PROC USES AX BX CX statement automatically
pushes AX, BX, and CX on the stack before the procedure begins, and pops them from the stack
before the RET instruction executes at the end of the procedure. Example 4-16 illustrates a pro-
cedure written using MASM 6.X that shows the USES statement. Note that the registers in the
list are not separated by commas, but by spaces, and the PUSH and POP instructions are dis-
played in the procedure listing because the procedure was assembled with the .LISTALL direc-
tive. The instructions prefaced with an asterisk (*) are inserted by the assembler and were not
typed in the source file. Further information about the USES statement appears, in Chapter 7, so
if MASM version 5.10 is being used, the code will need to be modified.

EXAMPLE 4-16
;A procedure that includes the USES directive to save
;BX, CX, and DX on the stack and restore them before
;the RET instruction.

0000 ADDS PROC NEAR USES BX CX DX

0000 53 : * push bx

0001 51 * push cx

0002 52 * push dx

0003 03 D8 ADD BX, AX

0005 03 CB ADD CX, BX

0007 03 D1 ADD DX, CX

0009 8B C2 MOV AX,DX

RET

000B 5A * pop dx

000C 59 * pop cX

000D 5B * pop bx

000E C3 * ret 00000h

000F ADDS ENDP

Memory Organization

The assembler uses two basic formats for developing software. One method uses models and the
other uses full-segment definitions. Memory models, as presented in this section and also in
Chapters 2 and 3, are unique to the MASM assembler program. The TASM assembler also uses
memory models, but they differ somewhat from the MASM models. The full-segment defini-
tions are common to most assemblers, including the Intel assembler, and are often used for soft-
ware development. The models are easier to use for simple tasks. The full-segment definitions
offer better control over the assembly language task and are recommended for complex pro-
grams. The model was used in early chapters because it is easier to understand for the beginning
programmer. Models arc also used with assembly language procedures that are used by high-
level languages such as C/C++. This text fully develops and uses the memory model definitions
for its programming examples, but realize that full-segment definitions offer some advantages
over memory models, as discussed later in this section.

4-7 ASSEMBLER DETAIL 135

Models. There are many models available to the MASM assembler, from tiny to huge. Ap-
pendix A contains a table listing all of the models available for use with the assembler. To des-
ignate a model, use the .MODEL statement followed by the size of the memory system. The
TINY model requires that all software and data fit into one 64K byte memory segment, and is
useful for many small programs. The SMALL model requires that only one data segment be
used with one code segment, for a total of 128K bytes of memory. Other models are available up
to the HUGE model.

Example 4-17 illustrates how the .MODEL statement defines the parameters of a short
program that copies the contents of a 100-byte block of memory (LISTA) into a second 100-byte
block of memory (LISTB). It also shows how to define the stack, data, and code segments. The
.EXIT 0 directive returns to DOS with an error code of 0 (no error). If no parameter is added to
EXIT, it still returns to DOS, but the error code is not defined. Also note that special directives
such as @DATA (see Appendix A) are used to identify various segments. If the .STARTUP di-
rective is used (MASM version 6.X), the MOV AX,@DATA followed by MOV DS,AX state-
ments can be eliminated. The .STARTUP directive also eliminates the need to store the starting
address next to the END label. Models are important with both Microsoft C/C++ and Borland
C/C++ development systems if assembly language is included with C/C++ programs. Both de-
velopment systems use in-line assembly programming for adding assembly language instruc-
tions and require an understanding of programming models. Refer to the respective C/C++
language reference for each system to determine the model protocols.

EXAMPLE 4-17

.MODEL SMALL

.STACK 100H ;define stack

-DATA ;define data segment
0000 0064[LISTA DB 100 DUP (?)

??
]
0064 0064 LISTB DB 100 DUP (?)
?7?
1

.CODE ;define code segment
0000 B8 ---- R HERE: MOV AX,@DATA ;load ES, DS
0003 B8E CO MOV ES,AX
0005 B8E D8 MOV DS, AX
0007 FC CLD ;move data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
000E B9 0064 MOV CX,100
0011 F3/A4 REP MOVSB
0013 JEXIT O ;exit to DOS

END HERE

Full Segment Definitions. Example 4-18 illustrates the same program using full-segment defini-
tions. Full-segment definitions are also used with the Borland and Microsoft C/C++ environments
for procedures developed in assembly language. The program in Example 4-18 appears longer
than the one shown in Figure 4-17, but more structured than the model method of setting up a pro-
gram. The first segment defined is the STACK_SEG, which is clearly delineated with the SEG-
MENT and ENDS directives. Within these directives, a DW 100 DUP (?) sets aside 100H words
for the stack segment. Because the word STACK appears next to SEGMENT, the assembler and
linker automatically load both the stack segment register (SS) and stack pointer (SP).

136

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

EXAMPLE 4-18
0000 STACK_SEG SEGMENT STACK
0000 (100(DW 100H DUP (?)

22?72

]

0200 STACK_SEG ENDS
0000 DATA_SEG SEGMENT 'DATA’
0000 0064[LISTA DB 100 DUP (?)

??

]

0064 00641 LISTB DB 100 DUP (?)

??

]
00C8 DATA_SEG ENDS
0000 CODE_SEG SEGMENT ‘CODE’
ASSUME CS:CODE_SEG,DS:DATA_SEG
ASSUME SS:STACK_SEG

0000 MAIN PROC FAR
0000 B8 ---- R MOV AX,DATA_SEG ;load DS and ES
0003 B8E CO MOV ES,AX
0005 8E D8 MOV DS, AX
0007 FC CLD ;move data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
000E B9 0064 MoV CX,100
0011 F3/Aa4 REP MOVSB
0013 B4 4cC MOV AH, 4CH ;exit to DOS
0015 CD 21 INT 21H
0017 MAIN ENDP
0017 CODE_SEG ENDS

END MAIN

Next, the data are defined in the DATA_SEG. Here two arrays of data appear as LISTA
and LISTB. Each array contains 100 bytes of space for the program. The names of the segments
in this program can be changed to any name. Always include the group name ‘DATA’ so the Mi-
crosoft program CodeView can be effectively used to symbolically debug this software. Code-
View is a part of the MASM package used to debug software. To access CodeView, type CV
followed by the file name at the DOS command line; if operating from Programmer’s Work-
Bench, select Debug under the Run menu. If the group name is not placed in a program, Code-
View can still be used to debug a program, but the program will not be debugged in symbolic
form. Other group names such as ‘STACK’, ‘CODE’, and so forth are listed in Appendix A. You
must at least place the word ‘CODE’ next to the code segment SEGMENT statement if you want
to view the program symbolically in CodeView.

The CODE_SEG is organized as a far pfocedure because most software is procedure ori-
ented. Before the program begins, the code segment contains the ASSUME statement. The AS-
SUME statement tells the assembler and linker that the name used for the code segment (CS) is
CODE_SEG; it also tells the assembler and linker that the data segment is DATA_SEG and the
stack segment is STACK_SEG. Also notice that the group name ‘CODE’ is used for the code
segment for use by CodeView. Other group names appear in Appendix A with the models.

4-7 ASSEMBLER DETAIL 137

After the program loads both the extra segment register and data segment register with the
location of the data segment, it transfers 100 bytes from LISTA to LISTB. Following this is a se-
quence of two instructions that return control back to DOS (the disk operating system). Note that
the program loader does not automatically initialize DS and ES. These registers must be loaded
with the desired segment addresses in the program.

The last statement in the program is END MAIN. The END statement indicates the end of
the program and the location of the first instruction executed. Here we want the machine to exe-
cute the main procedure, so a label follows the END directive.

In the 80386 through the Pentium Pro microprocessors, an additional directive is found at-
tached to the code segment. The USE16 or USE32 directive tells the assembler to use either the
16- or 32-bit instruction modes for the microprocessor. Software developed for the DOS envi-
ronment must use the USE16 directive for the 80386 through the Pentium programs to function
correctly, because MASM assumes that all segments are 32-bits and all instruction modes are
32-bits by default. In fact, any program designed to execute in the real mode must include the
USEL16 directive to deviate from the default 8086/8088. Example 4—19 shows how the same soft-
ware listed in Example 4-18 is formed for the 80386 microprocessor.

EXAMPLE 4-19
.386 ;select the 80386

0000 STACK_SEG SEGMENT STACK
0000 0100(DW 100H DUP (?)

?2?2?2°?

]

0200 STACK_SEG ENDS
0000 DATA_SEG SEGMENT ‘DATA’
0000 0064(LISTA DB 100 DUP (?)

??

]

0064 0064 LISTB DB 100 DUP (?)

??

]
00C8 DATA_SEG ENDS
0000 CODE_SEG SEGMENT USEl16 'CODE’
ASSUME CS:CODE_SEG, DS:DATA_SEG
ASSUME SS:STACK_SEG

0000 MAIN PROC FAR
0000 B8 ---- R MOV AX,DATA_SEG ;load DS and ES
0003 8E CO MOV ES,AX
0005 8E D8 MOV DS, RAX
0007 FC CLD ;move data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
000E B9 0064 MOV CX, 100
0011 F3/Aa4 REP MOVSB
0013 B4 4C MOV AH, 4CH ;exit to DOS
0015 CD 21 INT 21H
0017 MAIN ENDP
0017 CODE_SEG ENDS

END MAIN

138

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

A Sample Program

Example 4-20 provides a sample program, using full-segment definitions. that reads a character
from the keyboard and displays it on the CRT screen. Although this program is trivial, it does il-
lustrate a complete workable program that functions on any personal computer using DOS, from
the earliest 8088-based system to the latest Pentium-based system. This program also illustrates
the use of a few DOS function calls. Appendix A lists the DOS function calls with their parame-
ters. The BIOS function calls allow the use of the keyboard, printer, disk drives, and everything
else that is available in your computer system.

This example program uses only a code segment because there is no data. A stack segment
should appear, but has been left out because DOS automatically allocates a 128-byte stack for all
programs. The only time that the stack is used in this example is for the INT 21H instruction that
calls a procedure in DOS. Note that when this program is linked, the linker signals that no stack
segment is present. This warning may be ignored in this example because the stack is less than
128 bytes.

Notice that the entire program is placed into a far procedure called MAIN. It is good pro-
gramming practice to write all software in procedural form. This allows the program to be used
as a procedure if necessary at some future time. It is also fairly important to document register
use and any parameters required for the program in the program header. The program header is a
section of comments that appear at the start of the program.

The program uses DOS functions 06H and 4CH. The function number is placed in AH be-
fore the INT 21H instruction executes. The 06H function reads the keyboard if DL = OFFH or
displays the ASCII contents of DL if it is not OFFH. Upon close examination, the first section of
the program moves a 06H into AH and a OFFH into DL so that a key is read from the keyboard.
The INT 21H instruction tests the keyboard; if no key is typed, it returns equal. The JE instruc-
tion tests the equal condition and jumps to MAIN if no key is typed.

When a key is typed, the program continues to the next step. This step compares the con-
tents of AL with an @ symbol. Upon return from the INT 21H instruction, the ASCII character
of the typed key is found in AL. In this program, if an @ symbol is typed, the program ends. If
the @ symbol is not typed, the program continues by displaying the character typed on the key-
board with the next INT 21H instruction.

The second INT 21H instruction moves the ASCII character into DL so it can be displayed
on the CRT screen. After displaying the character, a JMP executes. This causes the program to
continue at MAIN, where it repeats reading a key.

If the @ symbol is typed, the program continues at MAIN1, where it executes the DOS
function code number 4CH. This causes the program to return to the DOS prompt (A>) so that
the computer can be used for other tasks.

More information about the assembler and its application appears in Appendix A and in
the next several chapters. Appendix A provides a complete overview of the assembler, linker,
and DOS functions. It also provides a list of the BIOS (basic I/O system) functions. The infor-
mation provided in the following chapters clarifies how to use the assembler for certain tasks at
different levels of the text.

EXAMPLE 4-20

;An example program that reads a key and displays it.
;Note that an @ key ends the program.

0000 CODE_SEG SEGMENT 'CODE’
ASSUME CS:CODE_SEG
0000 MAIN PROC FAR

0000 B4 06 MOV AH, 6 ;read key

4-8 SUMMARY 139

0002 BZ FF MOV DL, OFFH

0004 Cp 21 INT 21H

0006 74 F8 JE MAIN ;1if no key
0008 3C 40 CMP AL, '@’ ;test for @
000% 74 ng JE MAIN1 ;if @

000C B4 06 MOV AH, 6 ;display key
000E 8A DO MOV DL, AL

0010 CD 21 INT 21H

0012 EB EC JMP MAIN ; repeat

0014 MAINI:

0014 B4 4C MOV AH, 4CH ;exit to DOS
0016 CD 21 INT 21H

0018 MAIN ENDP

0018 CODE_SEG ENDS

END MAIN

4-8

SUMMARY

1.

Data movement instructions transfer data between registers, a register and memory, a reg-
ister and the stack, memory and the stack, the accumulator and I/O, and the flags and the
stack. Memory-to-memory transfers are only allowed with the MOVS instruction.

. Data movement instructions include MOV, PUSH, POP, XCHG, XLAT, IN, OUT, LEA,

LDS, LES, LSS, LGS, LFS, LAHF, SAHF, and the string instructions: LODS, STOS,
MOVS, INS, and OUTS.

. The first byte of an instruction contains the opcode. The opcode specifies the operation per-

formed by the microprocessor. The opcode may be preceded by one or more override pre-
fixes in some forms of instructions.

. The D-bit, located in many instructions, selects the direction of data flow. If D = 0, the data

flow from the REG field to the R/M field of the instruction. If D = 1, the data flow from the
R/M field to the REG field.

. The W-bit, found in most instructions, selects the size of the data transfer. If W = 0, the data

are byte-sized; if W = 1, the data are word sized. In the 80386 and above, W = 1 specifies ei-
ther a word or doubleword register.

. MOD selects the addressing mode of operation for a machine language instruction’s R/M field.

If MOD = 00, there is no displacement; if MOD-01, an 8-bit sign-extended displacement ap-
pears; if MOD-10, a 16-bit displacement occurs; and if a MOD-11, a register is used instead of
a memory location. In the 80386 and above, the MOD bits also specify a 32-bit displacement.

. A 3-bit binary register code specifies the REG and R/M fields when the MOD = 11. The 8-

bit registers are AH, AL, BH, BL, CH, CL, DH, and DL. The 16-bit registers are AX, BX,
CX, DX, SP, BP, DI, and SI. The 32-bit registers are EAX, EBX, ECX, EDX, ESP, EBP,
EDI, and ESIL

. When the R/M field depicts a memory mode, a 3-bit code selects one of the following

modes: [BX+DI], [BX+SI], [BP+DI], [BP+SI], [BX], [BP], [DI], or [SI] for 16-bit instruc-
tions. In the 80386 and above, the R/M field specifies EAX, EBX, ECX, EDX, EBP, EDI,
and ESI or one of the scaled-index modes of addressing memory data. If the scaled-index
mode is selected (R/M = 100), an additional byte (scaled-index byte) is added to the instruc-
tion to specify the base register, index register, and the scaling factor.

. All memory-addressing modes, by default, address data in the data segment unless BP or

EBP addresses memory. The BP or EBP register addresses data in the stack segment.

140

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

The segment registers are addressed only by the MOV, PUSH, or POP instructions. The
MOV instruction may transfer a segment register to a 16-bit register or vice versa. MOV
CS.reg or POP CS instructions are not allowed because they change only part of the address.
The 80386 through the Pentium Pro include two additional segment registers, FS and GS.
Data are transferred between a register or a memory location and the stack by the PUSH and
POP instructions. Variations of these instructions allow immediate data to be pushed onto
the stack, the flags to be transferred between the stack, and all the 16-bit registers to be
transferred between the stack and the registers. When data are transferred to the stack, two
bytes (8086-80286) always move; the most-significant byte is placed at the location ad-
dressed by SP — 1. and the least-significant byte is placed at the location addressed by SP — 2.
After placing the data on the stack, SP decrements by 2. In the 80386/80486/Pentium/Pen-
tium Pro, four bytes of data from a memory location or register may also be transferred to
the stack.

Opcodes that transfer data between the stack and the flags are PUSHF and POPF. Opcodes
that transfer all of the 16-bit registers between the stack and the registers are PUSHA and
POPA. In the 80386 and above, PUSHFD and POPFD transfer the contents of the EFLAGS
between the microprocessor and the stack.

LEA, LDS, and LES instructions load a register or registers with an effective address. The
LEA instruction loads any 16-bit register with an effective address, while LDS and LES
load any 16-bit register and either DS or ES with the effective address. In the 8038-6 and
above, additional instructions include LFS, LGS, and LSS, which load a 16-bit register and
FS, GS, or SS.

String data transfer instructions use either or both DI and SI to address memory. The DI
offset address is located in the extra segment, and the SI offset address is located in the data
segment.

The direction flag (D) chooses the auto-increment or auto-decrement mode of operation for
DI and SI for string instructions. To clear D to 0, use the CLD instruction to select the auto-
increment mode; to set D to 1, use the STD instruction to select the auto-decrement mode.
Either or both DI and SI increment/decrement by 1 for a byte operation, by 2 for a word op-
eration, and by 4 for a doubleword operation.

LODS loads AL, AX, or EAX with data from the memory location addressed by SI; STOS
stores AL, AX, or EAX in the memory location addressed by DI; and MOVS transfers a
byte or a word from the memory location addressed by SI into the location addressed by DI.
INS inputs data from an I/O device addressed by DX and stores it in the memory location
addressed by DI. OUTS outputs the contents of the memory location addressed by SI and
sends it to the I/O device addressed by DX.

The REP prefix may be attached to any string instruction to repeat it. The REP prefix repeats
the string instruction the number of times found in register CX.

Arithmetic and logic operators can be used in assembly language. An example is MOV
AX,34*3, which loads AX with 102.

Translate (XLAT) converts the data in AL into a number stored at the memory location ad-
dress by BX plus AL.

IN and OUT transfer data between AL, AX, or EAX and an external I/O device. The address
of the I/O device is either stored with the instruction (fixed port) or in register DX (variable
port).

The Pentium Pro contains a new instruction called CMOV or conditional move. This in-
struction only performs the move if the condition is true.

The segment override prefix selects a different segment register for a memory location than
the default segment. For example, the MOV AX,[BX] instruction uses the data segment, but
the MOV AX ES:[BX] instruction uses the extra segment because of the ES: prefix. The
segment override prefix is the only way that the FS and GS segments are addressed in the
80386 through the Pentium Pro.

4-9

24.

25.

26.

27.

28.

29.

30.

31.

QUESTIONS AND PROBLEMS 141

The MOVZX (move and zero-extend) and MOVSX (move and sign-extend) instructions
found in the 80386 and above increase the size of a byte to a word or a word to a double-
word. The zero-extend version increases the size of the number by inserting leading zeros.
The sign-extend version increases the size of the number by copying the sign-bit into the
more-significant bits of the number.

Assembler directives DB, (define byte), DW (define word), DD (define doubleword), and
DUP (duplicate) store data in the memory system.

The EQU (equate) directive allows data or labels to be equated to labels.

The SEGMENT directive identifies the start of a memory segment and ENDS identifies the
end of a segment when full-segment definitions are in use.

The ASSUME directive tells the assembler what segment names you have assigned to CS,
DS, ES, and SS when full-segment definitions are in effect. In the 80386 and above, AS-
SUME also indicates the segment name for FS and GS.

The PROC and ENDP directives indicate the start and end of a procedure. The USES direc-
tive (MASM version 6.X) automatically saves and restores any number of registers on the
stack if they appear with the PROC directive.

The assembler assumes that software is being developed for the 8086/8088 microprocessors
unless the .286, .386, .486, or .586 directive is used to select one of these other micro-
processors. This directive follows the . MODEL statement to use the 16-bit instruction mode,
and precedes it for the 32-bit instruction mode.

Memory models can be used to shorten the program slightly, but they can cause problems
for larger programs. Also be aware that memory models are not compatible with all assem-
bler programs.

QUESTIONS AND PROBLEMS

W

W

1.

12.
13.

. The first byte of an instruction is the

unless it contains one of the override
prefixes.

. Describe the purpose of the D- and W-bits found in some machine language instructions.
. In a machine language instruction, what information is specified by the MOD field?
. If the register field (REG) of an instruction contains a 010 and W = 0, what register is se-

lected, assuming that the instruction is a 16-bit mode instruction?

. How are the 32-bit registers selected for the 80486 microprocessor?
. What memory-addressing mode is specified by R/M = 001 with MOD = 00 for a 16-bit in-

struction?

. Identify the default segment register assigned to:

(a) SP

(b) EBX

(c) DI

(d) EBP

(e) SI

Convert an 8BO7H from machine language to assembly language.
Convert an 8B1E004CH from machine language to assembly language.

. If a MOV SL[BX+2] instruction appears in a program, what is its machine language equiv-

alent?

If a MOV ESL[EAX] instruction appears in a program for the Pentium microprocessor op-
erated in the 16-bit instruction mode, what is its machine language equivalent?

What is wrong with a MOV CS,AX instruction?

Form a short sequence of instructions that load the data segment register with a 1000H.

142

CHAPTER 4 DATA MOVEMENT INSTRUCTIONS

14.

15.
16.
17.
18.

19.

20.
21.
22.
23.
24.

25.
26.
217.
28.

29.
30.
31.
32.
33.
34.
35.
36.

37.
38.

39.
40.
41.

42.
43.
44.
45.

46.

417.

The PUSH and POP instructions always transfer a -bit number between the stack and a
register or memory location in the 8086-80286 microprocessors.

What segment register may not be popped from the stack?

Which registers move onto the stack with the PUSHA instruction?

Which registers move onto the stack with a PUSHAD instruction?

Describe the operation of each of the following instructions:

(a) PUSH AX

(b) POP ESI

(c) PUSH [BX]

(d) PUSHFD

(e) POP DS

(f) PUSHD 4

Explain what happens when the PUSH BX instruction executes. Make sure to show where
BH and BL are stored. (Assume that SP = 0100H and SS = 0200H.)

Repeat question 19 for the PUSH EAX instruction.

The 16-bit POP instruction (except for POPA) increments SP by
What values appear in SP and SS if the stack is addressed at memory location 02200H?
Compare the operation of a MOV DI,NUMB instruction with an LEA DINUMB instruction.
What is the difference between an LEA SINUMB instruction and a MOV SI,OFFSET
NUMB instruction?

Which is more efficient, a MOV with an OFFSET or an LEA instruction?

Describe how the LDS BX,NUMB instruction operates.

What is the difference between the LDS and LSS instructions?

Develop a sequence of instructions that move the contents of data segment memory loca-
tions NUMB and NUMB+1 into BX, DX, and SI.

What is the purpose of the direction flag?

Which instructions set and clear the direction flag?

The string instructions use DI and SI to address memory data in which memory segments?
Explain the operation of the LODSB instruction.

Explain the operation of the STOSW instruction.

Explain the operation of the OUTSB instruction.

What does the REP prefix accomplish and with what type of instruction is it used?

Develop a sequence of instructions that copy 12 bytes of data from an area of memory ad-
dressed by SOURCE into an area of memory addressed by DEST.

Where is the I/O address (port number) stored for an INSB instruction?

Select an assembly language instruction that exchanges the contents of the EBX register
with the ESI register.

Would the LAHF and SAHF instructions normally appear in software?

Explain how the XL AT instruction transforms the contents of the AL register.

Write a short program that uses the XLAT instruction to convert the BCD numbers 0-9 into
ASCII-coded numbers 30H-39H. Store the ASClI-coded data in a TABLE located within
the data segment.

Explain what the IN AL,12H instruction accomplishes.

Explain how the OUT DX,AX instruction operates.

What is a segment override prefix?

Select an instruction that moves a byte of data from the memory location addressed by the
BX register, in the extra segment, into the AH register.

Develop a sequence of instructions that exchange the contents of AX with BX, ECX with
EDX, and SI with DI.

What is accomplished by the CMOVNE CX,DX instruction in the Pentium Pro micro-
processor?

48.

49.
50.
51.
52.
53.
54.
55.

56.
57.
58.
59.

60.
61.

62.

63.

64.

QUESTIONS AND PROBLEMS 143

How is a CMOVNS ECX,EBX instruction encoded and stored in a program if the assembler
does not recognize this new Pentium Pro instruction?

What is an asscmbly language directive?

Describe the purpose of the following assembly language directives: DB, DW, and DD.
Select ai. assembly language directive that reserves 30 bytes of memory for array LIST1.
Describe the purpose of the EQU directive.

What is the purpose of the .386 directive?

What is the purpose of the MODEL directive?

If the start of a segment is identified with .DATA, what type of memory organization is in
effect?

If the SEGMENT directive identifies the start of a segment, what type of memory organiza-
tion is in effect?

What does the INT 21H instruction accomplish if AH contains a 4CH?

What directives indicate the start and end of a procedure?

Explain the purpose of the USES statement as it applies to a procedure with version 6.X of
MASM.

How is the 80486 microprocessor instructed to use the 16-bit instruction mode?

Develop a near procedure that stores AL in four consecutive memory locations, within the
data segment, as addressed by the DI register.

Develop a far procedure that copies contents of the word-sized memory location CS:DATAL1
into AX, BX, CX, DX, and SI.

Use the Internet to access the Borland web page and detail the information provided for
TASM.

Use the Internet to access the Zilog web page and list the microprocessor products.

CHAPTER 5
Arithmetic and Logic Instructions

INTRODUCTION

In this chapter, arithmetic and logic instructions are examined. Arithmetic instructions include
addition, subtraction, multiplication, division, comparison, negation, increment, and decrement.
Logic instructions include AND, OR, Exclusive-OR, NOT, shifts, rotates, and the logical com-
pare (TEST). Also presented are the 80386 through the Pentium Pro instructions XADD,
SHRD, SHLD, bit tests, and bit scans. The chapter concludes with a discussion of string
comparison instructions, which are used for scanning tabular data and for comparing sections
of memory data. Both tasks perform efficiently with the string scan (SCAS) and string compare
(CMPS) instructions.

If you are familiar with an 8-bit microprocessor, you will recognize that the 8086 through
the Pentium Pro instruction set is superior to most §-bit microprocessors because most of the in-
structions have two operands instead of one. Even if this is your first microprocessor, you will
quickly learn that it possesses a powerful and easy-to-use set of arithmetic and logic instructions.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Use arithmetic and logic instructions to accomplish simple binary, BCD, and ASCII
arithmetic.

2. Use AND, OR, and Exclusive-OR to accomplish binary bit manipulation.

Use the shift and rotate instructions.

4. Explain the operation of the 80386 through the Pentium Pro exchange and add, compare
and exchange, double precision shift, bit test, and bit scan instructions.

5. Check the contents of a table for a match with the string instructions.

w

144

ADDITION, SUBTRACTION, AND COMPARISON

The bulk of the arithmetic instructions found in any microprocessor include addition, subtrac-
tion, and comparison. In this section addition, subtraction, and comparison instructions are illus-
trated. Also shown are their use in manipulating register and memory data.

5-1 ADDITION, SUBTRACTION, AND COMPARISON 145

Addition

Addition (ADD) appears in many forms in the microprocessor. This section details the use of
the ADD instruction for 8-, 16-, and 32-bit binary addition. Another form of addition, called add-
with-carry, is introduced with the ADC instruction. Finally, the increment instruction (INC) is
presented. Increment is a special type of addition that adds a one to a number. In Section 5-3,
other forms of addition are examined, such as BCD and ASCII. Also described is the XADD in-
struction found in the 80486 through the Pentium Pro processors.

Table 5-1 illustrates the addressing modes available to the ADD instruction. (These ad-
dressing modes include almost all those mentioned in Chapter 3.) However, since there are over
32,000 variations of the ADD instruction in the instruction set, it is impossible to list them all in
this table. The only types of addition not allowed are memory-to-memory and segment register.
The segment registers can only be moved, pushed, or popped. Note that as with all other instruc-
tions, the 32-bit registers are only available with the 80386 through the Pentium Pro processors.

Register Addition. Example 5-1 shows a simple procedure that uses register addition to add the
contents of several registers. In this example, the contents of AX, BX, CX, and DX are added to
form a 16-bit result stored in the AX register. Here a procedure is used, because assembly lan-
guage is procedure-oriented, as are most languages.

EXAMPLE 5-1
;A procedure that sums AX, BX, CD, and DX;
;the result is returned in AX.

0000 ADDS PROC NEAR

0000 03 C3 ADD AX,BX

0002 03 C1 ADD AX,CX

0004 03 C2 ADD AX, DX

0006 C3 RET

0007 ADDS ENDP

Whenever arithmetic and logic instructions execute, the contents of the flag register
change. Note that the contents of the interrupt, trap, and other flags do not change due to arith-
metic and logic instructions. Only the flags located in the rightmost 8 bits of the flag register and
the overflow flag change. These rightmost flags denote the result of the arithmetic or logic oper-
ation. Any ADD instruction modifies the contents of the sign, zero, carry, auxiliary carry, parity,
and overflow flags. The flag bits never change for most of the data transfer instructions pre-
sented in Chapter 4.

Immediate Addition. Immediate addition is employed whenever constant or known data are
added. An 8-bit immediate addition appears in Example 5-2. In this example, load DL is first
loaded with a 12H by using an immediate move instruction. Next, a 33H is added to the 12H in
DL using an immediate addition instruction. After the addition, the sum (45H) moves into reg-
ister DL and the flags change as follows:

Z = 0 (result not zero)

C = 0 (no carry)

A = 0 (no half-carry)

S = 0 (result positive)

P = 0 (odd parity)

O = 0 (no overtlow)

146

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

TABLE 5-1 Addition instructions

Assembly Language Operation

ADD AL,BL AL =AL +BL

ADD CX,DI CX=CX+ DI

ADD EBP,EAX EBP = EBP + EAX

ADD CL,44H CL=CL +44H

ADD BX,245FH BX = BX + 245FH

ADD EDX,12345H EDX = EDX + 00012345H

ADD [BX],AL AL adds to the contents of the data segment memory location address by BX with the
sum stored in the same memory location

ADD CL,[BP] The byte contents of the stack segment memory location addressed by BP add to CL
with the sum stored in CL

ADD AL,[EBX] The byte contents of the data segment memory location address by EBX add to AL

ADD BX,[SI + 2]

with the sum stored in AL

The word contents of the data segment memory location addressed by the sum of SI
plus 2 add to BX with the sum stored in BX

ADD CL,TEMP The byte contents of the data segment memory location TEMP add to CL with the
sum stored in CL

ADD BX,TEMP[DI] The word contents of the data segment memory location addressed by TEMP plus DI
add to BX with the sum stored in BX

ADD [BX + DI],DL DL adds to the contents of the data segment memory location addressed by BX plus
DI with the sum stored in the same memory location

ADD BYTE PTR [DI},3 A 3 adds to the byte contents of the data segment memory location addressed by DI

ADD BX,[EAX + 2*ECX] The word contents of the data segment memory location addressed by the sum of

2 times ECX plus EAX add to BX with the sum stored in BX

EXAMPLE 5-2

0006 B2 12 MOV DL, 12H
0008 80 C2 33 ADD DL, 33H

Memory-to-register Addition. Suppose an application requires that memory data add to the AL
register. Example 5-3 shows an example that adds two consecutive bytes of data, stored at the
data segment offset locations NUMB and NUMB+1, to the AL register.

EXAMPLE 5-3
;A procedure that sums data in locations NUMB and NUMB+1;
;the result is returned in AX.

0000 SUMS PROC NEAR

0000 BF 0000 R MOV DI,OFFSET NUMB ;address NUMB

0003 BO 00 MOV AL, O ;clear sum

0005 02 05 ADD AL, [DI] ;add NUMB

0007 02 45 01 ADD AL, [DI+1] ;add NUMB+1

000A C3 RET

000B SUMS ENDP

Procedure SUMS first loads the destination index register (DI) with offset address NUMB.
The DI register, used in this example, addresses data in the data segment beginning at memory

5-1 ADDITION, SUBTRACTION, AND COMPARISON 147

location NUMB. In most cases, loading the address inside of a procedure is poor programming
practice. It is usually better to load the address outside of the procedure and then CALL the pro-
cedure with the address in place. Next, the ADD AL,[DI] instruction adds the contents of
memory location NUMB to AL. Note that AL is initialized to zero. This occurs because DI ad-
dresses memory location NUMB, and the instruction adds its contents to AL. Finally, the ADD
AL,[DI+1] instruction adds the contents of memory location NUMB plus one byte to the AL reg-
ister. After both ADD instructions execute, the result appears in the AL register as the sum of the
contents of NUMB plus the contents of NUMB+1.

Array Addition. Memory arrays are sequential lists of data. Suppose that an array of data
(ARRAY) contains 10 bytes numbered from element 0 through element 9. Example 54 shows
a procedure that adds the contents of array elements 3, 5, and 7. (The procedure and the array
elements it adds are chosen to demonstrate the use of some of the addressing modes for the
microprocessor.)

This example first clears AL to zero so it can be used to accumulate the sum. Next, register
SI is loaded with a 3 to initially address array element 3. The ADD AL,ARRAY([SI] instruction
adds the contents of array element 3 to the sum in AL. The instructions that follow add array el-
ements 5 and 7 to the sum in AL using a 3 in SI plus a displacement of 2 to address element 5,
and a displacement of 4 to address element 7.

EXAMPLE 5-4
;A procedure that sums ARRAY elements 3, 5, and 7;
;the result is returned in AL.
;Note this procedure destroys the contents of SI.
0000 SUM PROC NEAR
0000 BO 00 MOV AL,O ;clear sum
0002 BE 0003 MOV SI,3 ;address element 3
0005 02 84 0002 R ADD AL, ARRAY[SI] ;add element 3
0009 02 84 0004 R ADD AL,ARRAY [SI+2] ;add element 5
000D 02 84 0006 R ADD AL,ARRAY [SI+4] ;add element 7
0011 C3 RET
0012 SUM ENDP

Suppose that an array of data contains 16-bit numbers used to form a 16-bit sum in register
AX. Example 5-5 shows a procedure written for the 80386 and above showing the scaled-index
form of addressing to add elements 3, 5, and 7 of an area of memory called ARRAY. In this ex-
ample, EBX is loaded with the address ARRAY, and ECX holds the array element number. Note
how the scaling factor is used to multiply the contents of the ECX register by 2 to address words
of data. Recall that words are two bytes long.

EXAMPLE 5-5
;A procedure that sums ARRAY elements 3, 5 and 7;
;the result is returned in AX.
;Note that the contents of registers EBX and ECX are
;destroyed.

0000 SUM PROC NEAR

0000 66| BB 00000000 R MOV EBX,OFFSET ARRAY ;address ARRAY

0006 66] B9 00000003 MOV ECX, 3 ;address element 3

000C 67& 8B 04 4B MOV AX, [EBX+2*ECX] ;get element 3

0010 661 B9 00000005 MOV ECX, 5 ;address element 5

0016 67& 03 04 4B ADD AX, [EBX+2*ECX] ;add element 5

148

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

001A 66| B9 00000007 MOV ECX,7 ;address element 7
0020 67& 03 04 4B ADD AX, [EBX+2*ECX] ;add element 7
0024 C3 RET

0025 SUM ENDP

Increment Addition. Increment addition (INC) adds 1 to a register or a memory location. The
INC instruction can add 1 to any register or memory location except a segment register. Table 5-2
illustrates some of the possible forms of the increment instruction available to the 8086-80486
and Pentium/Pentium Pro processors. As with other instructions presented thus far, it is impos-
sible to show all variations of the INC instruction because of the large number available.

With indirect memory increments, the size of the data must be described using the BYTE
PTR, WORD PTR, or DWORD PTR directives. The reason is that the assembler program cannot
determine if, for example, the INC [DI] instruction is a byte-, word-, or doubleword-sized incre-
ment. The INC BYTE PTR [DI] instruction clearly indicates byte-sized memory data; the INC
WORD PTR [DI] instruction unquestionably indicates word-sized memory data; and the INC
DWORD PTR [DI] instruction indicates doubleword-sized data.

Example 5-6 shows how the procedure of Example 5-3 is modified to use the increment
instruction for addressing NUMB and NUMB+1. Here, an INC DI instruction changes the con-
tents of register DI from offset address NUMB to offset address NUMB+1. Both procedures
shown in Examples 5-3 and 5-6 add the contents of NUMB and NUMB+1. The difference be-
tween these programs is the way that this data’s address is formed through the contents of the DI
register using the increment instruction.

EXAMPLE 5-6

;A procedure that sums NUMB and NUMB+1;

;the result is returned in AL.

;Note that the contents of DI are destroyed.
0000 SUMS PROC NEAR
0000 BF 0000 R MOV DI,OFFSET NUMB ;address NUMB
0003 BO 00 MOV AL, O ;clear sum
0005 02 05 ADD AL, [DI] ;add NUMB
0007 47 INC DI ;address NUMB+1
0008 02 05 ADD AL, [DI] ;add NUMB+1
000a C3 RET
000B SUMS ENDP

TABLE 5-2 Increment instructions

Assembly Language Operation

INC BL BL=BL+1

INC SP SP=SP +1

INC EAX EAX = EAX + 1

INC BYTE PTR [BX] Adds 1 to the byte contents of the data segment memory location
addressed by BX

INC WORD PTR [SI] Adds 1 to the word contents of the data segment memory location
addressed by Sl

INC DWORD PTR [ECX] Adds 1 to the doubleword contents of the data segment memory
location addressed by ECX

INC DATA1 Increments the contents of data segment memory location DAAT1

5-1 ADDITION, SUBTRACTION, AND COMPARISON 149

TABLE 5-3 Add-with-carry instructions

Assembly Language Operation

ADC AL,AH AL = AL + AH + carry

ADC CX,BX CX =CX + BX + carry

ADC EBX,EDX EBX = EBX + EDX + carry

ADCDH,[BX] The byte contents of the data segment memory location addressed by
BX add to DH with carry with the sum stored in DH

ADC BX,[BP + 2] The word contents of the stack segment memory location address by
BP plus 2 add to BX with carry with the sum stored in BX

ADC ECX,[EBX] The doubleword contents of the data segment memory location

addressed by EBX add to ECX with carry with the sum stored in ECX

Increment instructions affect the flag bits, as do most other arithmetic and logic opera-
tions. The difference is that increment instructions do not affect the carry flag bit. Carry doesn’t
change because we often use increments in programs that depend upon the contents of the carry
flag. Note that increment is used to point to the next memory element in a byte-sized array
of data only. If word-sized data are addressed, it is better to use an ADD DI,2 instruction
to modify the DI pointer in place of two INC DI instructions. For doubleword arrays, use the
ADD DIL4 instruction to modify the DI pointer. In some cases, the carry flag must be preserved,
which may mean that two or four INC instructions might appear in a program to modify a
pointer.

Addition-with-Carry. An addition-with-carry instruction (ADC) adds the bit in the carry flag (C)
to the operand data. This instruction mainly appears in software that adds numbers that are wider
than 16-bits in the 8086-80286 or wider than 32-bits in the 80386 through the Pentium Pro.

Table 5-3 lists several add-with-carry instructions with comments that explain their oper-
ations. Like the ADD instruction, ADC affects the flags after the addition.

Suppose a program is written for the 8086—-80286 to add the 32-bit number in BX and AX
to the 32-bit number in DX and CX. Figure 5-1 illustrates this addition so the placement and
function of carry flag can be understood. This addition cannot be easily performed without
adding the carry flag bit because the 8086-80286 only adds 8- or 16-bit numbers. Example 5-7
shows how the addition occurs with a procedure. Here the contents of registers AX and CX add
to form the least-significant 16-bits of the sum. This addition may or may not generate a carry.
A carry appears in the carry flag if the sum is greater than FFFFH. Because it is impossible to

FIGURE 5-1 Additional-
with-carry showing how the
carry flag (C) links the two
16-bit additions into one
32-bit addition

CF

l’D

(ADC) (ADD)
—e—] —
+ | ox] ox
| BX |4 AxX

150

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

predict a carry, the most-significant 16-bits of this addition are added with the carry flag using
the ADC instruction. The ADC instruction adds the one or the zero in the carry flag to the most-
significant 16-bits of the result. This program adds BX-AX to DX-CX with the sum appearing
in BX-AX.

EXAMPLE 5-7
;A procedure that sums BX-AX and DX-CX;
;the result is returned in BX-AX.

0000 SUM32 PROC NEAR

0000 03 C1 ADD AX,CX

0002 13 DA ADC BX, DX

0004 C3 RET

0005 SUM32 ENDP

Suppose the same procedure is rewritten for the 80386 through the Pentium Pro, but mod-
ified to add two 64-bit numbers. The changes required for this operation are the use of the ex-
tended registers to hold the data and modifications of the instructions for the 80386/80486/
Pentium/Pentium Pro microprocessors. These changes are shown in Example 5-8, which adds
two 64-bit numbers. '

EXAMPLE 5-8
;A procedure that sums EBX-EAX and EDX-ECX;
;the result is returned in EBX-EAX.

0000 SUM64 PROC NEAR

0000 661 03 C1 ADD EAX,ECX

0003 661 13 DA ADC EBX, EDX

0006 C3 RET

0007 SUM64 ENDP

Exchange and Add for the 80486—Pentium Pro Processors. A new type of addition called ex-
change and add (XADD) appears in the 80486 instruction set and continues through the Pentium
Pro processor. The XADD instruction adds the source to the destination and stores the sum in the
destination, as with any addition. The difference is that after the addition takes place, the original
value of the destination is copied into the source operand. This is one of the few instructions that
change the source.

For example, if BL = 12H and DL = 02H, and the XADD BL,DL instruction executes, the
BL register contains the sum of 14H and DL becomes 12H. The sum of 14H is generated, and the
original destination of 12H replaces the source. This instruction functions with any register size
and any memory operand, just as with the ADD instruction.

Subtraction

Many forms of subtraction (SUB) appear in the instruction set. These forms use any addressing
mode with 8-, 16-, or 32-bit data. A special form of subtraction (decrement or DEC) subtracts a
| from any register or memory location. Section 5-3 shows how BCD and +.SCII data subtract.
As with addition, numbers that are wider than 16-bits or 32-bits must occasionally be sub-
tracted. The subtract-with-borrow instruction (SBB) performs this type of subtraction. In the
80486 through the Pentium Pro processors, the instruction set also includes a compare and ex-
change instruction.

5-1 ADDITION, SUBTRACTION, AND COMPARISON 151

TABLE 5-4 Subtraction instructions

Assembly Language

Operation

SUB CL,BL

SUB AX,SP

SUB ECX,EBP
SUB DH,6FH

SUB AX,0CCCCH
SUB ESI,2000300H
SUB [DI],CH

SUB CH,[BP]
SUB AH,TEMP
SUB DI, TEMPIESI]

SUB ECX,DATA1

CL=CL-BL

AX =AX-SP

ECX =ECX-EBP

DH = DH - 6FH

AX = AX-CCCCH
ESI = ESI - 2000300H

Subtracts the contents of CH from the contents of the data segment
memory location addressed by DI

Subtracts the byte contents of the stack segment memory location
address by BP from CH

Subtracts the byte contents of the data segment memory location
TEMP from AH

Subtracts the word contents of the data segment memory location
addressed by TEMP plus ESI from DI

Subtracts the doubleword contents of the data segment memory

location addressed by DATA1 from ECX

Table 5-4 lists some of the many addressing modes allowed with the subtraction instruc-
tion. There are well over 1,000 possible subtraction instructions, far too many to list here. About
the only types of subtraction not allowed are memory-to-memory and segment register subtrac-
tions. Like other arithmetic instructions, the subtraction instruction affects the flag bits.

Register Subtraction. Example 5-9 shows a sequence of instructions that perform register sub-
traction. This example subtracts the 16-bit contents of registers CX and DX from the contents of
register BX. After each subtraction, the microprocessor modifies the contents of the flag register.
The flags change for most arithmetic and logic operations.

EXAMPLE 5-9
0000 2B D9 SUB BX,CX
0002 2B DA SUB BX,DX

Immediate Subtraction. As with addition, the microprocessor also allows immediate operands
for the subtraction of constant data. Example 5-10 presents a short sequence of instructions that
subtract a 44H from a 22H. Here, we first load the 22H into CH using an immediate move in-
struction. Next, the SUB instruction, using immediate data 44H, subtracts a 44H from the 22H.
After the subtraction, the difference (DEH) moves into the CH register. The flags change as fol-
lows for this subtraction:

Z = 0 (result not zero)

C = 1 (borrow)
A = 1 (half-borrow)
S = 1 (result negative)

P
O = 0 (no overflow)

1 (even parity)

152

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

EXAMPLE 5-10

0060 B5 I2 MOV CH,22H
0002 80 ED 44 SUB CH, 44H

Both carry flags (C and A) hold borrows after a subtraction rather than carries, as after an
addition. Notice in this example that there is no overflow. This example subtracted a 44H (+68)
from a 22H (+34), resulting in a DEH (-34). Because the correct 8-bit signed result is a —34,
there is no overflow in this example. An 8-bit overflow only occurs if the signed result is greater
than +127 or less than —~128.

Decrement Subtraction. Decrement subtraction (DEC) subtracts a 1 from a register or the con-
tents of a memory location. Table 5-5 lists some decrement instructions that illustrate register
and memory decrements.

The decrement indirect memory data instructions require BYTE PTR, WORD PTR, or
DWORD PTR because the assembler cannot distinguish a byte from a word when an index reg-
ister addresses memory. For example, DEC [SI] is vague, because the assembler cannot deter-
mine if the location addressed by SI is a byte, word, or doubleword. Using DEC BYTE PTR
[SI], DEC WORD PTR [DI], or DEC DWORD PTR [SI] reveals the size of the data to the
assembler. ’

Subtract-with-Borrow. A subtraction-with-borrow (SBB) instruction functions as a regular sub-
traction, except that the carry flag (C), which holds the borrow, also subtracts from the differ-
ence. The most common use for this instruction is for subtractions that are wider than 16-bits in
the 8086—80286 or wider than 32-bits in the 80386 through the PentiumPro. Wide subtractions
require that borrows propagate through the subtraction just as wide additions propagate the
carry.

Table 5-6 lists many SBB instructions with comments that define their operations. Like
the SUB instruction, SBB affects the flags. Notice that the subtract from memory immediate in-
struction in this table requires a BYTE PTR, WORD PTR, or DWORD PTR directive.

When the 32-bit number held in BX and AX is subtracted from the 32-bit number held in
SI and DI, the carry flag propagates the borrow between the two 16-bit subtractions required to
perform this operation in the microprocessor. Figure 5-2 shows how the borrow propagates

TABLE 5-5 Decrement instructions

Assembly Language Operation
" DECBH BH=BH -1
DEC CX CX=CX-1
DEC EDX EDX = EDX -1
DEC BYTE PTR [DI] Subtracts 1 from the byte contents of the data segment memory
location addressed by DI
DEC WORD PTR[BP] Subtracts 1 from the word contents of the stack segment memory

location addressed by BP

DEC DWORD PTR[EBX] Subtracts 1 from the doubleword contents of the data segment
memory location addressed by EBX

DEC NUMB Subtracts 1 from the contents of the data segment memory
location NUMB

5-1 ADDITION, SUBTRACTION, AND COMPARISON 153

TABLE 5-6 Subtract-with-borrow instructions

Assembly Language Operation

SBB AH,AL AH = AH - AL - carry

SBB AX,BX AX = AX — BX - carry

SBB EAX,ECX EAX = EAX — ECX - carry

SBB CL,2 CL=CL-2-carry

SBB BYTE PTR[DI],3 Both a 3 and carry subtract from the contents of the data segment
memory location addressed by Di

SBB [DI],AL Both AL and carry subtract from the data segment memory location
addressed by DI

SBB DI,[BP + 2] Both carry and the word contents of the stack segment memory
location addressed by the sum of BP and 2 subtract from DI

SBB AL,[EBX + ECX] Both carry and the byte contents of the data segment memory

location addressed by the sum of EBX and ECX subtract from AL

through the carry flag (C) for this task. Example 5-11 shows how this subtraction is performed
by a program. With wide subtraction, the least-significant 16- or 32-bit data are subtracted with
the SUB instruction. All subsequent and more-significant data are subtracted using the SBB
instruction. Examples 5-11 uses the SUB instruction to subtract DI from AX, then uses SBB to
subtract-with-borrow SI from BX.

EXAMPLE 5-11

0004 2B C7 SUB AX,DI
0006 1B DE SBB BX,SI
Comparison

The comparison instruction (CMP) is a subtraction that changes only the flag bits. A comparison
is useful for checking the entire contents of a register or a memory location against another
value. A CMP is normally followed by a conditional jump instruction, which tests the condition
of the flag bits.

FIGURE 5-2 Subtraction-
with-borrow showing how the
carry flag (C) propagates the
borrow

CF

(sBB) —l (sUB)
| BX [AX]
o —
TS| BT

154

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

TABLE 5-7 Comparison instructions

Assembly Language Operation

CMP CL,BL CL-BL

CMP AX,SP AX - SP

CMP EBP,ESI EBP - ESI

CMP AX,2000H AX — 2000H

CMP [DI],CH CH subtracts from the contents of the data segment memory location
addressed by DI

CMP CL,[BP] The byte contents of the stack segment memory location addressed
by BP subtract from CL

CMP AH,TEMP The byte contents of the data segment memory location TEMP

' subtract from AH

CMP DI, TEMP[BX] The word contents of the data segment memory location addressed
by the sum of TEMP plus BX subtract from DI

CMP AL,[EDI + ESI] The byte contents of the data segment memory location addressed

by the sum of EDI plus ESI subtract from AL

Table 5-7 lists a variety of comparison instructions that use the same addressing modes as
the addition and subtraction instructions already presented. Similarly, the only disallowed forms
of comparison are memory-to-memory and segment register compares.

Example 5-12 shows a comparison followed by a conditional jump instruction. In this ex-
ample, the contents of AL are compared with a 10H. Conditional jump instructions that often
follow the comparison are JA (jump above) or JB (jump below). If the JA follows the compar-
ison, the jump occurs if the value in AL is above 10H. If the JB follows the comparison, the jump
occurs if the value in AL is below 10H. In this example, the JAE instruction follows the com-
parison. This instruction causes the program to continue at memory location SUBER if the value
in AL is 10H or above. There is also a JBE (jump below or equal) instruction that could follow
the comparison to jump if the outcome is below or equal to 10H. Chapter 6 provides more detail
on the comparison and conditional jump instructions.

EXAMPLE 5~-12
0000 3C 10 CMP AL, 10H ;compare with 10H
0002 73 1C JAE SUBER ;1f 10H or above

Compare and Exchange (80486/Pentium/Pentium Pro Processors Only). The compare and ex-

change instruction (CMPXCHG) found only in the 80486 through the Pentium Pro instruction
sets compares the destination operand with the accumulator. If they are equal, the source
operand is copied into the destination. If they are not equal, the destination operand is copied into
the accumulator. This instruction functions with 8-, 16-, or 32-bit data.

The CMPXCHG CX,DX instruction is an example of the compare and exchange instruc-
tion. This instruction first compares the contents of CX with AX. If CX equals AX, DX is copied
into AX. If CX is not equal to AX, CX is copied into AX. This instruction also compares AL

_with 8-bit data and EAX with 32-bit data if the operands are either 8- or 32-bit.

In the Pentium and Pentium Pro processors, a CMPXCHGSB instruction is available that
compares two quadwords. In fact this is the only new data manipulation instruction provided to
the Pentium/Pentium Pro when compared with prior versions of the microprocessor. The com-
pare-and-exchange-8-bytes instruction compares the 64-bit value located in EDX:EAX with a
64-bit number located in memory. An example is CMPXCHG8B TEMP. If TEMP equals

5-2 MULTIPLICATION AND DIVISION 155

EDX:EAX, TEMP is replaced with the value found in ECX:EBX. If TEMP does not equal
EDX:EAX, then the number found in TEMP is loaded into EDX:EAX. The zero flag bit indi-
cates that the values are equal after the comparison.

MULTIPLICATION AND DIiViSION

Only modern microprocessors contain multiplication and division instructions. Earlier 8-bit mi-
croprocessors could not multiply or divide without the use of a program that multiplied or di-
vided by using a series of shifts and additions or subtractions. Because microprocessor
manufacturers were aware of this inadequacy, they incorporated multiplication and division in-
structions into the instruction sets of the newer microprocessors. In fact, the Pentium and Pen-
tium Pro processors contain special circuitry that performs a multiplication in as little as one

~ clocking period, whereas it takes over 40 clocking periods to perform the same multiplication in

earlier Intel microprocessors.

~ Multiplication ‘

Multiplication is performed on bytes, words, or doublewords and can be signed integer (IMUL) or
unsigned (MUL). Note that only the 80386 through the Pentium Pro processors multiply 32-bit
doublewords. The product after a multiplication is always a double-width product. If two 8-bit
numbers are multiplied, they generate a 16-bit product; if two 16-bit numbers are multiplied, they
generate a 32-bit product; and if two 32-bit numbers are multiplied, a 64-bit product is generated.

Some flag bits (O and C) change when the multiplication instruction executes and produce
predictable outcomes. The other flags also change, but their results are unpredictable and there-
fore are unused. In an 8-bit multiplication, if the most-significant 8-bits of the result are 0, both
the C and O flag bits equal 0. These flag bits show that the result is 8-bits wide (C = 0) or 16-bits
wide (C = 1). In a 16-bit multiplication, if the most-significant 16-bits of the product are 0, both
C and O clear to 0. In a 32-bit multiplication, both C and O indicate that the most-significant 32-
bits of the product are zero.

8-bit Multiplication. With 8-bit multiplication, whether signed or unsigned, the multiplicand is
always in the AL register. The multiplier can be any 8-bit register or any memory location. Imme-
diate multiplication is not allowed unless the special signed immediate multiplication instruction,
discussed later in this section, appears in a program. The multiplication instruction contains one
operand because it always multiplies the operand times the contents of register AL. An example
is the MUL BL instruction, which multiplies the unsigned contents of AL by the unsigned con-
tents of BL. After the multiplication, the unsigned product is placed in AX—a double-width
product. Table 5-8 illustrates some 8-bit multiplication instructions.

TABLE 5-8 8-bit multiplication instructions

Assembly Language Operation

MUL CL AL is multiplied by CL; the unsigned product is in AX

IMUL DH AL is multiplied by DH; the signed product is in AX

IMUL BYTE PTRI[BX] AL is multiplied by the byte contents of the data segment memory
location addressed by BX; the signed product is in AX

MUL TEMP AL is multiplied by the byte contents of the data segment memory

location addressed by TEMP; the unsigned product is in AX

156

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

Suppose that BL and CL each contain two 8-bit unsigned numbers, and these numbers
must be multiplied to form a 16-bit product stored in DX. This procedure cannot be accom-
plished by a single instruction, because we can only multiply a number times the AL register for
an 8-bit multiplication. Example 5-13 shows a short program that generates DX = BL x CL. This
example loads register BL and CL with example data 5 and 10. The product, a 50, moves into
DX from AX after the multiplication by using the MOV DX,AX instruction.

EXAMPLE 5-13

0000 B3 05 MOV BL, 5 ;iload data

0002 B1 0A MOV CL, 10

0004 8a Cl MOV AL,CL ;jposition data
0006 F6 E3 MUL BL ;multiply

0008 8B DO MOV DX, AX ;position product

For signed multiplication, the product is in true binary form, if positive, and in two’s com-
plement form, if negative. These are the same forms used to store all positive and negative
signed numbers used by the microprocessor. If the program of Example 5-13 multiplies two
signed numbers, only the MUL instruction is changed to IMUL.

16-bit Multiplication. 'Word multiplication is very similar to byte multiplication. The difference
is that AX contains the multiplicand instead of AL and the product appears in DX-AX instead of
AX. The DX register always contains the most-significant 16-bits of the product, and AX the
least-significant 16-bits. As with 8-bit multiplication, the choice of the multiplier is up to the pro-
grammer. Table 5-9 shows several different 16-bit multiplication instructions.

A Special Immediate 16-bit Muitiplication. The 8086/8088 microprocessors could not perform
immediate multiplication, but the 80186 through the Pentium Pro processors can by using a spe-
cial version of the multiplication instruction. Immediate multiplication must be signed multipli-
cation, and the instruction format is different because it contains three operands. The first
operand is the 16-bit destination register; the second operand is a register or memory location
that contains the 16-bit multiplicand; and the third operand is either an 8-bit or 16-bit immediate
data used as the multiplier.

The IMUL CX,DX,12H instruction multiplies 12H times DX and leaves a 16-bit signed
product in CX. If the immediate data are 8-bits, they sign-extend into a 16-bit number before the
multiplication occurs. Another example is IMUL BX,NUMBER,1000H, which multiplies
NUMBER times 1000H and leaves the product in BX. Both the destination and multiplicand must
be 16-bit numbers. Although this is immediate multiplication, the restrictions placed upon it limit
its utility, especially the fact that it is a signed multiplication and the product is 16-bits wide.

32-bit Multiplication. In the 80386 and above, 32-bit multiplication is allowed because these mi-
croprocessors contain 32-bit registers. As with 8- and 16-bit multiplication, 32-bit multiplication

TABLE 5-9 16-bit multiplication instructions

Assembly Language Operation

MUL CX AX is multiplied by CX; the unsigned product is in DX-AX

IMUL DI AX is multiplied by DI; the signed product is in DX-AX

MUL WORD PTRISI] AX is multiplied by the word contents of the data segment memory

location addressed by SI; the unsigned product is in DX-AX

5-2 MULTIPLICATION AND DIVISION 157

TABLE 5-10 32-bit multiplication instructions

Assembly Language Operation
MUL ECX EAX is multiplied by ECX; the unsigned product is in EDX-EAX
IMUL EDI EAX is multiplied by EDI; the signed product is in EDX-EAX
MUL DWORD PTR[ECX] EAX is multiplied by the doubleword contents of the data

segment memory location addressed by ECX; the unsigned
product is in EDX-EAX

can be signed or unsigned by using the IMUL and MUL instructions. With 32-bit multiplication,
the contents of EAX are multiplied by the operand specified with the instruction. The product
(64-bits wide) is found in EDX-EAX where EAX contains the least-significant 32-bits of the
product. Table 5-10 lists some of the 32-bit multiplication instructions found in the 80386 and
above instruction set.

Division

As with multiplication, division occurs on 8- or 16-bit numbers and also 32-bit numbers in the
80386 through the Pentium Pro. These numbers are signed (IDIV) or unsigned (DIV) integers.
The dividend is always a double-width dividend that is divided by the operand. This means that
an 8-bit division divides a 16-bit number by an 8-bit number; a 16-bit division divides a 32-bit
number by a 16-bit number; and a 32-bit division divides a 64-bit number by a 32-bit number.
There is no immediate division instruction available to any microprocessor.

None of the flag bits change predictably for a division. A division can result in two dif-
ferent types of errors. One of these is an attempt to divide by zero; the other is a divide over-
flow. A divide overflow occurs when a small number divides into a large number. For
example, suppose that AX = 3,000 and that it is divided by 2. Because the quotient for an
8-bit division appears in AL, the result of 1,500 causes a divide overflow because the 1,500
does not fit into AL. In both cases, the microprocessor generates an interrupt if a divide error
occurs. In most cases, a divide-error-interrupt displays an error message on the video screen.
The divide-error-interrupt and all other interrupts for the microprocessor are explained in
Chapter 6.

8-bit Division. An 8-bit division uses the AX register to store the dividend that is divided by
the contents of any 8-bit register or memory location. The quotient moves into AL after the divi-
sion with AH containing a whole number remainder. For a signed division, the quotient is posi-
tive or negative; the remainder always assumes the sign of the dividend and is always an integer.
For example, if AX = 0010H (+16) and BL = FDH (-3) and the IDIV BL instruction executes,
AX = 01FBH. This represents a quotient of -5 (AL) with a remainder of 1 (AH). If, on the other
hand, a ~16 is divided by a +3, the result will be a quotient of -5 (AL) with a remainder of ~1
(AH). Table 5-11 lists some 8-bit division instructions.

With 8-bit division, the numbers are usually 8-bits wide. This means that one of them, the
dividend, must be converted to a 16-bit wide number in AX. This is accomplished differently for
signed and unsigned numbers. For unsigned numbers, the most-significant 8-bits must be cleared
to zero (zero-extended). The MOVZX instruction described in Chapter 4 can be used to zero-
extend a number in the 80386 through the Pentium Pro. For signed numbers, the least-significant
8-bits are sign-extended into the most significant 8-bits. A special instruction sign-extends
AL into AH, or converts an 8-bit signed number in AL into a 16-bit signed number in AX. The

158

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

TABLE 5-11 8-bit division instructions

Assembly Language Operation

DIV CL AX is divided by CL; the unsigned quotient is in AL and the remainder
is in AH

IDIV BL AX is divided by BL; the signed quotient is in AL and the remainder is
in AH

DIV BYTE PTR[BP] AX is divided by the byte contents of the stack segment memor

location addressed by BP; the unsigned quotient is in AL and the
remainder is in AH

CBW (convert byte to word) instruction performs this conversion. In the 80386 through the
Pentium Pro, a MOVSX instruction (see Chapter 4) sign-extends a number.

Example 5-14 illustrates a short program that divides the unsigned byte contents of
memory location NUMB by the unsigned contents of memory location NUMB1. Here the quo-
tient is stored in location ANSQ and the remainder in location ANSR. Notice how the contents
of location NUMB are retrieved from memory and then zero-extended to form a 16-bit unsigned
number for the dividend.

EXAMPLE 5-14

0000 A0 0000 R MOV AL, NUMB ;get NUMB

0003 B4 00 MOV AH, 0 ;zero-extend
0005 F6 36 0002 R DIV NUMB1 ;divide by NUMB1
0009 A2 0003 R MOV ANSQ, AL ;save quotient
000C 88 26 0004 R MOV ANSR, AH ;save remainder

Example 5-15 shows the same basic program, except that the numbers are signed num-
bers. This means that instead of zero-extending AL into AH, it is sign-extended with the CBW
instruction.

EXAMPLE 5-15

0000 A0 0000 R MOV AL, NUMB ;get NUMB

0003 98 CBW ;sign-extend
0004 Fé6 3E 0002 R IDIV NUMB1 ;divide by NUMB1
0008 A2 0003 R MOV ANSQ, AL ;save quotient
000B 88 26 0004 R MOV ANSR, AH ;save remainder

16-bit Division. ~ Sixteen-bit division is similar to 8-bit division except that instead of dividing

into AX, the 16-bit number is divided into DX-AX, a 32-bit dividend. The quotient appears in AX

and the remainder in DX after a 16-bit division. Table 5-12 lists some 16-bit division instructions.

TABLE 5-12 16-bit division instructions

Assembly Language Operation
DIV CX DX-AX is divided by CX; the unsigned quotient is in AX and the
rem.rnder is in DX
IDIV SI DX-AX is divided by SI; the signed quotient is in AX and the remainder
is in DX
DIV NUMB AX is divided by the contents of the data segment memory location

NUMB; the unsigned quotient is in AX and the reminder is in DX

5-2 MULTIPLICATION AND DIVISION 159

As with 8-bit division, numbers must often be converted to the proper form for the divi-
dend. If a 16-bit unsigned number is placed in AX, then DX must be cleared to 0. In the 80386
and above, the number is zero-extended using the MOVZX instruction. If AX is a 16-bit signed
number, the CWD (convert word to doubleword) instruction sign-extends it into a signed 32-
bit number. If the 80386 and above is available, the MOVSX instruction can also be used to sign-
extend a number.

Example 5-16 shows the division of two 16-bit signed numbers. Here a ~100 in AX is di-
vided by a +9 in CX. The CWD instruction converts the —100 in AX to a =100 in DX-AX before
the division. After the division, the results appear in DX~AX as a quotient of =11 in AX and a re-
mainder of —1 in DX.

EXAMPLE 5-16

0000 B8 FFIC MOV AX,-100 ;load -100
0003 B9 0009 MOV CX,9 ;load +9
0006 99 CwWD ;sign-extend
0007 F7 F9 IDIV CX

32-bit Division. The 80386 through the Pentium Pro processors perform 32-bit division on
signed or unsigned numbers. The 64-bit contents of EDX-EAX are divided by the operand spec-
ified by the instruction, leaving a 32-bit quotient in EAX and a 32-bit remainder in EDX. Other
than the size of the registers, this instruction functions in the same manner as the 8- and 16-bit di-
visions. Table 5-13 shows some 32-bit division instructions. The CDQ (convert doubleword to
quadword) instruction is used before a signed division to convert the 32-bit contents of EAX
into a 64-bit signed number in EDX-EAX.

The Remainder. What is done with the remainder after a division? There are a few possible
choices. The remainder could be used to round the result or dropped to truncate the result. If the di-
vision is unsigned, rounding requires that the remainder be compared with half the divisor to decide
whether to round up the quotient. The remainder could also be converted to a fractional remainder.

Example 5-17 shows a sequence of instructions that divide AX by BL and round the re-
sult. This program doubles the remainder before comparing it with BL to decide whether or not
to round the quotient. Here, an INC instruction rounds the contents of AL after the comparison.

EXAMPLE 5-17

0000 F6 F3 DIV BL ;divide

0002 02 E4 ADD AH, AH ;double remainder
0004 3A E3 CMP AH, BL ;test for rounding
0006 72 02 JB NEXT

0008 FE CO INC AL ;jround

000A NEXT:

TABLE 5-13 32-bit division instructions

Assembly Language Operation
DIV ECX EDX-EAX is divided by ECX; the unsigned quotient is in EAX and
the remainder is in EDX
DIV DATA2 EDX-EAX is divided by the doublewor 1 contents of data segment

memory location DATAZ2; the unsigned quotient is in EAX and the
remainder is in EDX

IDIV DWORD PTRIEDI] EDX-EAX is divided by the doubleword contents of the data
segment memory location addressed by EDI, the signed quotient
is in EAX and the remainder is in EAX

160

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

Suppose that a fractional remainder is required instead of an integer remainder. A fractional
remainder is obtained by saving the quotient. Next, the AL register is cleared to zero. The number
remaining in AX is now divided by the original operand to generate a fractional remainder.

Example 5-18 shows how a 13 is divided by a 2. The 8-bit quotient is saved in memory lo-
cation ANSQ and then AL is cleared. Next, the contents of AX are again divided by 2 to generate
a fractional remainder. After the division, the AL register equals an 80H. This is a 10000000.. If
the binary point (radix) is placed before the leftmost bit of AL, the fractional remainder in AL is
0.10000000, or 0.5 decimal. The remainder is saved in memory location ANSR in this example.

EXAMPLE 5-18

0000 B8 000D MOV AX,13 ;load 13

0003 B3 02 MOV BL,2 ;load 2

0005 F6 F3 DIV BL ;1372

0007 A2 0003 R MOV ANSQ, AL ;save quotient

000A BO 00 MOV AL, O ;clear AL

000C F6 F3 DIV BL ;generate remainder
000E A2 0004 R MOV ANSR, AL ;save remainder

BCD AND ASCII ARITHMETIC

The microprocessor allows arithmetic manipulation of both binary-coded decimal (BCD) and
American Standard Code for Information Interchange (ASCII) data. This is accomplished by in-
structions that adjust the numbers for BCD and ASCII arithmetic.

The BCD operations occur in systems such as point-of-sales terminals (e.g., cash registers)
and others that seldom require arithmetic. The ASCII operations are performed on ASCII data
used by many programs. In many cases, BCD or ASCII arithmetic is rarely used today.

BCD Arithmetic

Two arithmetic techniques operate with BCD data: addition and subtraction. The instruction set
provides two instructions that correct the result of a BCD addition and a BCD subtraction. The
DAA (decimal adjust after addition) instruction follows BCD addition, and the DAS (decimal
adjust after subtraction) instruction follows BCD subtraction. Both instructions correct the re-
sult of the addition or subtraction so it is a BCD number.

For BCD data, the numbers always appear in the packed BCD form and are stored as two
BCD digits per byte. The adjust instructions only function with the AL register after BCD addi-
tion and subtraction.

DAA Instruction. The DAA instruction follows the ADD or ADC instruction to adjust the result
into a BCD result. Suppose that DX and BX each contain 4-digit packed BCD numbers. Ex-
ample 5-19 provides a short sample program that adds the BCD numbers in DX and BX and
stores the result in CX.

EXAMPLE 5-19
0000 BA 1234 MOV DX,1234H ;load 1,234

0003 BB 3099 MOV BX,3099H ;load 3,099

0006 &Aa C3 MOV AL, BL ;sum BL with DL

0008 0z C2 ADD AL, DL

000a 27 DAA ;adjust

000B 8a C8 MOV CL, AL ;janswer to CL

000D 8A C7 MOV AL, BH ;eum BH, DH, and carr.s
000F 12 C6 ADC AL, DH

0011 27 DAA ;adjust

0012 B8A ES8 MOV CH, AL ;answer to CH

5-3 BCD AND ASCII ARITHMETIC . 161

Because the DAA instruction only functions with the AL register, this addition must occur
8-bits at a time. After adding the BL and DL registers, the result is adjusted with a DAA instruc-
tion before being stored in CL. Next, add BH and DH registers with carry and the result again is
adjusted with DAA before being stored in CH. In this example, a 1,234 adds to a 3,099 to generate
a sum of 4,333 that moves into CX after the addition. Note that 1234 BCD is the same as 1234H.

DAS Instruction. The DAS instruction functions as does the DAA instruction, except that it fol-
lows a subtraction instead of an addition. Example 5-20 is basically the same as Example 5-19,
except that it subtracts instead of adds DX and BX. The main difference in these programs is that
the DAA instructions change to DAS and the ADD and ADC instructions change to SUB and
SBB instructions.

EXAMPLE 5-20

0000 BA 1234 MOV DX, 1234E ;jload 1,234

0003 BB 3099 MOV BX,3099HE ;load 3,099

0006 8A C3 MOV AL, BL ;subtract DL from BL
0008 2A C2 SUB AL, DL

000A 2F DAS ;adjust

000B 8A C8 MOV CL,AL ;answer to CL

000D 8A C7 MOV AL, BH ;subtract DH

000F 1A C6 SBB AL, DH

0011 2F DAS ;adjust

0012 B8A ES8 MOV CH, AL ;answer to CH

ASCII Arithmetic

The ASCII arithmetic instructions function with ASCII-coded numbers. These numbers range in
value from 30H to 39H for the numbers 0-9. There are four instructions used with ASCII arith-
metic operations: AAA (ASCII adjust after addition), AAD (ASCII adjust before division),
AAM (ASCII adjust after multiplication), and AAS (ASCII adjust after subtraction). These
instructions use register AX as the source and as the destination.

AAA Instruction. The addition of two 1-digit ASCII-coded numbers will not result in any useful
data. For example, if 31H and 39H are added, the result is 6AH. This ASCII addition (1 + 9)
should produce a 2-digit ASCII result equivalent to a 10 decimal, which is a 31H and a 30H in
ASCII code. If the AAA instruction is executed after this addition, the AX register will contain a
0100H. Although this is not ASCII code, it can be converted to ASCII code by adding 3030H,
which generates 3130H. The AAA instruction clears AH if the result is less than 10, and adds a
1 to AH if the result is greater than 10.

Example 5-21 shows how ASCII addition functions in the microprocessor. Please note
that AH is cleared before the addition by using the MOV AX,31H instruction. The operand of
0031H places a 00H in AH and a 31H into AL.

EXAMPLE 5-21

0000 B8 0031 MOV AX,31H ;load ASCIT 1
0003 04 39 ADD AL, 39H ;add ASCII 9
0005 37 AAA ;adjust

0006 05 3030 ADD AX,3030H ;answer to ASCII

AAD Instruction. Unlike all the other adjust instructions, the AAD instruction appears before a
division. The AAD instruction requires that the AX register contain a 2-digit unpacked BCD
number (not ASCII) before executing. After adjusting the AX register with AAD, it is divided by
an unpacked BCD number to generate a single-digit result in AL with any remainder in AH.
Example 5-22 illustrates how a 72 in unpacked BCD is divided by 9 to produce a quotient
of 8. The 0702H loaded into the AX register is adjusted by the AAD instruction to 0048H. Notice

162

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS
that this converts a 2-digit unpacked BCD number into a binary number so it can be divided with

the binary division instruction (DIV). The AAD instruction converts the.unpacked BCD num-
bers between 00 and 99 into binary.

EXAMPLE 5-22

0000 B3 09 MOV BL,S ;load divisor
0002 B8 0702 MOV AX,0702H ;load dividend
0005 D5 0A AAD ;adjust

0007 F6 F3 DIV BL

AAM Instruction. The AAM instruction follows the multiplication instruction after multiplying
two 1-digit unpacked BCD numbers. Example 5-23 shows a short program that multiplies 5
times 5. The result after the multiplication is 0019H in the AX register. After adjusting the result
with the AAM instruction, AX contains a 0205H. This is an unpacked BCD result of 25. If
3030H adds to 0205H, this becomes an ASCII result of 3235H.

EXAMPLE 5-23

0000 BO 05 MOV AL, 5 ;load multiplicand
0002 B1 05 MoV CL,5 ;load multiplier
0004 F6 E1 MUL CL

0006 D4 0A AAM ;adjust

The AAM instruction accomplishes this conversion by dividing AX by 10. The remainder
is found in AL and the quotient is in AH. It has been noted that the second byte of the instruction
contains a 0AH. If the 0AH is changed to another value, AAM divides by the new value. For ex-
ample, if the second byte is changed to a 0BH, the AAM instruction divides by an 11.

One side benefit of the AAM instruction is that AAM converts from binary to unpacked
BCD. If a binary number between 0000H and 0063H appears in the AX register, the AAM in-
struction converts it to BCD. For example, if AX contains a 0060H before AAM, it will contain
a 0906H after AAM executes. This is the unpacked BCD equivalent of 96 decimal. If 3030H is
added to 0906H, the result changes to ASCII code.

Example 5-24 shows how the 16-bit binary contents of AX are converted to a 4-digit
ASCII character string by using division and the AAM instruction. Note that this works for num-
bers between 0 and 9,999. First, DX is cleared and then DX-AX is divided by 100. For example,
if AX =245, after the division, then AX =2 and DX = 45. These separate halves are converted
to BCD using AAM and then a 3030H is added to convert to ASCII code.

EXAMPLE 5-24

0000 33 D2 XOR DX, DX ;clear DX register

0002 BYS 0064 MOV CX,100 ;divide DX—AX by 100
0005 F7 F1 DIV CX

0007 D4 0A AAM ;convert quotient to BCD
0009 05 3030 ADD AX,3030H ;convert to ASCII

0ooc 92 XCHG AX,DX ;repeat for remainder
000D D4 0A AAM

000F 05 3030 ADD AX,3030H

Example 5-25 uses the DOS 21H function AH = 02H to display a sample number in dec-
imal on the video display using the AAM instruction. Notice how AAM is used to convert AL
into BCD. Next ADD AX,3030H converts thc BCD code in AX into ASCII for display with
DOS INT 21H. Once the data are converted to ASCII code they are displayed by loading DL
with the most significant digit from AH. Next, the least-significant digit is displayed from AL.
Note that the DOS INT 21H function calls change AL.

5-4 BASIC LOGIC INSTRUCTIONS 163

EXAMPLE 5-25

;A program that displays the number loaded into AL,
;jwith the first instruction (48H), as a decimal number.

7

.MODEL TINY ;select TINY model
0000 .CODE ;start of CODE segment
.STARTUP ;indicate start of program
0100 BO 48 MOV AL, 48H ;load AL with test data
0102 B4 00 MOV AH, O ;clear AH
0104 D4 0A AAM ;convert to BCD
0106 05 3030 ADD AX,3030H; ;jconvert to ASCII
0109 8A D4 MOV DL, AH ;display most-significant digit
010B B4 02 MOV AH, 2
010D 50 PUSH AX ;save least-significant digit
010E <¢D 21 INT 21H
0110 58 POP AX jrestore AL
0111 8A DO MOV DL, AL ;display least-significant digit
0113 CD 21 INT 21H
LEXIT ;exit to DOS
END ;end of file

AAS Instruction. Like other ASCII adjust instructions, AAS adjusts the AX register after an
ASCII subtraction. For example, suppose that a 35H subtracts from a 39H. The result will be a
04H, which requires no correction. Here AAS will modify neither AH or AL. On the other hand,
if 38H subtracts from 37H, then AL will equal 09H and the number in AH will decrement by 1.
This decrement allows multiple-digit ASCII numbers to be subtracted from each other.

BASIC LOGIC INSTRUCTIONS

The basic logic instructions include AND, OR, Exclusive-OR, and NOT. Another logic instruc-
tion is TEST, which is explained in this section of the text because the operation of the TEST in-
struction is a special form of the AND instruction. Also explained is the NEG instruction, which
is similar to the NOT instruction.

Logic operations provide binary bit control in low-level software. The logic instructions
allow bits to be set, cleared, or complemented. Low-level software appears in machine language
or assembly language form and often controls a system’s I/O devices. All logic instructions af-
fect the flag bits. Logic operations always clear the carry and overflow flags, while the other
flags change to reflect the condition of the result.

When binary data are manipulated in a register or a memory location, the rightmost bit po-
sition is always numbered bit 0. Bit position numbers increase from bit O toward the left to bit 7
for a byte and to bit 15 for a word. A doubleword (32-bits) uses bit position 31 as its leftmost bit.

AND

The AND operation performs logical multiplication, as illustrated by the truth table in Figure 5-3.
Here two bits, A and B, are ANDed to produce the result X. As indicated by the truth table, X is
a logic 1 only when both A and B are logic 1’s. For all other input combination of A and B, X
is a logic 0. It is important to remember that 0 AND anything is always 0, and 1 AND 1 is
always 1.

The AND instruction can replace discrete AND gates if the speed required is not too great,
although this is normally reserved for embedded control applications. (Note that Intel has re-
leased the 80386EX embedded controller, which embodies the basic structure of thc personal
computer system.) With the 8086 microprocessor, the AND instruction often executes in about a

164

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS
FIGURE 5-3 (a) The truth A B T

table for the AND operation o 0 o
and (b) the logic symbol of an

AND gate 0 1 0 A }
B___ | T
1 o} o

(a) (b)

microsecond. With newer versions, the execution speed is greatly increased. If the circuit that the
AND instruction replaces operates at a much slower speed than the microprocessor, the AND in-
struction is a logical replacement. This replacement can save a considerable amount of money. A
single AND gate integrated circuit (7408) costs approximately 40¢, while it costs less than
1/100¢ to store the AND instruction in a read-only memory. Note that logic circuit replacement
such as this only appears in control systems based on microprocessors, and does not generally
find application in the personal computer.

The AND operation also clears bits of a binary number. The task of clearing a bit in a bi-
nary number is called masking. Figure 5-4 illustrates the process of masking. Notice that the
left most four bits clear to 0, because 0 AND anything is 0. The bit positions that AND with 1’s
do not change. This occurs because if a 1 ANDs with a 1, a 1 results; ifa 1 ANDs witha 0, a0
results.

The AND instruction uses any addressing mode except memory-to-memory and segment
register addressing. Refer to Table 5-14 for a list of some AND instructions and their operations.

An ASCII-coded number can be converted to BCD by using the AND instruction to mask off
the leftmost four binary bit positions. This converts the ASCII 30H to 39H to 0-9. Example 5-26
shows a short program that converts the ASCII contents of BX into BCD. The AND instruction in
this example converts two digits from ASCII to BCD simultaneously.

EXAMPLE 5-26

0000 BB 3135 MOV BX,3135H ;load ASCII
0003 81 E3 OFOF AND BX, OFOFH ;mask BX

The OR operation performs logical addition and is often called the Inclusive-OR function. The
OR function generates a logic 1 output if any inputs are 1. A 0 appears at the output only when
all inputs are 0. The truth table for the OR function appears in Figure 5-5. Here, the inputs A and
B OR together to produce the X output. It is important to remember that 1 ORed with anything
yields a 1.

In embedded controller applications, the OR instruction can also replace discrete OR
gates. This results in a considerable savings, because a quad, 2-input OR gate (7432) costs about
40¢, while the OR instruction costs less than 1/100¢ to store in a read-only memory.

FIGURE 5—-4 The operation XX XX XXxx Unknown number
of the AND function showing « 00001111 Mask
how bits of a number are

It
cleared to zero 0000 xxxx Resu

5-4 BASIC LOGIC INSTRUCTIONS 165

TABLE 5-14 AND instructions

Assembly Language Operation

AND AL,BL AL = AL AND BL

AND CX,DX CX = CX AND DX

AND ECX,EDI ECX = ECX AND EDI

AND CL,33H CL = CL AND 33H

AND DI, 4FFFH DI = DI AND 4FFFH

AND ESI,34H ESI = ESI AND 00000034H

AND AX,[Dl] AX is ANDed with the word contents of the data segment memory
location addressed by DI

AND ARRAYISI], AL The byte contents of the data segment memory location addressed
by the sum of ARRAY plus Sl is ANDed with AL; the result moves
to memory

AND [EAX],CL CL is ANDed with the byte contents of the data segment memory

location addressed by EAX; the result moves to memory

Figure 5-6 shows how the OR gate sets (1) any bit of a binary number. Here, an unknown
number (XXXX XXXX) ORs with a 0000 1111 to produce a result of XXXX 1111. The right-
most four bits set, while the leftmost four bits remain unchanged. The OR operation sets any bit,
and the AND operation clears any bit.

The OR instruction uses any of the addressing modes allowed to any other instruction ex-
cept segment register addressing. Table 5-15 lists several OR instructions and their operations.

Suppose that two BCD numbers are multiplied and adjusted with the AAM instruction.
The result appears in AX as a 2-digit unpacked BCD number. Example 5-27 illustrates this mul-
tiplication and shows how to change the result into a 2-digit ASCII-coded number using the OR
instruction. Here, OR AX,3030H converts the 0305H found in AX to 3335H. The OR operation
can be replaced with an ADD AX,3030H to obtain the same results.

EXAMPLE 5-27
0000 BO 05 MOV AL,S ;load data
0002 B3 07 MOV BL,7
0004 F6 E3 MUL BL
0006 D4 0A AAM ;adjust
0008 0D 3030 OR AX,3030H ;to ASCII
FIGURE 5-5 (a) The truth A B T
table for the OR operation ololo

and (b) the logic symbol of an

OR gate o 1] 1 A D
5 T
11011

166 CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

FIGURE 5-6 The operation X XXX XXXX Unknown number
of the OR function showing + 00001111 Mask
how bits of a number are set —_—
xxxx 1111 Result
to one

TABLE 5-15 OR instructions

Assembly Language Operation

OR AH,BL AH=AH ORBL

OR SI,DX SI=SIOR DX

OR EAX,EBX EAX = EAX OR EBX

OR DH,0A3H DH = DH OR A3H

OR SP,990DH SP = SP OR 990DH

OR EBP,10 EBP = EBP OR 0000000AH

OR DX,[BX] DX is ORed with the word contents of the data segment memory
location addressed by BX

OR DATES[DI+2],AL The byte contents of the data segment memory location addressed

by the sum of DATES, DI, and 2 are ORed with AL

Exclusive-OR

The Exclusive-OR instruction (XOR) differs from Inclusive-OR (OR). The difference is that a
1,1 condition of the OR function produces a 1, while the 1,1 condition of the Exclusive-OR op-
eration produces a 0. The Exclusive-OR operation excludes this condition, while the Inclusive-
OR includes it.

Figure 5-7 shows the truth table of the Exclusive-OR function. (Compare this with Figure 5-5
to appreciate the difference between these two OR functions.) If the inputs of the Exclusive-OR
function are both 0 or both 1, the output is 0. If the inputs are different, the output is 1. Because of
this, the Exclusive-OR function is sometimes called a comparator.

The XOR instruction uses any addressing mode except segment register addressing.
Table 5-16 lists several Exclusive-OR instructions and their operations.

As with the AND and OR functions, Exclusive-OR can replace discrete logic circuitry in
embedded applications. The 7486 quad, 2-input Exclusive-OR gate is replaced by one XOR in-
struction. The 7486 costs about 40¢, while the instruction costs less than 1/100¢ to store in the
memory. Replacing the circuitry on the 7486 saves a considerable amount of money, especially
if many systems are built.

FIGURE 5-7 (a) The truth A B T
table for the Exclusive-OR op-
eration and (b) the logic

symbol of an Exclusive-OR ol 1 1 A
o
1 0 1

(@ (b)

5-4 BASIC LOGIC INSTRUCTIONS 167

TABLE 5-16 Exclusive-OR instructions

Assembly Language Operation

XOR CH,DL CH = CH XOR DL

XOR SI,BX SI = SI XOR BX

XOR EBX,EDI EBX = EBX XOR EDI

XOR AH,0EEH AH = AH XOR EEH

XOR DI,0DDH DI = DI XOR 00DDH

XOR ESI,100 ESI = ESI XOR 00000064H

XOR DX,[SH] DX is Exclusive-ORed with the word contents of the data segment
memory location addressed by Sl

XOR DATES[DI+2],AL AL is Exclusive-ORed with the byte contents of the data segment

memory location addressed by the sum of DATES, DI, and 2

The Exclusive-OR instruction is useful if some bits of a register or memory location must
be inverted. This instruction allows part of a number to be inverted or complemented. Figure 5-8
shows how just part of an unknown quantity can be inverted by XOR. Notice that when a 1
Exclusive-ORs with X, the result is X. If a 0 Exclusive-ORs with X, the result is X.

Suppose that the leftmost 10-bits of the BX register must be inverted without changing the
rightmost 6-bits. The XOR BX,0FFCOH instruction accomplishes this task. The AND instruction
clears (0) bits, the OR instruction sets (1) bits, and now the Exclusive-OR instruction inverts bits.
These three instructions allow a program to gain complete control over any bit, stored in any reg-
ister or memory location. This is ideal for control system applications where equipment must be
turned on (1), turned off (0) and toggled from on to off or off to on.

A fairly common use for the Exclusive-OR instruction is to clear a register to zero. For ex-
ample, the XOR CH,CH instruction clears register CH to OOH and requires two bytes of memory
to store the instruction. Likewise, the MOV CH,00H instruction also clears CH to O0H, but re-
quires three bytes of memory. Because of this savings, the XOR instruction is used to clear a reg-
ister in place of a move immediate.

Example 5-28 shows a short sequence of instructions that clear bits 0 and 1 of CX, set bits
9 and 10 of CX, and invert bit 12 of CX. The OR instruction is used to set bits, the AND instruc-
tion is used to clear bits, and the XOR instruction inverts bits.

EXAMPLE 5-28

0000 81 C9 0600 OR CX, 0600H ;set bits 9 and 10
0004 83 El1 FC AND CX, OFFFCH ;clear bits 0 and 1
0007 81 F1 1000 XOR CX,1000H ;invert bit 12

Test and Bit Test Instructions

The TEST instruction performs the AND operation. The difference is that the AND instruction
changes the destination operand, while the TEST instruction does not. A TEST affects only the

FIGURE 5-8 The operation XX XX XXXX Unknown number
of the Exclusive-OR function @®0000 1111 Mask
showing how bits of a number s ——

. XXXX XXXX Result
are inverted

168

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

TABLE 5-17 TEST

instructions Assembly Language Operation
TEST DL,DH DL is ANDed with DH
TEST CX,BX CX'is ANDed with BX
TEST EDX,ECX EDX is ANDed with ECX
TEST AH,4 AH is ANDed with 4
TEST EAX,256 EAX is ANDed with 256

condition of the flag register, which indicates the result of the test. The TEST instruction uses the
same addressing modes as the AND instruction. Table 5-17 lists some TEST instructions and
their operations.

The TEST instruction functions in the same manner as a CMP instruction. The difference
is that the TEST instruction normally tests a single bit (or occasionally multiple bits), while the
CMP instruction tests the entire byte or word. The zero flag (Z) is a logic 1 (indicating a zero re-
sult) if the bit under test is a zero, and Z = 0 (indicating a non-zero result) if the bit under test is
not zero.

Usually the TEST instruction is followed by either the JZ (jump if zero) or INZ (jump if
not zero) instruction. The destination operand is normally tested against immediate data. The
value of immediate data is 1 to test the rightmost bit position, 2 to test the next bit, 4 for the
next, etc.

Example 5-29 lists a short program that tests the rightmost and leftmost bit positions of the
AL register. Here, 1 selects the rightmost bit and 128 selects the leftmost bit. (Note: A 128 is an
80H.) The JNZ instruction follows each test to jump to different memory locations depending on
the outcome of the tests. The JNZ instruction jumps to the operand address (RIGHT or LEFT in
the example) if the bit under test is not zero.

EXAMPLE 5-29

0000 a8 01 TEST AL, 1 ;test right bit
0002 75 1C JINZ RIGHT ;1f set
0004 A8 80 TEST AL, 128 ;test left bit
0006 75 38 JINZ LEFT ;1if set

The 80386 through the Pentium Pro processors contain additional test instructions that test
single bit positions. Table 5-18 lists the four different bit test instructions available to these mi-
CrOprocessors.

All four forms of the bit test instruction test the bit position in the destination operand se-
lected by the source operand. For example, the BT AX,4 instruction tests bit position 4 in AX.

TABLE 5-18 Bit test instructions

Assembly Language Operation
BT Tests a bit in the destination operand specified by the source operand
BTC Tests and complements a bit in the destination operand specifi=d by
the source operand
BTR Tests and resets a bit in the destination operand specified by the
source operand
BTS Tests and sets a bit in the destination operand specified by the

source operand

5-5 SHIFT AND ROTATE 169

TABLE 5-1¢ NOT and NEG instructions

Assembly Language Operation

NOT CH CH is one’s complemented

NEG CH CH is two’s complemented

NEG AX AXis two’'s complemented

NOT EBX EBX is one’s complemented

NEG ECX ECXis two’s complemented

NOT TEMP The contents of the data segment memory location TEMP is one’s
complemented

NOT BYTE PTR[BX] The byte contents of the data segment memory location addressed

by BX is one’s complemented

The result of the test is located in the carry flag bit. If bit position 4 is a 1, carry is set; if bit po-
sition 4 is a 0, carry is cleared.

The remaining three bit test instructions also place the bit under test into the carry flag, and
afterwards change the bit under test. The BTC AX,4 instruction complements bit position 4 after
testing it; the BTR AX,4 instruction clears it (0) after the test, and the BTS AX,4 instruction sets
it (1) after the test.

Example 5-30 repeats the sequence of instructions listed in Example 5-28. Here the BTR
instruction clears bits in CX, BTS sets bits in CX, and BTC inverts bits in CX.

EXAMPLE 5-30

0000 OF BA E9 09 BTS CX,9 ;set bit 9
0004 OF BA E9 0A BTS CX, 10 ;set bit 10
0008 OF BA F1 00 BTR CX,0 ;clear bit 0
000C OF BA F1 01 BTR CX,1 ;clear bit 1
0010 OF BA F9 0C BTC CX,12 ;invert bit 12
NOT and NEG

Logical inversion or the one’s complement (NOT) and arithmetic sign inversion or the two’s com-
plement (NEG) are the last two logic functions presented (except for shift and rotate in the next
section of the text). These are two of a few instructions that contain only one operand. Table 5-19
lists some variations of the NOT and NEG instructions. As with most other instructions, NOT
and NEG can use any addressing mode except segment register addressing.

The NOT instruction inverts all bits of a byte, word, or doubleword. The NEG instruction
two’s complements a number, which means that the arithmetic sign of a signed number changes
from positive to negative or negative to positive. The NOT function is considered logical, and
the NEG function is considered an arithmetic operation.

SHIFT AND ROTATE

Shift and rotate instructions manipulate binary numbers at the binary bit level, as did the AND,
OR, Exclusive-OR, and NOT instructions. Shifts and rotates find their most common application
in low-level software used to control [/O devices. The microprocessor contains a complete set of
shift and rotate instructions used to shift or rotate any memory data or register.

170

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

Shifts

Shift instructions position or move numbers to the left or right within a register or memory lo-
cation. They also perform simple arithmetic such as multiplication by powers of 2" (left shift)
and division by powers of 2™ (right shift). The microprocessor’s instruction set contains four
different shift instructions: two are logical shifts and two are arithmetic shifts. All four shift op-
erations appear in Figure 5-9.

Notice in Figure 5-9 that there are two right shifts and two left shifts. The logical shifts
move a 0 into the rightmost bit position for a logical left shift and a 0 into the leftmost bit posi-
tion for a logic right shift. There are also two arithmetic shifts. The arithmetic and logical left
shifts are identical. The arithmetic and logical right shifts are different because the arithmetic
right shift copies the sign-bit through the number, while the logical right shift copies a 0 through
the number.

Logical shift operations function with unsigned numbers, and arithmetic shifts function
with signed numbers. Logical shifts multiply or divide unsigned data, and arithmetic shifts mul-
tiply or divide signed data. A shift left always multiplies by 2 for each bit position shifted, and a
shift right always divides by 2 for each bit position shifted. Shifting a number 2 places multiplies
or divides by 4.

Table 5-20 illustrates some addressing modes allowed for the various shift instructions.
There are two different forms of shifts that allow any register (except the segment register) or
memory location to be shifted. One mode uses an immediate shift count, and the other uses reg-
ister CL to hold the shift count. Note that CL must hold the shift count. When CL is the shift
count, it does not change when the shift instruction executes. Note that the shift count is a
modulo-32 count. This means that a shift count of 33 will shift the data one place (33 /32 =
remainder of 1).

Example 5-31 shows how to shift the DX register left 14 places in two different ways. The
first method uses an immediate shift count of 14. The second method loads a 14 into CL and then

FIGURE 5-9 The shiftin- Target register or memory
structions showing the opera- C
tion and direction of the shift SHL D -—0

C
SAL D -—0

C
SHR 00— D
SAR D

Sign
bit

[o

5-5 SHIFT AND ROTATE) 171

TABLE 5-20 Shift instructions

Assembly Language Operation
SHL AX,1 AX is logically shifted left 1 place
SHR BX,12 BX is logically shifted right 12 places
SHR ECX,10 ECX is logically shifted right 10 places
SAL DATA1,CL The contents of the data segment memory location DATAT is
arithmetically shifted left the number of places specified by CL
SAR SI,2 Sl is arithmetically shifted right 2 places
SAR EDX,14 EDX is arithmetically shifted right 14 places

uses CL as the shift count. Both instructions shift the contents of the DX register logically to the
left 14 binary bit positions or places.

EXAMPLE 5-31

0000 C1 E2 OE SHL DX, 14
or

0003 Bl OE MOV CL, 14

0005 D3 E2 SHL DX,CL

Suppose that the contents of AX must be multiplied by 10, as in Example 5-32. This can
be done in two ways: by the MUL instruction or by shifts and additions. A number is doubled
when it shifts left one binary place. When a number is doubled, then added to the number times
8, the result is 10 times the number. The number 10 decimal is 1010 in binary. A logic | appears
in both the 2’s and 8’s positions. If 2 times the number is added to 8 times the number, the result
is 10 times the number. Using this technique, a program can be written to multiply by any con-
stant. This technique often executes faster than the multiply instruction in earlier versions of the
Intel microprocessor.

EXAMPLE 5-32
;Multiply AX by 10 (1010)

’

0000 D1 EO SHL AX,1 ;AX times 2
0002 8B D8 MOV BX,AX

0004 C1 EO 02 SHL AX,2 ;AX times 8
0007 03 C3 ADD AX,BX ;10 times AX

;Multiply AX by 18 (10010)

7

0009 D1 EO SHL AX,1 ;AX times 2
000B 8B D8 MOV BX, AX

000D C1 EO 03 SHL AX,3 ;AX times 16
0010 03 C3 ADD AX, BX ;18 times AX

;Multiply AX by 5 (101)

0012 8B D8 MOV BX, AX

0014 D1 EO SHL AX, 1 ;AX times 2
0016 D1 EO SHL AX,1 ;AX times 4

0018 03 C3 ADD AX,BX ;5 times AX

172

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

Double-precision Shifts (80386—Pentium Pro Only). The 80386 and above contain two double-
precision shifts SHLD (shift left) and SHRD (shift right). Each instruction contains three
operands instead of the two found with the other shift instructions. Both instructions function
with two 16- or 32-bit registers or with one 16- or 32-bit memory location and a register.

The SHRD AX,BX,12 instruction is an example of the double-precision shift right instruc-
tion. This instruction logically shifts AX right by 12-bit positions. The rightmost 12-bits of BX
shift into the leftmost 12-bits of AX. The contents of BX remain unchanged by this instruction.
The shift count can be an immediate count, as in this example, or can be found in register CL, as
with other shift instructions.

The SHLD EBX,ECX, 16 instruction shifts EBX left. The leftmost 16-bits of ECX fill the
rightmost 16-bits of EBX after the shift. As before, the contents of ECX, the second operand, re-
main unchanged. This instruction as well as SHRD affect the flag bits.

Rotate

Rotate instructions position binary data by rotating the information in a register or memory lo-
cation either from one end to another or through the carry flag. They are often used to shift or po-
sition numbers that are wider than 16-bits in the 8086-80286 microprocessors or wider than
32-bits in the 80386 through the Pentium Pro. The four available rotate instructions appear in
Figure 5-10.

Numbers rotate through a register or a memory location and the C-flag (carry) or through
aregister or memory location only. With either type of rotate instruction, the programmer can se-
lect either a left or a right rotate. Addressing modes used with rotate are the same as used with
the shifts. A rotate count can be immediate or located in register CL. Table 5-21 lists some of the
possible rotate instructions. If CL is used for a rotate count, it does not change. As with shifts, the
count in CL is a modulo-32 count.

Rotate instructions are often used to shift wide numbers to the left or right. The program
listed in Example 5-33 shifts the 48-bit number in registers DX, BX, and AX left one binary
place. Notice that the least-significant 16-bits (AX) are shifted left first. This moves the leftmost
bit of AX into the carry flag bit. Next, the rotate BX instruction rotates carry into BX and its left-
most bit moves into carry. The last instruction rotates carry into DX, completing the shift.

FIGURE 5-10 The rotate Target register or memory

instructions showing the di- C

rection and operation of each RCL
rotate

ROL D

RCR l—» D—’

ROR D

5-6 STRING COMPARISONS 173

TABLE 5-21 Rotate instructions

Assembly Language Operation
ROL SI,14 Sl rotates left 14 places
RCL BL,6 BL rotates left through carry 6 places
ROL ECX,18 ECX rotates left 18 places
RCR AH,CL AH rotates right through carry the number of places specified by CL
ROR WORD PTR[BP],2 The word contents of the stack segment memory location addressed
by BP rotate right 2 places

EXAMPLE 5-33

0000 D1 EO SHL AX,1
0002 D1 D3 : RCL BX,1
0004 D1 D2 RCL DX,1

Bit Scan Instructions

Although the bit scan instructions don’t shift or rotate numbers, they do scan through a number
searching for a 1 bit. Because this is accomplished within the microprocessor by shifting the
number, bit scan instructions are included in this section of the text.

The bit scan instructions BSF (bit scan forward) and BSR (bit scan reverse) are avail-
able only in the 80386—Pentium Pro processors. Both forms scan through a number searching for
the first 1-bit encountered. The BSF instruction scans the number from the rightmost bit toward
the left, and BSR scans the number from the leftmost bit toward the right. If a 1-bit is encoun-
tered by either bit scan instruction, the zero flag is set and the bit position of the 1-bit is placed
into the destination operand. If no 1-bit is encountered (i.e., the number contains all zeros), the
zero flag is cleared. This means that the result is not-zero if no 1-bit is encountered.

For example, if EAX = 60000000H and the BSF EBX,EAX instruction executes, the
number is scanned from the rightmost bit toward the left. The first 1-bit encountered is at bit po-
sition 29, which is placed into EBX, and the zero flag bit is set. If the same value for EAX is used
for the BSR instruction, the EBX register is loaded with a 30 and the zero flag bit is set.

STRING COMPARISONS

As illustrated in Chapter 4, the string instructions are very powerful because they allow the pro-
grammer to manipulate large blocks of data with relative ease. Block data manipulation occurs
with the string instructions MOVS, LODS, STOS, INS, and OUTS.

In this section, additional string instructions are discussed that allow a section of memory
to be tested against a constant or against another section of memory. To accomplish these tasks,
use the SCAS (string scan) or CMPS (string compare) instructions.

SCAS

The string scan instruction (SCAS) compares the AL register with a byte block of memory, the
AX register with a word block of memory, or the EAX register (80386—Pentium Pro) with a dou-
bleword block of memory. The SCAS instruction subtracts memory from AL, AX, or EAX
without affecting either the register or the memory location. The opcode used for byte comparison

174

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

is SCASB: the opcode used for the word comparison is SCASW; and the opcode used for a dou-
bleword comparison is SCASD. In all cases, the contents of the extra segment memory location
addressed by DI is compared with AL, AX, or EAX. Recall that this default segment (ES) cannot
be changed with a segment override prefix.

Like the other string instructions, SCAS instructions use the direction flag (D) to select ei-
ther auto-increment or auto-decrement operation for DI. They also repeat if prefixed by a condi-
tional repeat prefix.

Suppose that a section of memory is 100 bytes long and begins at location BLOCK. This
section of memory must be tested to see if any location contains a 00H. The program in Example
5-34 shows how to search this part of memory for a 00H using the SCASB instruction. In this
example, the SCASB instruction is prefixed with an REPNE (repeat while not equal) prefix.
The REPNE prefix causes the SCASB instruction to repeat until either the CX register reaches 0,
or until an equal condition exists as the outcome of the SCASB instruction’s comparison. An-
other conditional repeat prefix is REPE (repeat while equal). With either repeat prefix, the con-
tents of CX decrements without affecting the flag bits. The SCASB instruction and the
comparison it makes change the flags.

EXAMPLE 5-34

0000 BF 0011 R MOV DI,OFFSET BLOCK ;address data
0003 FC CLD ;jauto-increment
0004 B2 0064 MOV CX,100 ;load counter
0007 32 CO XOR AL, AL ;clear AL

0009 F2/AE REPNE SCASB ;search

Suppose you must develop a program that skips ASCII-coded spaces in a memory array.
This task appears in the procedure listed in Example 5-35. This procedure assumes that the DI
register already addresses the ASCII-coded character string, and that the length of the string is
256 bytes or less. Because this program is to skip spaces (20H), the REPE (repeat while equal)
prefix is used with a SCASB instruction. The SCASB instruction repeats the comparison,
searching for a 20H, as long as an equal condition exists.

EXAMPLE 5-35

0000 SKIP PROC FAR

0000 FC CLD ;auto-increment
0001 B9 0100 MOV CX, 256 ;counter

0004 BO 20 MOV AL, 20H ;get space

0006 F3/AE REPE SCASB ;search

0008 CB RET

0009 SKIP ENDP

The compare strings instruction (CMPS) always compares two sections of memory data as bytes
(CMPSB), words (CMPSW), or doublewords (CMPSD). Note that only the 80386/80486/Pen-
tium/Pentium Pro can use doublewords. The contents of the data segment memory location ad-
dressed by SI is compared with the contents of the extra segment memory location addressed by
DI. The CMPS instruction increments or decrements both SI and DI. The CMPS instruction is
normally uscd with either the REPE or REPNL prefix. Alternates to these prefixes are REPZ (re-
peat while zero) and REPNZ (repeat while not zero), but usually the REPE or REPNE prefixes
are used in programming.

Example 5-36 illustrates a short procedure that compares two sections of memory
searching for a match. The CMPSB instruction is prefixed with a REPE. This causes the search

5-7 SUMMARY

to continue as long as an equal condition exists. When the CX register becomes 0, or an unequal
condition exists, the CMPSB instruction stops execution. After the CMPSB instruction ends. the
CX register is zero or the flags indicate an equal condition when the two strings match. If CX is

not zero or the flags indicate a not-equal condition, the strings do not match.

EXAMPLE 5-36

0000 MATCH PRCC FAR

0000 BE 0075 R MOV SI,OFFSZT LINE ;address LINE
0003 BF 007F R MOV DI,OFFZSZT TABLE ;address TABLE
0006 FC CLD ;auto-increment
0007 B9 000A MOV CX,10 ;counter

000A F3/A6 REPE CMPSB ;search

000C CB RET

000D MATCH ENDP

. Addition (ADD) can be 8-, 16-, or 32-bit. The ADD instruction allows any addressing mode

except segment register addressing. Most flags (C. A, S, Z, P, and O) change when the ADD
instruction executes. A different type of addition. add-with-carry (ADC), adds two operands
and the contents of the carry flag bit (C). The 80486 through the Pentium Pro processors
have an additional instruction (XADD) that combines an addition with an exchange.

. The increment instruction (INC) adds 1 to a byte, word, or doubleword contents of a register

or memory location. The INC instruction affects the same flag bits as ADD, except the carry
flag. The BYTE PTR, WORD PTR, and DWORD PTR directives appear with the INC in-
struction when the contents of a memory location are addressed by a pointer.

. Subtraction (SUB) is a byte, word, or doubleword and is performed on a register or a

memory location. The only form of addressing not allowed by the SUB instruction is seg-
ment register addressing. The subtraction instruction affects the same flags as ADD, and
subtracts carry if the SBB form is used.

. The decrement (DEC) instruction subtracts 1 from the contents of a register or memory lo-

cation. The only addressing modes not allowed with DEC are immediate or segment register
addressing. The DEC instruction does not affect the carry flag and is often used with BYTE
PTR, WORD PTR, or DWORD PTR.

. The comparison (CMP) instruction is a special form of subtraction that does not store the

difference; instead, the flags change to reflect the difference. Comparison is used to compare
an entire byte or word located in any register (except segment) or memory location. An ad-
ditional comparison instruction (CMPXCHG), which is a combination of compare and ex-
change instructions is found in the 80486-Pentium Pro processors. In the Pentium and
Pentium Pro processors, the CMPXCHGSB instruction compares and exchanges quadword
data.

. Multiplication is byte, word, or doubleword and can be signed (IMUL) or unsigned (MUL).

The 8-bit multiplication always multiplies register AL by an operand with the product found
in AX. The 16-bit multiplication always multiplies register AX by an operand with the
product found in DX-AX. The 32-bit multiplication always multiplies register EAX by an
operand with the product found in EDX-EAX. A special IMUL immediate instruction exists
on the 80186-Pentium Pro processors that contains three operands. For example, the IMUL
BX,CX,3 instruction multiplies CX by 3 and leaves the product in BX.

176

EXAMPLE 5-37

0000
0000
0000

42 55 47

0017 B8 B80O
001A 8E CO

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

7.

10.

11.

12.

13.

14.

15.

16.

17.

Division is byte, word, or doubleword and can be signed (IDIV) or unsigned (DIV). For an
8-bit division, the AX register divides by the operand, after which the quotient appears in
AL and the remainder in AH. In the 16-bit division, the DX-AX register divides by the
operand, after which the AX register contains the quotient and DX the remainder. In the 32-
bit division, the EDX-EAX register is divided by the operand, after which the EAX register
contains the quotient and the EDX register the remainder. Note that the remainder after a
signed division always assumes the sign of the dividend.

BCD data add or subtract in packed form by adjusting the result of the addition with DAA or
the subtraction with DAS. ASCII data are added, subtracted, multiplied, or divided when the
operations are adjusted with AAA, AAS, AAM, and AAD.

. The AAM instruction has an interesting added feature that allows it to convert a binary

number into unpacked BCD. This instruction converts a binary number between 00H-63H
into unpacked BCD in AX. The AAM instruction divides AX by 10, and leaves the re-
mainder in AL and the quotient in AH.

The AND, OR, and Exclusive-OR instructions perform logic functions on a byte, word, or
doubleword stored in a register or memory location. All flags change with these instructions,
with carry (C) and overflow (O) cleared.

The TEST instruction performs the AND operation, but the logical product is lost. This in-
struction changes the flag bits to indicate the outcome of the test.

The NOT and NEG instructions perform logical inversion and arithmetic inversion. The
NOT instruction one’s complements an operand, and the NEG instruction two’s comple-
ments an operand.

There are eight different shift and rotate instructions. Each of these instructions shifts or ro-
tates a byte, word, or doubleword register or memory data. These instructions have two
operands: the first is the location of the data shifted or rotated, and the second is an imme-
diate shift or rotate count or CL. If the second operand is CL, the CL register holds the shift
or rotate count. In the 80386 through the Pentium Pro processors two additional double-pre-
cision shifts (SHRD and SHLD) exist.

The scan string (SCAS) instruction compares AL, AX, or EAX with the contents of the extra
segment memory location addressed by DI.

The string compare (CMPS) instruction compares the byte, word, or doubleword contents of
two sections of memory. One section in addressed by DI, in the extra segment, and the other
by SI, in the data segment.

The SCAS and CMPS instructions repeat with the REPE or REPNE prefixes. The REPE
prefix repeats the string instruction while an equal condition exists, and the REPNE prefix
repeats the string instruction while a not-equal condition exists.

Example 5-37 illustrates a program that uses some of the instructions in this chapter to
search the video display (beginning at address B800:000) to find if it contains the word
BUG. If the word BUG is found, the program displays a Y. If BUG is not found, it displays
an N. Notice how the CMPSB instruction is used to search for BUG.

;program that tests the video display for the word BUG

;if BUG appears anywhere on the display,

;displayed

ayY is

;1f BUG does not appear, the program displays N

.MODEL SMALL

.DATA
DATAl DB

.CODE

.STARTUP

MOV AX,0B800H

MOV ES,AX

'BUG’

;select SMALL model
;start of DAT .4 segment
;define BUG

;start of CODE segment
;start of program

;address segment B800 with ES

5-8 QUESTIONS AND PROBLEMS

177

001C B9 07DO MOV CX,25*80 ;set count
001F FC CLD ;select increment
0020 BF 0000 MOV DI,O0 ;address display
0023 Ll:
0023 BE 0000 R MOV SI,0OFFSET DATALl ;address BUG
0026 57 PUSH DI ;save display address
0027 A6 CMPSB ;test for B
0028 75 0A JNE L2 ;if display is not B
002a 47 INC DI ;address next position
002B A6 CMPSB ;test for U
002C 75 06 JNE L2 ;if display is not U
002E 47 INC DI ;address next position
002F A6 CMPSB ;test for G
0030 B2 59 MOV DL, 'Y’ ;load Y for possible BUG
0032 74 09 JE L3 ;1f BUG is found
0034 L2:
0034 5F POP DI ;restore display address
0035 83 C7 02 ADD DI,2 ;point to next position
0038 E2 E9 LOOP L1 jrepeat for whole screen
003A 57 PUSH DI ;save display address
003B B2 4E MOV DL, 'N’ ;indicate N if no BUG
003D L3:
003D SF POP DI ;clear stack
003E B4 02 MOV AH, 2 ;display DL function
0040 CD 21 INT 21H ;display ASCII from DL
.EXIT ;jexit to DOS
END ;end of file
-8 QUESTIONS AND PROBLEMS

1. Select an ADD instruction that will:

(a) add BX to AX
(b) add 12H to AL
(c) add EDI and EBP
(d) add 22H to CX

(e) add the data addressed by SIto AL

(f) add CX to the data stored at memory location FROG
2. What is wrong with the ADD ECX,AX instruction?

w

. Is it possible to add CX to DS with the ADD instruction?

4. If AX = 1001H and DX = 20FFH, list the sum and the contents of each flag register bit (C,
A, S, Z, and O) after the ADD AX,DX instruction executes.
5. Develop a short sequence of instructions that add AL, BL, CL, DL, and AH. Save the sum in

the DH register.

6. Develop a short sequence of instructions that add AX, BX, CX, DX, and SP. Save the sum

in the DI register.

7. Develop a short sequence of instructions that add ECX, EDX, and ESI. Save the sum in the

EDI register.

8. Select an instruction that adds BX to DX and that also adds the contents of the carry flag (C)

to the result.

9. Choose an instruction that adds a 1 to the contents of the SP register.
10. What is wrong with the INC [BX] instruction?

11. Select a SUB instruction that will:

(a) subtract BX from CX
(b) subtract OEEH from DH
(c) subtract DI from SI

178

CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS

12.

13.

14.
15.
16.
17.
18.

19.
20.
21.
22.

23.
24.
25.
26.
217.
28.
29.

30.
31.
32.
33.

34.

35.

36.

37.

(d) subtract 3322H from EBP

(e) subtract the data address by SI from CH

(f) subtract the data stored 10 words after the location addressed by SI from DX

(g) subtract AL from memory location FROG

If DL = OF3H and BH = 72H, list the difference after BH subtracts from DL and show the

contents of the flag register bits.

Write a short sequence of instructions that subtract the numbers in DI, SI, and BP from the

AX register. Store the difference in register BX.

Choose an instruction that subtracts 1 from register EBX.

Explain what the SBB [DI - 4],DX instruction accomplishes.

Explain the difference between the SUB and CMP instructions.

When two 8-bit numbers are multiplied, where is the product found?

When two 16-bit numbers are multiplied, what two registers hold the product? Show which

register contains the most- and least-significant portions of the product.

When two numbers multiply, what happens to the O and C flag bits?

Where is the product stored for the MUL EDI instruction?

What is the difference between the IMUL and MUL instructions?

Write a sequence of instructions that cube the 8-bit number found in DL. Load DL with a 5

initially and make sure that your result is a 16-bit number.

Describe the operation of the IMUL BX,DX,100H instruction.

When 8-bit numbers are divided, in which register is the dividend found?

When 16-bit numbers are divided, in which register is the quotient found?

What type of errors are detected during a division?

Explain the difference between the IDIV and DIV instructions.

Where is the remainder found after an 8-bit division?

Write a short sequence of instructions that divide the number in BL by the number in CL

and then multiply the result by 2. The final answer must be a 16-bit number stored in the

DX register.

Which instructions are used with BCD arithmetic operations?

Which instructions are used with ASCII arithmetic operations?

Explain how the AAM instruction converts from binary to BCD.

Develop a sequence of instructions that convert the unsigned number in AX (values of

0-65535) into a 5-digit BCD number stored in memory beginning at the location addressed

by the BX register in the data segment. Note that the most-significant character is stored first

and no attempt is made to blank leading zeros.

Develop a sequence of instructions that adds the 8-digit BCD number in AX and BX to the

8-digit BCD number in CX and DX. (AX and CX are the most-significant registers. The re-

sult must be found in CX and DX after the addition.)

Select an AND instruction that will:

(a) AND BX with DX and save the result in BX

(b) AND OEAH with DH

(c) AND DI with BP and save the result in DI

(d) AND 1122H with EAX

(e) AND the data addressed by BP with CX and save the result in memory

(f) AND the data stored in four words before the location addressed by SI with DX and save
the result in DX

(g) AND AL with memory location WHAT and save the result at location WAT

Develop a short sequence of instructions that clear (0) the three leftmost bits of DH without

changing the remainder DH and store the result in BH.

Select an OR instruction that will:

(a) OR BL with AH and save the result in AH

(b) OR 88H with ECX

5-8

38.

39.

40.

41.

42.
43.
44.

45.
46.
47.
48.
49.
50.
51.

52.

QUESTIONS AND PROBLEMS 179

(c) OR DX with SI and save the result in SI

(d) OR 1122H with BP

(e) OR the data addressed by BX with CX and save the result in memory

(f) OR the data stored 40 bytes after the location addressed by BP with AL and save the
result in AL

(g) OR AH with memory location WHEN and save the result in WHEN

Develop a short sequence of instructions that set (1) the rightmost 5-bits of DI without

changing the remaining bits of DI. Save the result in SI.

Select the XOR instruction that will:

(a) XOR BH with AH and save the result in AH

(b) XOR 99H with CL

(¢) XOR DX with DI and save the result in DX

(d) XOR 1A23H with ESP

(e) XOR the data addressed by EBX with DX and save the result in memory

(f) XOR the data stored 30 words after the location addressed by BP with DI and save the
result in DI

(g) XOR DI with memory location WELL and save the result in DI

Develop a sequence of instructions that set (1) the rightmost four bits of AX, clear (0) the

leftmost three bits of AX, and invert bits 7, 8, and 9 of AX.

Describe the difference between the AND and TEST instructions.

Select an instructjon that tests bit position 2 of register CH.

What is the difference between the NOT and NEG instructions?

Select the correct instruction to perform each of the following tasks:

(a) shift DI right three places with zeros moved into the leftmost bit

(b) move all bits in AL left one place, making sure that a 0 moves into the rightmost bit
position

(c) rotate all the bits of AL left three places

(d) rotate carry right one place through EDX

(e) move the DH register right one place, making sure that the sign of the result is the same
as the sign of the original number

What does the SCASB instruction accomplish?

For string instructions, DI always addresses datainthe _______ segment.

What is the purpose of the D flag bit?

Explain what the REPE prefix does when coupled with the SCASB instruction.

What condition or conditions will terminate the repeated string instruction REPNE SCASB?

Describe what the CMPSB instruction accomplishes. -

Develop a sequence of instructions that scan through a 300H byte section of memory called

LIST located in the data segment searching for a 66H.

What happens if AH = 02H and DL = 43H when the INT 21H instruction is executed?

CHAPTER 6
Program Control Instructions

INTRODUCTION

The program control instructions direct the flow of a program and allow the flow to change.
A change in flow often occurs after a decision, made with the CMP or TEST instruction, is
followed by a conditional jump instruction. This chapter explains the program control instruc-
tions including the jumps, calls, returns, interrupts, and machine control instructions.

Also presented in this chapter are the relational assembly language statements (.IF,
.ELSE, .ELSEIF, .ENDIF, .WHILE, .ENDW, .REPEAT, and .UNTIL) that are available in
version 6.0 and above of MASM. These relational assembly language commands allow the
programmer to develop control flow portions of the program with C/C++ language efficiency.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Use both conditional and unconditional jump instructions to control the flow of a program.
Use the relational assembly language statements .IF, . REPEAT, .WHILE, and so forth in
programs.

Use the call and return instructions to include procedures in the program structure.

Explain the operation of the interrupts and interrupt control instructions.

Use machine control instructions to modify the flag bits.

Use ENTER and LEAVE to enter and leave programming structures.

N —

AW

180

THE JUMP GROUP

The main program control instruction, jump (JMP), allows the programmer to skip sections of a
program and branch to any part of the memory for the next instruction. A conditional jump in-
struction allows the programmer to make decisions based upon numerical tests. The results of
these numerical tests are held in the flag bits, which are then tested by conditional jump instruc-
tions. Another instruction similar to the conditional jump, the conditional set, is explained with
the conditional jump instructions in this section.

6-1 THE JUMP GROUP 181

In this section of the text, all jump instructions are illustrated with their uses in sample pro-
grams. Also revisited are the LOOP and conditional LOOP instructions, first presented in
Chapter 3, because they are also forms of the jump instruction.

Unconditional Jump (JMP)

Three types of unconditional jump instructions (refer to Figure 6-1) are available to the micro-
processor: short jump, near jump, and far jump. The short jump is a 2-byte instruction that allows
jumps or branches to memory locations within +127 and —128 bytes from the address following
the jump. The 3-byte near jump allows a branch or jump within 32K bytes (or anywhere in the
current code segment) from the instruction in the current code segment. Remember, the seg-
ments are cyclical, which means that one location above offset address FFFFH is offset address
000O0H. For this reason, if you jump two bytes ahead in memory and the instruction pointer ad-
dresses offset address FFFFH, the flow continues at offset address 0001H. Thus, a displacement
of +32K bytes allows a jump to any location within the current code segment. Finally, the 5-byte
far jump allows a jump to any memory location within the entire real memory system. The short
and near jumps are often called intrasegment jumps, and the far jumps are often called interseg-
ment jumps. '

In the 80386 through the Pentium Pro processors, the near jump is within +2G if the ma-
chine is operated in the protected mode with a code segment of 4G bytes in length, and +32K
bytes if operated in the real mode. In the protected mode, the 80386 and above use a 32-bit dis-
placement that is not shown in Figure 6-1. The 80386 through the Pentium Pro allow a far jump
to any location within the 4G byte address range of these microprocessors.

Short Jump. Short jumps are called relative jumps because they can be moved, along with their
related software, to any location in current code segment without a change. This is because the
jump address is not stored with the opcode. Instead of a jump address, a distance or displace-
ment follows the opcode. The short jump displacement is a distance represented by a 1-byte
signed number whose value ranges between +127 and —128. The short jump instruction appears
in Figure 6—2. When the microprocessor executes a short jump, the displacement is sign-
extended and added to the instruction pointer (IP/EIP) to generate the jump address within the
current code segment. The short jump instruction branches to this new address for the next in-
struction in the program:

Example 61 shows how short jump instructions pass control from one part of the program
to another. It also illustrates the use of a label (symbolic name for a memory address) with the

FIGURE 6-1 The three Opcode

main forms of the JMP in-

struction. Note that Disp is (a) EB Disp
either an 8- or 16-bit signed

displacement or distance.

Opcode
Disp Disp
() ES Low High
Opcode
P 1P CS CS
© EA Low High Low High

182

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

FIGURE 6-2 A short jump Memory
to four memory locations ——
beyond the address of the
next instruction 1000A
10009
10008
10007
10006 | (Jump to here)
10005
10004
o
10002 New IP = |P + 4
10001 04 New IP = 0006H
10000 JMP
_\/\J

jump instruction. Notice how one jump (JMP SHORT NEXT) uses the SHORT directive to
force a short jump, while the other does not. Most assembler programs choose the best form of
the jump instruction, so the second jump instruction (JMP START) also assembles as a short
jump. If the address of the next instruction (0009H) is added to the sign-extended displacement
(0017H) of the first jump, the address of NEXT is at location 0017H + 0009H or 0020H.

EXAMPLE 6-1

0000 33 DB XOR BX,BX

0002 B8 0001 START: MOV AX,1

0005 03 C3 LDD AX,BX

0007 EB 17 JMP SHORT NEXT
0020 8B D8 NEXT: MOV BX,AX

0022 EB DE JMP START

Whenever a jump instruction references an address, a label normally identifies the address.
The JMP NEXT instruction is an example; it jumps to label NEXT for the next instruction. It is
very rare ever to use an actual hexadecimal address with any jump instruction, but the assembler
supports addressing in relation to the instruction pointer by using the $ + a displacement. For ex-
ample, a JMP $+2 jumps over the next two memory locations following the JMP instruction. The
label NEXT must be followed by a colon (NEXT:) to allow an instruction to reference it for a
jump. If a colon does not follow a label, you cannot jump to it. Note that the only time a colon is
used after a label is when the label is used with a jump or call instruction.

Near Jump. The near jump is similar to the short jump except that the distance is farther. A
near jump passes control to an instruction in the current code segment located within +32K
bytes from the near jump instruction or +2G in the 80386 and above operated in protected mode.
The near jump is a 3-byte instruction that contains an opcode followed by a signed 16-bit dis-
placemc 1t. In the 80386 through the Pentium Pro processors, the displacement is 32-bits and the
near jump is 5 bytes long. The signed displacement adds to the instruction pointer (IP) to gen-
erate the jump address. Because the signed displacement is in the range of +32K, a near jump
can jump to any memory location within the current real mode code segment. The protected
mode code segment in the 80386 and above can be 4G bytes in length, so the 32-bit displacexﬁent

6-1 THE JUMP GROUP 183

FIGURE 6-3 A nearjump Memory
that adds the displacement T
(0002H) to the contents of IP
1000A
10009
10008
10007
10006
10005 | (Jump to here)
10004 CS = 1000H
R
10002 00
10001 02 Near jump
10000 JMP
.

allows a near jump to any location within +2G bytes. Figure 6--3 illustrates the operation of the
real mode near jump instruction.

The near jump is relocatable (as was the short jump) because it is also a relative jump. If
the code segment moves to a new location in the memory, the distance between the jump in-
struction and the operand address remains the same. This allows a code segment to be relocated
simply by moving it. This feature, along with the relocatable data segments, makes the Intel
family of microprocessors ideal for use in a general-purpose computer system. Software can be
written and loaded anywhere in the memory and function without modification because of the
relative jumps and relocatable data segments.

Example 6-2 shows the same basic program that appeared in Example 6-1, except that
the jump distance is greater. The first jump (JMP NEXT) passes control to the instruction at
offset memory location 0200H within the code segment. Notice that the instruction assembles
as an E9 0200 R. The letter R denotes a relocatable jump address of 0200H. The relocatable ad-
dress of 0200H is for the assembler program’s internal use only. The actual machine language
instruction assembles as an E9 F6 01, which does not appear in the assembler listing. The actual
displacement is a 01F6H for this jump instruction. The assembler lists the jump address as 0200
R, so the address is easier to interpret as software is developed. If the linked execution file
(.EXE) or command file (.COM) is displayed in hexadecimal code, the jump instruction ap-
pears as an E9 F6 01.

EXAMPLE 6~-2

0000 33 DB XOR BX,BX
0002 B8 0001 START: MOV AX,1
0005 03 C3 ADD AX,BX
0007 E9 0200 R JMP NEXT
0200 8B D8 NEXT: MOV BX,AX
0202 E9 0002 R JMP START

FarJump. A far jump instruction (see Figure 6—4) obtains a new segment and offset address to
accomplish the jump. Bytes 2 and 3 of this 5-byte instruction contain the new offset address,
and bytes 4 and 5 contain the new segment address. If the microprocessor (80286 through the
Pentium Pro) is operated in the protected mode, the segment address accesses a descriptor that

184

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

FIGURE 6-4 A far jump Memory
instruction replaces the
contents of both CS and IP — |
with four bytes following the A3129
opcode
A3128
A3127 | (Jump to here)
A3126
N/——-—"__/
10004 A3
10003 00
10002 01 Far jump
10001 27
10000 JMP
____/—A/

contains the base address of the far jump segment. The offset address, which is either 16- or 32-
bits, contains the offset location within the new code segment.

Example 6-3 lists a short program that uses a far jump instruction. The far jump instruc-
tion sometimes appears with the FAR PTR directive, as illustrated. Another way to obtain a far
jump is to define a label as a far label. A label is far only if it is external to the current code seg-
ment or procedure. The JMP UP instruction in the Example 6-3 references a far label. The label
UP is defined as a far label by the EXTRN UP:FAR directive. External labels appear in pro-
grams that contain more than one program file. Another way of defining a label as global is to
use a double colon (LABEL::) following the label in place of the single colon. This is required
inside procedure blocks that are defined as near if the label is accessed from outside the proce-
dure block.

EXAMPLE 6-3
EXTRN UP:FAR
0000 33 DB XOR BX,BX
0002 B8 0001 START: MOV AX,1
0005 03 C3 ADD AX,BX
. 0007 E9 0200 R JMP NEXT
0200 8B D8 NEXT: MOV BX,AX
0202 EA 0002 ---- R JMP FAR PTR START
0207 EA 0000 ---- E JMP UP

When the program files are joined, the linker inserts the address for the UP label into the
JMP UP instruction. It also inserts the segment address in the JMP START instruction. The seg-
ment address in JMP FAR PTR START is listed as — — — — R for relocatable; the segment address
in JMP UP is listed as — — - — E for external. In both cases, the — — — — is filled in by the linker
when it links or joins the program files.

Jumps with Register Operands. The jump instruction can also use a 16- or 32-bit register as an
operand. This automatically sets up the instruction as an indirect jump. The address of the jump
is in the register specified by the jump instruction. Unlike the displacement associated with the

6-1 THE JUMP GROUP 185
near jump, the contents of the register are transferred directly into the instruction pointer. An in-
direct jump does not add to the instruction pointer, as with short and near jumps. The JMP AX
instruction, for example, copies the contents of the AX register into the IP when the jump occurs.
This allows a jump to any location within the current code segment. In the 80386 and above, a
JMP EAX instruction also jumps to any location within the current code segment; the difference
is that in protected mode the code segment can be 4G bytes long so a 32-bit offset address is
needed.

Example 6-4 shows how the JMP AX instruction accesses a jump table in the code seg-
ment. This program reads a key from the keyboard and then modifies the ASCII code to a 00H in
AL fora ‘1’,a0lH fora ‘1’, and a 02H for a ‘3’. If a ‘1, 2, or ‘3’ is typed, AH is cleared to
0OH. Because the jump table contains 16-bit offset addresses, the contents of AX are doubled to
0,2, or 4, so a 16-bit entry in the table can be accessed. Next, the offset address of the start of the
jump table is loaded to SI, and AX is added to form the reference to the jump address. The MOV
AX,[S]] instruction then fetches an address from the jump table, so the JMP AX instruction
jumps to the addresses (ONE, TWO, or THREE) stored in the jump table.

EXAMPLE 6-4
;A program that reads 1, 2, or 3 from the keyboard
;if a 1, 2, or 3 is typed, a 1, 2, or 3 is displayed.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0030 R TABLE DW ONE ;define lookup table
0002 0034 R DW TWO
0004 0038 R DW THREE
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 TOP:
0017 B4 01 MOV AH, 1 ;read key into AL
0019 c¢D 21 INT 21H
001B 2C 31 SUB AL,31H ;convert to binary
001D 72 F8 JB TOP ;if below "1’ typed
001F 3C 02 CMP AL, 2
0021 77 F4 JA TOP ;1f above '3’ typed
0023 B4 00 MOV AH, 0 ;double to 0, 2, or 4
0025 03 CO ADD AX, AX
0027 BE 0000 R MOV SI,0FFSET TABLE ;address lookup table
002A 03 FO ADD SI,aX ;form lookup address
002C 8B 04 MOV AX, [SI] ;get ONE, TWO, or THREE
002E FF EO JMP AX ;jump address
0030 ONE:
0030 B2 31 MOV DL, ‘1" ;load 1’ for display
0032 EB 06 JMP BOT ;go display ‘1’
0034 TWO:
0034 B2 32 MOV DL,'2’ ;load "2’ for display
0036 EB 02 JMP BOT ;go display ‘2’
0038 THREE :
0038 B2 33 MOV DL, 3" ;load '3’ for display
003A BOT:
003A B4 02 MOV AH, 2 ;display number
003C ¢CD 21 INT 21H
JEXIT ;exit to DOS
END ;end of file

Indirect Jumps Using an Index. The jump instruction may also use the [] form of addressing to
directly access the jump table. The jump table can contain offset addresses for near indirect
jumps or segment and offset addresses for far indirect jumps. (This type of jump is also known
as a double-indirect jump if the register jump is called an indirect jump.) The assembler assumes

186

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

that the jump is near unless the FAR PTR directive indicates a far jump instruction. Here, Ex-
ample 6-5 repeats Example 6—4 by using the JMP TABLE [SI] instead of JMP AX. This reduces
the length of the program.

EXAMPLE 6-5
MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 002D R TABLE DW ONE ;lookup table
0002 0031 R DW TWO
0004 0035 R DW THREE
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 TOP:
0017 B4 01 MOV AH, 1 ;read key to AL
0019 CD 21 INT 21H
001B 2C 31 SUB AL, 31H ;test for below "1’
001D 72 F8 JB TOP ;if below 1’
001F 3C 02 CMP AL, 2
0021 77 F4 JA TOP ;if above ‘3’
0023 B4 00 MOV AH, 0 ;calculate table address
0025 03 coO ADD AX,AX
0027 03 FO ADD SI,AX
0029 FF A4 0000 R JMP TABLE [SI] ;jump to ONE, TWO, or THREE
002D ONE:
002D B2 31 MOV DL,'1" ;load DL with '1°
002F EB 06 JMP BOT
0031 TWO:
0031 B2 32 MOV DL, 2" ;load DL with 2"
0033 EB 02 JMP BOT
0035 THREE:
0035 B2 33 MOV DL, '3 ;load DL with 3
0037 BOT:
0037 B4 02 MOV AH, 2 ;display ONE, TWO, or THREE
0039 <D 21 INT 21H
.EXIT ;exit to DOS
END ;end of file

The mechanism used to access the jump table is identical with a normal memory reference.
The JMP TABLE [SI] instruction points to a jump address stored at the code segment offset lo-
cation addressed by SI. It jumps to the address stored in the memory at this location. Both the
register and indirect indexed jump instructions usually address a 16-bit offset. This means that
both types of jumps are near jumps. If a JMP FAR PTR [SI] or JMP TABLE [SI], with TABLE
data defined with the DD directive, appear in a program, the microprocessor assumes that the
jump table contains doubleword, 32-bit addresses (IP and CS).

Conditional Jumps and Conditional Sets

Conditional jump instructions are always short jumps in the 8086 through the 80286 micro-
processors. This limits the range of the jump to within +127 bytes and —128 bytes from the loca-
tion following the conditional jump. In the 80386 and above, conditional jumps are either short
or near jumps. This allows these microprocessors to use a conditional jump to any location
within the current code segment. Table 61 lists all the conditional jump instructions with their
test conditions. Note that the Microsoft MASM version 6.X assembler automatically adjusts
conditional jumps if the distance is too great.

The conditional jump instructions test the following flag bits: sign (S), zero (Z), carry (C),
parity (P), and overflow (O). If the condition under test is true, a branch to the label associated
with the jump instruction occurs. If the condition is false, the next sequential step in the program
executes. For example, a JC will jump if the carry bit is set.

6-1 THE JUMP GROUP

TABLE 6-1 Conditional jump instructions

187

Assembly Language Condition Tested Operation
JA Z=0andC=0 Jump if above
JAE C=0 Jump if above or equal
JB C=1 Jump if below
JBE Z=1orC=1 Jump if below or equal
JC C=1 Jump if carry set
JEordz Z=1 Jump if equal or jump if zero
JG Z=0andS=0 Jump if greater than
JGE S=0 Jump if greater than or equal
JL S<0 Jump if less than
JLE Z=10rS<>0 Jump if less than or equal
JNC C=0 Jump if no carry
JNE or JNZ Z=0 Jump if not equal or jump if not zero
JNO 0=0 Jump if no overflow
JNS S=0 Jump if no sign
JNP or JPO P=0 Jump if no parity or jump if parity odd
JO O=1 Jump if overflow set
JP or JPE P=1 Jump if parity set or jump if parity even
JS S=1 Jump if sign is set
JCXZ CX=0 Jump if CX is zero
JECXZ ECX=0 Jump if ECX is zero

The operation of most conditional jump instructions is straightforward because they often
test just one flag bit, although some test more than one. Relative magnitude comparisons require
more complicated conditional jump instructions that test more than one flag bit.

Because both signed and unsigned numbers are used in programming, and because the
order of these numbers is different, there are two sets of conditional jump instructions for mag-
nitude comparisons. Figure 65 shows the order of both signed and unsigned 8-bit numbers. The
16- and 32-bit numbers follow the same order as the 8-bit numbers except that they are larger.
Notice that an FFH (255) is above the O0H in the set of unsigned numbers, but an FFH (-1) is
less than O0H for signed numbers. Therefore, an unsigned FFH is above O0H, but a signed FFH

is less than OOH.

FIGURE 6-5 Signed and
unsigned numbers follow

different orders.

Unsigned numbers

255 FFH

254 FEH
_

132 84H

131 83H

130 82H

129 81H

128 80H
—]

4 04H

3 03H

2 02H

1 01H

0 00H

Signed numbers

+127 7FH
+126 7EH
f/
e
+2 02H
+1 01H
+0 Q0H
-1 FFH
-2 FEH
_’.\4
—-124 84H
-125 83H
-126 82H
-127 81H
-128 80H

188

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

When signed numbers are compared, use the JG, JL, JGE, JLE, JE, and JNE instructions.
The terms greater than and less than refer to signed numbers. When unsigned numbers are com-
pared, use the JA, JB, JAE, JBE, JE, and JNE instructions. The terms above and below refer to
unsigned numbers.

The remaining conditional jumps test individual flag bits such as overflow and parity. No-
tice that JE has an alternative opcode JZ. All instructions have alternates, but many aren’t used in
programming because they don’t usually fit the condition under test. (The alternates appear in
Appendix B with the instruction set listing.) For example, the JA (jump if above) instruction has
the alternative JNBE (jump if not below or equal). A JA functions exactly as a JNBE, but INBE
is awkward in many cases when compared to JA.

The conditional jump instructions all test flag bits, except for JCXZ (jump if CX = 0) and
JECXZ (jump if ECX = 0). Instead of testing flag bits, JCXZ directly tests the contents of the CX
register without affecting the flag bits, and JECXZ tests the contents of the ECX register. For the
JCXZ instruction, if CX = 0, a jump occurs; if CX <> 0, no jump occurs. Likewise for the
JECXZ instruction, if ECX = 0, a jump occurs; if CX <> 0, no jump occurs.

A program that uses JCXZ appears in Example 6-6. Here the SCASB instruction searches
a table for a OAH. Following the search, a JCXZ instruction tests CX to see if the count has
reached zero. If the count is zero, the OAH is not found in the table. The carry flag is used in this
example to pass the not found condition back to the calling program. Another method used to
test to see if the data are found is the JNE instruction. If JNE replaces JCXZ, it performs the
same function. After the SCASB instruction executes, the flags indicate a not-equal condition if
the data were not found in the table.

EXAMPLE 6-6
;A procedure that searches a table of 100 bytes for 0AH
;The address, TABLE, is transferred to the procedure
;through the SI register.

0017 SCAN PROC NEAR

0017 B9 0064 MOV CX,100 ;load count of 100

001Aa BO 0A MOV AL, OAH ;load AL with 0AH

001C FC CLD ;select increment

001D F2/AE REPNE SCASB ;test 100 bytes for 0AH

001F F9 STC ;set carry for not found

0020 E3 01 JCXZ NOT_FOUND ;1f not found

0022 F8 CLC jclear carry if found

0023 NOT_FOUND:

0023 C3 RET ;return from procedure

0024 SCAN ENDP

The Conditional Set Instructions. In addition to the conditional jump instructions, the 80386
through the Pentium Pro processors also contain conditional set instructions. The conditions
tested by conditional jumps are put to work with the conditional set instructions. The conditional
set instructions set a byte to either a 01H or clear a byte to 00H, depending on the outcome of the
condition under test. Table 6-2 lists the available forms of the conditional set instructions.

These instructions are useful where a condition must be tested at a point much later in the
program. For example, a byte can be set to indicate that the carry is cicared at some point in the
program by using the SETNC MEM instruction. This instruction places a 01H into memory lo-
cation MEM if carry is cleared, and a 00H into MEM if carry is set. The contents of MEM can be
tested at a later point in the program to determine if carry is cleared at the point where the
SETNC MEM instruction executed.

6-1 THE JUMP GROUP

TABLE 6-2 The conditional set instructions

189

Assembly Language Condition Tested Operation
SETB C=1 Set if below
SETAE C=0 Set if above or equal
SETBE Z=1orC=1 Set if below or equal
SETA Z=0andC=0 Set if above
SETE or SETZ Z=1 Set if equal or set if zero
SETNE or SETNZ Z=0 Set if not equal or set if not zero
SETL S<>0 Set if less than
SETLE Z=10orS<>0 Set if less than or equal
SETG Z=0andS=0 Set if greater than
SETGE - S=0 Set if greater than or equal
SETS S=1 Set if sign (negative)
SETNS S=0 Set if no sign (positive)
SETC C=1 Set if carry
SETNC C=0 Set if no carry
SETO O=1 Set if overflow
SETNO 0=0 Set if no overflow
SETP or SETPE P=1 Set if parity or set if parity even
SETNP or SETPO P=0 Set if no parity or set if parity odd
LOOP

The LOOP instruction is a combination of a decrement CX and the JNZ conditional jump. In the
8086 through the 80286, LOOP decrements CX and if CX <> 0, it jumps to the address indicated
by the label. If CX becomes a 0, the next sequential instruction executes. In the 80386 and above,
LOOP decrements either CX or ECX, depending upon the instruction mode. If the 80386 and
above operate in the 16-bit instruction mode, LOOP uses CX; if operated in the 32-bit instruction
mode, LOOP uses ECX. This default is changed by the LOOPW (using CX) and LOOPD (using
ECX) instructions in the 80386 through the Pentium Pro.

Example 6-7 shows how data in one block of memory (BLOCK1) add to data in a second
block of memory (BLOCK?2) using LOOP to control how many numbers add. The LODSW and
STOSW instructions access the data in BLOCK1 and BLOCK?2. The ADD AX,ES:[DI] instruc-
tion accesses the data in BLOCK? located in the extra segment. The only reason that BLOCK2
is in the extra segment is that DI addresses extra segment data for the STOSW instruction. The
STARTUP directive only loads DS with the address of the data segment. In this example,
the extra segment also addresses data in the data segment, so the contents of DS are copied to
ES through the accumulator. Unfortunately, there is no direct move from segment-register-to-
segment-register instruction.

EXAMPLE 6-7
;A program that sums the contents of BLOCKl and BLOCK2
;and stores the results over top of the data in BLOCK2.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0064 [BLOCK1 DW 100 DUP (?) ;100 bytes for BLOCK1
0000
1
00Cc8 0064 [BLOCK2 DW 100 DUP (2) ;100 bytes for BLOCK2

0000
]

CHAPTER 6 PROGRAM CONTRCL INSTRUCTIONS

;start of CODE segment
;start of program

251% 8C DS ;overlap DS and ES
00i% RBE CC
00iB FC c.> ;select increment
001C B9 0064 MOV CX,100 iload count of 100
001lF BE 0000 R MOV SI,OFFSET BLOCK1 ;address BLOCK1
0022 BF 00C8 R MOV DI,OFFSET BLOCK2 ;address BLOCK2
0025 Ll:
0025 AD LODSW ;load AX with BLOCK1
0026 26:03 05 ADD AX,ES: [DI] ;add BLOCK2 data to AX
0029 AB STOSW ;store sum in BLOCK2
0022 E2 F9 LOOP Ll ;repeat 100 times
CEXIT ;exit to DOS
END ;end of file

Conditional LOOPs. As with REP, the LOOP instruction also has conditional forms: LOOPE
and LOOPNE. The LOOPE (loop while equal) instruction jumps if CX <> 0 while an equal con-
dition exists. It will exit the loop if the condition is not equal or if the CX register decrements to
0. The LOOPNE (loop while not equal) instruction jumps if CX <> 0 while a not-equal condi-
tion exists. It will exit the loop if the condition is equal or if the CX register decrements to 0. In
the 80386 through the Pentium Pro processors the conditional LOOP instruction can use either
CX or ECX as the counter. The LOOPEW/LOOPED or LOOPNEW/LOOPNED instructions
override the instruction mode if needed.

As with the conditional repeat instructions, alternates exist for LOOPE and LOOPNE. The
LOORPE instruction is the same as LOOPZ, and the LOOPNE is the same as LOOPNZ. In most
programs, only the LOOPE and LOOPNE apply.

6-2

CONTROLLING THE FLOW OF AN ASSEMBLY LANGUAGE PROGRAM

It is much easier to use the assembly language statements .IF, .ELSE, .ELSEIF, and .ENDIF to
control the flow of the program than it is io use the correct conditional jump statement. These
statements always indicate a special assembly language command to MASM. Note that the con-
trol flow assembly language statements beginning with a period are available only to MASM
version 6.X and not to earlier versions of the assembler. Other statements developed in this
chapter include the DO-WHILE and REPEAT-UNTIL loops.

Example 6-8 shows how these statements are used to control the flow of a program by
testing the system for the version of DOS. Notice that in this example DOS INT 21H, function
number 30H is used to read the DOS version. The version is tested to determine if it is above or
below version 3.3. If it is below version 3.3, the program terminates, using DOS INT 21H func-
tion number 4CH.

Example 6-8 (a) shows the source program sequence as it was typed; Example 6-8
(b) shows the fully expanded assembled output generated by the assembler program. Notice
that assembler-generated and -inserted statements begin with an asterisk (*) in the listing. The
IF AL<3 && AH<30 statement tests for DOS version 3.30. If the major version number (AL)
is less than 3 AND the minor version number (AH) is less than 30, the MOV AH,0 and INT
21H instructions execute. Notice how the && symbol represents the word AND in the iF state-
ment. Refer to Table 6-3 for a complete list of relation operators used with the .IF statement.
Note that many of these conditions (such as &&) are also used by many high-level languages
such as C/C++.

6-2 CONTROLLING THE FLOW OF AN ASSEMBLY LANGUAGE PROGRAM 191

EXAMPLE 6-8 (a)

;Source prograin sequence

i

MOV £H,30H

INT 21H ;get DOS version
IF ~1<3 && AH<30
MOV RH,4CH ;terminate program
INT 21H

.ENDIF

EXAMPLE 6-8 (b)

;assembled listing file of Example 6-8 (a)

7

0000 B4 30 MOV AH, 30H

0002 CD 21 INT 21H ;get DOS version
IF AL<3 && AH<30

0004 3C 03 * cmp al,003h

0006 73 09 * jae @C0001

0008 80 FC 1E * cmp ah,01Eh

000B 73 04 * jae @C0001

000D B4 4cC MOV AH, 4CH ;terminate program

000F CD 21 INT 21H
.ENDIF

0011 * @C0001:

Example 6-9 shows another example of the conditional .IF directive that converts all
ASCII-coded letters to uppercase. First, the keyboard is read without echo using the DOS INT
21H function 06H, and then the .IF statement converts the character into uppercase if needed.
In this example, the logical AND function (&&) is used to determine if the character is lower-
case. This program reads a key from the keyboard and converts it to uppercase before dis-
playing it. Notice also how the program terminates when the control C key (ASCII = 03H) is
typed. The .LISTALL directive causes all assembler-generated statements to be listed, in-
cluding the label @ Startup generated by the .STARTUP directive. The .EXIT directive also is
expanded by .LISTALL to show the use of the DOS INT 21H function 4CH, which returns
control to DOS.

TABLE 6-3 Relational

operators used with the .IF Operator Function
statement
== Equal or the same as
I= Not equal
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
& Bit test
! Logical inversion
&& Logical AND

Il Logical OR

192

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

EXAMPLE 6-9
;a program that reads the keyboard and converts all
; lowercase data to uppercase before displaying it.
;this program uses a control C for termination
.MODEL TINY ;select TINY model
.LISTALL ;list all statements
0000 .CODE ;start CODE segment
.STARTUP ;start program
0100 * @Startup:
0100 MAINI:
0100 B4 06 MOV AH, 6 ;read key without echo
0102 B2 FF MOV DL, OFFH
0104 CD 21 INT 21H
0106 74 F8 JE MAIN1 ;if no key typed
0108 3C 03 CMP AL, 3 ;test for control C key
010a 74 10 JE MAIN2 ;if control C key
IF AlL>='a’' && Al<='z’
010C 3C 61 * cmp al, 'a’
010E 72 06 * jb @C0001
0110 3C 7A * cmp al, 'z’
0112 77 02 * ja @C0001
0114 2C 20 SUB AL, 20H
.ENDIF
0116 * @C0001:
0116 B8A DO MOV DL, AL ;jecho character to display
0118 CD 21 INT 21H
011A EB E4 JMP MAIN1 ;repeat
0l1cC MAIN2:
LEXIT ;exit to DOS on control C
011C B4 4C * mov ah, 04ch
011E CD 21 * int 021h
END ;end of file

In this program, a lowercase letter is converted to uppercase by the use of the .IF AL >= ‘a’
&& AL <= ‘z’ statement. If AL contains a value that is greater than or equal to a lowercase a and
less than or equal to a lowercase z (a value of a-z), then the statement between the .IF and
_ENDIF executes. This statement (SUB AL,20H) subtracts 20H from the lowercase letter to
change it to an uppercase letter. Notice how the assembler program implements the .IF statement
(see lines that begin with a *). The label @C0001 is an assembler-generated label used by the
conditional jump statements placed in the program by the .IF statement.

Another example using the conditional .IF statement appears in Example 6-10. This pro-
gram reads a key from the keyboard and then converts it to hexadecimal code. This program is
not listed in expanded form.

In this example, the .IF AL >="a’ && AL<= ‘f’ statement causes the next instruction (SUB
AL,57H) to execute if AL contains letters a through f, converting them to hexadecimal. If it is
not between letters a through f, the next .ELSEIF statement tests it for the letters A through F. If
it is letters A through F, a 37H is subtracted from AL. If neither of these are true, a 30H is sub-
tracted from AL before AL is stored at data segment memory location TEMP.

EXAMPLE 6-10

;A program that reads a key and stores its hexadecimal
;value in memory location TEMP.

EXAMPLE 6-11
0000
0000 OD 0A MES
0002 0100 [BUF
00
]
0000
0017 8C D8
0019 8E CO
001B FC
001C BF 0002 R
001F EB 05 *
0021 * @C0002:
0021 B4 01
0023 CD 21
0025 AA

6-2 CONTROLLING THE FLOW OF AN ASSEMBLY LANGUAGE PROGRAM 193

0000
0000
0000

0017

0019

0023

002F

0033

0035

00

B4
CD

2C

2¢C

A2

.DATA
TEMP DB ?
.CODE
.STARTUP
01 MOV
21 INT
LIF
57 SUB
.ELSEIF
37 SUB
.ELSE
30
.ENDIF
0000 R MOV
LEXIT
END

.MODEL SMALL

DO-WHILE Loops

As with most higher level languages, the assembler also provides the DO-WHILE loop con-
struct, available to MASM version 6.X. The .WHILE statement is used with a condition to begin
the loop, and the .ENDW statement ends the loop.

Example 6-11 shows how the .WHILE statement is used to read data from the keyboard
and store it into an array called BUF until the enter key (ODH) is typed. This program assumes
that BUF is stored in the extra segment because the STOSB instruction is used to store the key-
board data in memory. Note that the .WHILE loop portion of the program is shown in expanded
form so that the statements inserted by the assembler (beginning with a *) can be studied. After
the enter key (ODH) is typed, the string is appended with a $ so it can be displayed with DOS
INT 21H function number 9.

;select SMALL model
;start DATA segment
;define TEMP

;jstart CODE segment

;start program
AH,1 ;read key
21H
AlL>='a’ && AL<='f’ ;if lowercase
AL,57H
AL>='A’ && AL<='F’ ;1f uppercase
AL,37H

;otherwise

SUB AL, 30H

TEMP, AL
;exit to DOS
;end of file

;A program that reads a character string from the
;keyboard and, after enter is typed, displays it again.

.MODEL SMALL

.DATA

DB 13,10

DB 256 DUP (?)
.CODE

.STARTUP

MOV AX,DS
MOV ES,AX

CLD
MOV DI,OFFSET BUF

.WHILE AL != ODH
Jmp @C0001
MOV AH, 1

INT 21H
STOSB

.ENDW

;select small model
;indicate DATA segment
;jreturn & line feed
;character string buffer

;start of CODE segment
;start of program
;make ES overlap DS

;select increment
;address buffer

;loop while AL not enter

;read key with echo
;store key code

;end while loop

194

0026
0026
6028

G02A
002E
0031
0033

3C

ce
BA
B4
Cb

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

* @COC01:

0D * cmp al,0Dh
F7 * jne @aclio2
45 FF 24 MOV BYTZ PTR [DI-1],'$”’ ;make it $ string
0000 R MOV DX,0FFSET MES ;address MES
09 MOV AH, S ;display MES
21 INT 21H

.EXIT ;exit to DOS

END

The program in Example 6-11 functions perfectly as long as we arrive at the .WHILE
statement with AL containing some other value except ODH. This can be corrected by adding a
MOV AL,0DH instruction before the .WHILE statement in Example 6-11. A better way of han-
dling this problem is illustrated in Example 6-12. In this example, the .BREAK statement is used
to break out of the .WHILE loop. A \WHILE 1 creates an infinite loop, and the .BREAK state-
ment tests for a value of ODH (enter) in AL. If AL = ODH, the program breaks out of the infinite
loop, correcting the problem exhibited in Example 6-11. Note that the .BREAK statement
causes the break to occur at the point where it appears in the program. This is important, because
it allows the point of the break to be selected by the programmer.

Not illustrated in this example is the .CONTINUE statement, which can be used to allow
the DO-WHILE loop to continue if a certain condition is met. For example, a .CONTINUE .IF
AL == 15 allows the loop to continue if AL equals 15. Note that the . BREAK and .CONTINUE
commands function in the same manner in a C-language program.

EXAMPLE 6-12
.MODEL SMALL

0000 .DATA
0000 0D 0A MES DB 13,10 ;define string
0002 0100 [BUF DB 256 DUP (?) ;memory for string
00
]
0000 .CODE
. STARTUP
0017 8C D8 MOV AX,DS ;make ES overlap DS
0019 8E CO MOV ES,AX
001B FC CLD ;select increment
001C BF 0002 R MOV DI,OFFSET BUF ;address BUF
.WHILE 1 ;create an infinite loop
001F * @C0001:
001F B4 01 MOV AH,1 ;read key
0021 CD 21 INT 21H
0023 AA STOSB ;store key code in BUF
.BREAK .IF AL == ODH ;breaks loop for a ODH
0024 3C 0D * cmp al,00Dh
0026 74 02 * je @C0002
. ENDW
0028 EB F5 * jmp @C0001
002Aa * @C0002:
002A C6 ¢_ FF 24 MOV BYTE PTR [DI-1)],‘'$’ ;make it a $ string
NN2E BA 0000 R MOV DX, OFFSET MES ;display string
0031 B4 09 MOV AH,9
0033 CD 21 INT 21H
JEXIT

END

6-2 CONTROLLING THE FLOW OF AN ASSEMBLY LANGUAGE PROGRAM 195

Example 613 lists a practical example using the DO-WHILE construct to display the con-
tents of EAX in decimal on the video display. Note that the EAX register is initialized with a
number (123455) to test this program. Two infinite loops are used to convert EAX to decimal.
The first divides EAX by 10 until the quotient is zero. After each division, the remainder is saved
on the stack as a significant digit in the result. Also located within the first infinite loop is a
comma counter stored in CL. Each time that the quotient is not zero, the comma counter incre-
ments. If the comma counter reaches a 3, a comma is pushed onto the stack for later display, and
the comma count is reset to zero. The final infinite loop displays the result. After each POP DX
instruction, the break statement checks DX to find if it contains a 10. The 10 was pushed on to
the stack to indicate the end of the number. If it does contain a 10, the loop breaks; if it doesn’t,
a decimal digit or a comma is displayed. This procedure can be added to any program where a
decimal number of up to four billion must be displayed with commas at the correct places.

EXAMPLE 6-13

;A program that displays the contents of EAX in decimal.
;This program inserts commas between thousands,
;millions, and billions.

.MODEL TINY

.386 ;select 80386

.CODE

.STARTUP

0000

0100 661 B8 0001E23F MOV EAX, 123455 ;load test data

0106 E8 0004 CALL DISPE ;display EAX in decimal
LEXIT
;the DISPE procedure displays EAX in decimal format.
010D DISPE PROC NEAR

010D 661 BB 0000000A MOV EBX, 10 ;load 10 for decimal

0113 53 PUSH BX ;save end of number
0114 B1 00 MOV CL,0 ;load comma counter
.WHILE 1 ;first infinite loop
0116 66| BA 00000000 MOV EDX,0 ;clear EDX
011C 66] F7 F3 DIV EBX ;divide EDX:EAX by 10
011F 80 C2 30 ADD DL, 30H ;convert to ASCII
0122 52 PUSH DX ;save remainder
.BREAK .IF EAX == 0 ;break if quotient zero
0128 FE C1 INC CL ;increment comma counter
IF CL == 3 ;if comma count is 3
012F 6A 2C PUSH ', ;save comma
0131 Bl 00 MOV CL,0 ;clear comma counter
.ENDIF
. ENDW ;end first loop
.WHILE 1 ;second infinite loop
0135 5A POP DX ;get remainder
.BREAK .IF DL == 10 ;break if remainder is 10
013B B4 02 MOV AH,2 ;display decimal digit
013D CD 21 INT 21H

. ENDW

196

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

0141 3 RET

0142 DISPE ENDF
END

REPEAT-UNTIL Loops

Also available to the assembler is the REPEAT-UNTIL construct. A series of instructions is re-
peated until some condition occurs. The .REPEAT statement defines the start of the loop; the end
is defined with the .UNTIL statement that contains a condition. Note that REPEAT and .UNTIL
are available to version 6.X of MASM.

If Example 6-11 is once again reworked using the REPEAT-UNTIL construct, this ap-
pears to be the best solution. Refer to Example 6-14 for the program that reads keys from the
keyboard and stores keyboard data into extra segment array BUF until the enter key is typed.
This program also fills the buffer with keyboard data until the enter key (ODH) is typed. Once the
enter key is typed, the program displays the character string using DOS INT 21H function
number 9, after appending the buffer data with the required dollar sign. Notice how the .UNTIL
AL == ODH statement generates code (statements beginning with a *) to test for the enter key.

EXAMPLE 6-14
.MODEL SMALL

0000 .DATA
0000 0D 0A MES DB 13,10 ;define MES
0002 0100 [BUF DB 256 DUP (?) ;reserve memory for BUF
00
]
0000 .CODE
.STARTUP
0017 8C D8 MOV AX,DS ;overlap DS and ES
0019 8E CO MOV ES,AX
001B FC CLD ;select increment
001C BF 0002 R MOV DI,OFFSET BUF ;address BUF
.REPEAT
001F * @C0001:
001F B4 01 MOV AH,1 ;read key with echo
0021 <¢D 21 INT 21H
0023 AA STOSB ;save key code in BUF
.UNTIL AL == ODH
0024 3C 0D * cmp al, 00Dh
0026 75 F7 * jne @C0001
0028 C6 45 FF 24 MOV BYTE PTR [DI-11,'S$’ ;make $ string
002C B4 09 MOV 2AH,9 ;display MES and BUF
002E BA 0000 R MOV DX,OFFSET MES
0031 CD 21 INT 21H
LEXIT
END

There is also an .UNTILCXZ instruction available that uses the LOOP instruction to check
for the until condition. The .UNTILCXZ can have a condition or may just use the CX register as
a counter to repeat a loop a fixed number of times. Example 6-15 shows a sequence of instruc-
tions that use the .UNTILCNZ instruction used to add the contents of byte-sized array ONE to
byte sized array TWO. The sums are stored in array THREE. Note that each array contains 100
bytes of data, so the loop is repeated 100 times. This example assumes that array THREE is in
the extra segment and that arrays ONE and TWO are in the data segment.

6-3 PROCEDURES 197

EXAMPLE 6-15

012C B9 0064 MOV CX, 100 ;set count
012F BF 00C8 R MOV DI,OFFSET THREE ;address arrays
0132 BE 0000 R MOV SI,OFFSET ONE
0135 BB 0064 R MOV BX,OFFSET TWO
.REPEAT
0138 * @C0001
0138 AC LODSB
0139 02 07 ADD AL, [BX]
013B AA STOSB
013C 43 INC BX
.UNTILCXZ
013D E2 F9 * loop @C0O001

The procedure or subroutine is an important part of any computer system’s architecture. A proce-
dure is a group of instructions that usually performs one task. A procedure is a reusable section of
the software that is stored in memory once, but used as often as necessary. This saves memory
space and makes it easier to develop software. The only disadvantage of a procedure is that it takes
the computer a small amount of time to link to the procedure and return from it. The CALL in-
struction links to the procedure and the RET (return) instruction returns from the procedure.

The stack stores the return address whenever a procedure is called during the execution of a
program. The CALL instruction pushes the address of the instruction following the CALL (return
address) on the stack. The RET instruction removes an address from the stack so the program re-
turns to the instruction following the CALL.

With the assembler, there are specific rules for the storage of procedures. A procedure begins
with the PROC directive and ends with the ENDP directive. Each directive appears with the name of
the procedure. This programming structure makes it easy to locate the procedure in a program listing.
The PROC directive is followed by the type of procedure: NEAR or FAR. Example 6-16 shows how
the assembler uses the definition of both a near (intrasegment) and far (intersegment) procedure. In
MASM version 6.X, the NEAR or FAR type can be followed by the USES statement. The USES
statement allows any number of registers to be automatically pushed to the stack and popped from the
stack within the procedure. The USES statement is also illustrated in Example 6-16.

EXAMPLE 6-16

0000 SuMs PROC NEAR
0000 03 C3 ADD AX,BX
0002 03 Cl1 ADD AX,CX
0004 03 C2 ADD AX,DX
0006 C3 RET

0007 SumMs ENDP

0007 SUMS1 PROC FAR
0007 03 C3 ADD AX,BX

0009 03 C1 ADD AX,CX

198

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

000B 03 C2 DD AX, DX
000D CB PET
000E SUMS1 ENDP
000E SUMS2 PROC NEAR USES BX CX DX
0011 03 C3 DD AX,BX
0013 03 C1 ADD AX,CX
0015 03 C2 MOV AX,DX
RET
001B SUMS2 ENDP

When these two procedures are compared, the only difference is the opcode of the return
instruction. The near return instruction uses opcode C3H, and the far return uses opcode CBH. A
near return instruction removes a 16-bit number from the stack and places it into the instruction
pointer to return from the procedure in the current code segment. A far return removes a 32-bit
number from the stack and places it into both IP and CS to return from the procedure to any
memory location.

Procedures that are to be used by all software (global) should be written as far procedures.
Procedures that are used by a given task (local) are normally defined as near procedures.

CALL

The CALL instruction transfers the flow of the program to the procedure. The CALL instruction
differs from the jump instruction because a CALL saves a return address on the stack. The return
address returns control to the instruction that immediately follows the CALL in a program when
a RET instruction executes.

Near CALL. The near CALL instruction is three bytes long, with the first byte containing the op-
code and the second and third bytes containing the displacement or distance of +32K in the 8086
through the 80286. This is identical to the form of the near jump instruction. The 80386 and above
use a 32-bit displacement when operated in the protected mode to allow a distance of +2G bytes.
When the near CALL executes, it first pushes the offset address of the next instruction on the stack.
The offset address of the next instruction appears in the instruction pointer (IP or EIP). After saving
this return address, it then adds the displacement from bytes 2 and 3 to the IP to transfer control to
the procedure. There is no short CALL instruction. A variation on the opcode exists as CALLN,
but this should be avoided in favor of using the PROC statement to define the CALL as near.
Why save the IP or EIP on the stack? The instruction pointer always points to the next in-
struction in the program. For the CALL instruction, the contents of” TEIP are pushed onto the
stack, so program control passes to the instruction following the CALL after a procedure ends.
Figure 6-6 shows the return address (IP) stored on the stack, and the call to the procedure.

Far CALL. The far CALL instruction is like a far jump because it can call a procedure stored in
any memory location in the system. The far CALL is a 5-byte instruction that contains an opcode
followed by the next value for the IP and CS registers. Bytes 2 and 3 contain the new contents of
the IP, and bytes 4 and 5 contain the new contents for CS.

The far CALL instruction places the contents of both IP and CS on the stack before
jumping to the address indicated by bytes 2-5 of the instruction. This allows the far CALL to call
a procedure located anywhere in the memory and return from that procedure.

Figure 6-7 shows how the far CALL instruction calls a far procedure. Here the contents of
IP and CS are pushed onto the stack. Next, the program branches to the procedure. A variant of
the far CALL exists as CALLF, but this should be avoided in favor of defining the type of call
instruction with the PROC statement.

6-3 PROCEDURES

FIGURE 6-6 The effect of a
near CALL on the stack and
the instruction pointer

FIGURE 6-7 The effect of a
far CALL instruction

AFFFF

AFFFE
SP —» AFFFD

11003
11002
11001
11000

10004
10003
10002
10001
10000

AFFFF
AFFFE
AFFFD
AFFFC
SP — AFFFB

11003
11002
11001
11000

10004
10003
10002
10001
10000

Memory

00

03

——

(Procedure)

OF

FF

CALL

Memory
]

10

00

00

05

.—/__’—’—‘

(Procedure)

11

00

00

02

CALL

Stack
SP before CALL = FFFF
SS before CALL = AO0OO
IP before CALL = 0003
Near CALL
Stack
SP before CALL = FFFF
SS before CALL = ACOO
IP before CALL = 0005
Far CALL

199

200

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

CALLs with Register Operands. Like jump instructions, call instructions also may contain a reg-
ister operand. An example is the CALL BX instruction. This instruction pushes the contents of
IP onto the stack. It then jumps to the offset address, located in register BX, in the current code
segment. This type of CALL always uses a 16-bit offset address stored in any 16-bit register, ex-
cept the segment registers.

Example 6-17 illustrates the use of the CALL register instruction to call a procedure that
begins at offset address DISP. (This call could also directly call the procedure by using the
CALL DISP instruction). The OFFSET address DISP is placed into the BX register, and then the
CALL BX instruction calls the procedure beginning at address DISP. This program displays an
“OK?” on the monitor screen.

EXAMPLE 6-17

;A program that displays OK on the monitor screen
;using procedure DISP.

;

.MODEL TINY ;select TINY model
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0100 BB 0110 R MOV BX,OFFSET DISP ;address DISP with BX
0103 B2 4F MOV DL, ‘O’ ;display ‘'O’
0105 FF D3 CALL BX
0107 B2 4B MOV DL, 'K’ ;display ‘K’
0109 FF D3 CALL BX
.EXIT ;exit to DOS

;a procedure that displays the ASCII contents of DL on
;the monitor screen.

G110 DISsP PROC NEAR

0110 B4 02 MOV AH, 2 ;select function 02H
0112 c¢D 21 INT 21H ;execute DOS function
0114 C3 RET ;return from procedure
0115 DISP ENDP

ZND ;end of file

CALLs with Indirect Memory Addresses. A CALL with an indirect memory address is particu-
larly useful whenever different subroutines need to be chosen in a program. This selection
process is often keyed with a number that addresses a CALL address in a lookup table.

Example 6-18 shows three separate subroutines referenced by the numbers 1, 2, and 3 as
read from the keyboard on the personal computer. The calling sequence adjusts the value of AL
and extends it to a 16-bit number before adding it to the location of the lookup table. This refer-
ences one of the three subroutines using the CALL TABLE [BX] instruction. When this program
executes, the letter A is displayed when a 1 is typed, the letter B is displayed when a 2 is typed,
and the letter C is displayed when a 3 is typed.

EXAMPLE 6-18

;A program that uses a CALL lookup table to access one of
;three different procedures: ONE, TWO, or THREE.

7

.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0000 R TABLE DW ONE ;define lookup table
0002 0007 R DwW TWO
0004 O0O0O0E R DW THREE

0000 .CODE ;start of CODE segment

6-3 PROCEDURES 201

0000 ONE PROC NEAR
0000 B4 02 MOV AH, 2 ;display a letter A
0002 B2 41 MOV DL, 'A’
0004 <c¢D 21 INT 21H
0006 C3 RET
0007 ONE ENDP
0007 TWO PROC NEAR
0007 B4 02 MOV AH,2 ;display letter B
0009 B2 42 MOV DL, ‘B’
000B CD 21 INT 21H
000D C3 RET
000E TWO ENDP
000E THREE PROC NEAR
000E B4 02 MOV AH,2 ;display letter C
0010 B2 43 MOV DL, ‘'C’
0012 c¢cD 21 INT 21H
0014 <C3 RET
0015 THREE ENDP
.STARTUP ;indicate start of program
002C TOP:
002C B4 01 MOV 2H,1 ;jread key into AL
002E CD 21 INT 21H
0030 2C 31 SUB AL,31H ;convert to binary
0032 72 F8 JB TOP ;if below O
0034 3C 02 CMP AL,2
0036 77 F4 JAa TOP ;if above 2
0038 B4 00 MOV AH, 0 ;form lookup address
003A 8B D8 MOV BX,AX
003C 03 DB ADD BX,BX
003E FF 97 0000 R CALL TABLE [BX] ;call procedure
LEXIT ;exit to DOS
END ;end of file

The CALL instruction also can reference far pointers if the instruction appears as a CALL
FAR PTR [SI] or as a CALL TABLE [SI], if the data in the table are defined as doubleword data
with the DD directive. These instructions retrieve a 32-bit address from the data segment
memory location addressed by SI and use it as the address of a far procedure.

RET

The return instruction (RET) removes either a 16-bit number (near return) from the stack and
places it into IP or a 32-bit number (far return) and places it into IP and CS. The near and far re-
turn instructions are both defined in the procedure’s PROC directive. This automatically selects
the proper return instruction. With the 80386 through the Pentium Pro processors operated in the
protected mode, the far return removes six bytes from the stack. The first four bytes contain the
new value for EIP, and the last two contain the new value for CS. In the 80386 and above, a pro-
tected mode near return removes four bytes from the stack and places them into EIP.

When IP/EIP or IP/EIP and CS are changed, the address of the next instruction is at a new
memory location. This new location is the address of the instruction that immediately follows the
most recent CALL to a procedure. Figure 6-8 shows how the CALL instruction links to a proce-
dure and how the RET instruction returns in the 8086-80286.

202 CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

FIGURE 6-8 The effect of a Memory
near return instruction on the —]
stack and instruction pointer
SP —= AFFFF
AFFFE 00 Stack
AFFFD 03
_——
I
11003 RET Near RET
11002
11001
11000 SP before CALL = FFFD
SS before CALL = AO0O
L —
—_— ——— IP before CALL = 1004
10004
10003 (Return here)
10002 OF
10001 FF
10000 CALL

There is one other form of the return instruction. This form adds a number to the contents
of the stack pointer (SP) after the return address is removed from the stack. A return that uses an
immediate operand is ideal for use in a system that uses the C or PASCAL calling conventions.
(This is true even though the C and PASCAL calling convention require the caller to remove
stack data for many functions.) These conventions push parameters on the stack before calling a
procedure. If the parameters are to be discarded upon return, the return instruction contains a
number that represents the number of bytes pushed to the stack as parameters.

Example 6-19 shows how this type of return erases the data placed on the stack by a few
pushes. The RET four adds a 4 to SP after removing the return address from the stack. Since the
PUSH AX and PUSH BX together place 4 bytes of data on the stack, this return effectively
deletes AX and BX from the stack. This return rarely appears in assembly language programs,
but is used in higher-level programs to clear stack data after a procedure. Notice how parameters
are addressed on the stack by using the BP register, which by default addresses the stack seg-
ment. Parameter stacking is common in procedures written for C or PASCAL using the C or
PASCAL calling conventions.

EXAMPLE 6-19

0000 B8 001lE MOV AX,30

0003 BB 00z8 MOV BX, 40

0006 50 PUSH AX ;stack parameter 1

0007 53 PUSH BX ;stack parameter 2

0008 E8 (.46 CALL ADDM ;add parameters from stack
. . ;program continues here

0071 ADDM PRPOC NEAR

0071 55 PUSH BP ;save BP

0072 8B EC MOV BP, SP ;address stack with BP

0074 8B 45 04 MOV AX, [BP+4] ;get parameter 1

6-4 INTRODUCTION TO INTERRUPTS A 203

0077 03 46 06 ADD AX, [BP+6] ;add parameter 2

007 5D POP BP jrestore BP

007B C2 0004 RET 4 ;return, dump parameters
007E ADDM ENDP

As with the CALLN and CALLF instructions, there are also variants of the return instruc-
tion: RETN and RETF. As with the CALLN and CALLF instructions, these return variants
should be avoided in favor of using the PROC statement to define the type of call and return.

6-4

INTRODUCTION TO INTERRUPTS

An interrupt is either a hardware-generated CALL (externally derived from a hardware signal) or
a software-generated CALL (internally derived from the execution of an instruction or by some
other internal event). An internal interrupt is sometimes called an exception. Either type inter-
rupts the program by calling an interrupt service procedure or interrupt handler.

This section explains software interrupts, which are special types of CALL instructions.
This section explains the three types of software interrupt instructions (INT, INTO, and INT 3),
provides a map of the interrupt vectors, and explains the purpose of the special interrupt return
instruction (IRET).

Interrupt Vectors

An interrupt vector is a 4-byte number stored in the first 1,024 bytes of the memory
(000000H-0003FFH) when the microprocessor operates in the real mode. In the protected-
mode, the vector table is replaced by an interrupt descriptor table that uses 8-byte descriptors to
describe each of the interrupts. There are 256 different interrupt vectors. Each vector contains the
address of an interrupt service procedure. Table 6—4 lists the interrupt vectors with a brief de-
scription and the memory location of each vector for the real mode. Each vector contains a value
for IP and CS that forms the address of the interrupt service procedure. The first two bytes con-
tain the IP, and the last two bytes contain the CS.

Intel reserves the first 32 interrupt vectors for the present and future microprocessor prod-
ucts. The remaining interrupt vectors (32-255) are available for the user. Some of the reserved
vectors are for errors that occur during the execution of software, such as the divide-error-
interrupt. Some vectors are reserved for the coprocessor. Still others occur for normal events in
the system. In a personal computer, the reserved vectors are used for system functions, as de-
tailed later in this section. Vectors 1-6, 7, 9, 16, and 17 function in the real mode and protected
mode; the remaining vectors function only in the protected mode.

Interrupt Instructions

The microprocessor has three different interrupt instructions available to the programmer: INT,
INTO, and INT 3. In the real mode, each of these instructions fetches a vector from the vector
table and then calls the procedure stored at the location addressed by the vector. In the protected
mode, each of these instructions fetches an interrupt descriptor from the interrupt descriptor table.
The descriptor specifies the address of the interrupt service procedure. The interrupt call is similar
to a far CALL instruction because it places the return address (IP/EIP and CS) on the stack.

INTs. There are 256 different software interrupt instructions (INT) available to the pro-
grammer. Each INT instruction has a numeric operand whose range is 0 to 255 (OOH-FFH). For
example, the INT 100 uses interrupt vector 100, which appears at memory address 190H-193H.

204

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

TABLE 6-4 Interrupt vectors

Number Address Microprocessor Function

0 0H-3H All Divide error

1 4H-7H All Aingle-step

2 8H-BH All NMI pin

3 CH-FH All Breakpoint

4 10H-13H All Interrupt on overflow

5 14H-17H 80186—-Pentium Pro Bound instruction

6 18H-1BH 80186—Pentium Pro Invalid opcode

7 1CH-1FH 80186—Pentium Pro Coprocessor emulation

8 20H-23H 80386—Pentium Pro Double fault

9 24H-27H 80386 Coprocessor segment overrun
A 28H-2BH 80386—-Pentium Pro Invalid task state segment
B 2CH-2FH 80386—Pentium Pro Segment not present

C 30H-33H 80386—Pentium Pro Stack fault

D 34H-37H 80386—Pentium Pro General protection fault (GPF)
E 38H-3BH 80386—Pentium Pro Page fault

F 3CH-3FH — Reserved

10 40H-43H 80286—Pentium Pro Floating-point error

11 44H-47H 80486SX Alignment check interrupt
12 48H-4FH Pentium/Pentium Pro Machine check exception
13-1F 50H-7FH — Reserved

20-FF 80H-3FFH —_ User interrupts

The address of the interrupt vector is determined by multiplying the interrupt type number times
four. For example, the INT 10H instruction calls the interrupt service procedure whose address is
stored beginning at memory location 40H (10H x 4) in the real mode. In protected mode, the in-
terrupt descriptor is located by multiplying the type number by 8 instead of 4 because each de-
scriptor is eight bytes long.

Each INT instruction is two bytes long. The first byte contains the opcode, and the second
byte contains the vector type number. The only exception to this is INT 3, a 1-byte special soft-
ware interrupt used for breakpoints.

Whenever a software interrupt instruction executes, it (1) pushes the flags onto the stack,
(2) clears the T and I flag bits. (3) pushes CS onto the stack, (4) fetches the new value for CS
from the vector, (5) pushes IP/EIP onto the stack, (6) fetches the new value for IP/EIP from the
vector, and (7) jumps to the new location addressed by CS and IP/EIP. The INT instruction per-
forms as a far CALL, except that it not only pushes CS and IP onto the stack, but it also pushes
the flags onto the stack. The INT instruction performs the operation of a PUSHF, followed by a
far CALL instruction.

Notice that when the INT instruction executes, it clears the interrupt flag (I), which con-
trols the external hardware interrupt input pin INTR (interrupt request). When I = 0, the micro-
processor disables the INTR pin: when [= 1, the microprocessor enables the INTR pin.

Software interrupts are most commonly used to call system procedures because the address
of the system function need not be known. The system procedures are common to all system and
application software. The interrupts often control printers, video displays, and disk drives. Besides
relieving the program from remembering the address of the system call, the INT instruction re-
places a far CALL that would otherwise be used to call a system function. The INT instruction is two
bytes long whereas the far CALL is five bvtes long. Each time that the INT instruction replaces a far
CALL, it saves three bytes of memory in a program. This can amount to a sizable savings if the INT
instruction appears often in a program, as it does for system calls.

6-4 INTRODUCTION TO INTERRUPTS 205

IRET/IRETD. The interrupt return instruction (IRET) is used only with software or hardware in-
terrupt service procedures. Unlike a simple return instruction (RET), the IRET instruction will
(1) pop stack data back into the IP, (2) pop stack data back into CS, and (3) pop stack data back
into the flag register. The IRET instruction accomplishes the same tasks as the POPF, followed
by a far RET instruction.

Whenever an IRET instruction executes, it restores the contents of I and T from the stack.
This is important, because it preserves the state of these flag bits. If interrupts were enabled be-
fore an interrupt service procedure, they are automatically reenabled by the IRET instruction, be-
cause it restores the flag register.

In the 80386 through the Pentium Pro processors, the IRETD instruction is used to return
from an interrupt service procedure that is called in the protected mode. It differs from the IRET
because it pops a 32-bit instruction pointer (EIP) from the stack. The IRET is used in the real
mode, and the IRETD is used in the protected mode.

INT 3. AnINT 3 instruction is a special software interrupt designed to be used as a breakpoint.
The difference between it and the other software interrupts is that INT 3 is a 1-byte instruction,
while the others are 2-byte instructions.

It is common to insert an INT 3 instruction in software to interrupt or break the flow of the
software. This function is called a breakpoint. A breakpoint occurs for any software interrupt,
but because INT 3 is a 1-byte instruction long, it is easier to use for this function. Breakpoints
help to debug faulty software.

INTO. Interrupt on overflow (INTO) is a conditional software interrupt that tests the overflow
flag (O). If O = 0, the INTO instruction performs no operation; if O = 1 and an INTO instruction
executes, an interrupt occurs via vector type number 4.

The INTO instruction appears in software that adds or subtracts signed binary numbers.
With these operations it is possible to have an overflow. Either the JO instruction or INTO in-
struction detect the overflow condition.

An Interrupt Service Procedure. Suppose that, in a particular system, a procedure is required to
add the contents of DI, SI, BP, and BX and save the sum in AX. Because this is a common task
in this system, it may occasionally be worthwhile to develop the task as a software interrupt. Re-
alize that interrupts are usually reserved for system events, and this is merely an example
showing how an interrupt service procedure appears. Example 6-20 shows this software inter-
rupt. The main difference between this procedure and a normal far procedure is that it ends with
the IRET instruction instead of the RET instruction, and the contents of the flag register are
saved on the stack during its execution.

EXAMPLE 6-20
0000 INTS PROC FAR
0000 03 C3 ADD AX,BX
0002 03 C5 ADD AX,BP
0004 03 C7 ADD AX,DI
0006 03 C6 ADD AX,SI
0008 CF IRET

0009 INTS ENDP

Interrupt Control

Although this section does not explain hardware interrupts, two instructions are introduced that
control the INTR pin. The set interrupt flag instruction (STI) places a 1 into the I flag bit, which
enables the INTR pin. The clear interrupt flag instruction (CLI) places a 0 into the I flag bit, which
disables the INTR pin. The STI instruction enables INTR, and the CLI instruction disables INTR.

206

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

In a software interrupt service procedure. hardware interrupts are enabled as one of the first steps.
This is accomplished by the STI instruction. The reason interrupts are enabled early in an interrupt
service procedure is that just about all of the 1/O devices in the personal computer are interrupt
processed. If the interrupts are disabled too long, severe system problems result.

Interrupts in the Personal Computer

The interrupts found in the personal computer differ somewhat from those presented in Table 6—4.
The reason that they differ is that the original personal computers are 8086/8088 based systems.
This means that they only contained Intel specified interrupts 0—4. This design is carried forward
so that newer systems are compatible with the early personal computers.

Because the personal computer is operated in the real mode, the interrupt vector table is lo-
cated at addresses 00000H-003FFH. The assignments used by computer system are listed in
Table 6-5. Notice that these differ somewhat from the assignments shown in Table 6-3. Some of
the interrupts shown in this table are used in example programs in later chapters. An example is
the clock tick, which is extremely useful for timing events because it occurs a constant 18.2
times per second in all personal computers.

Interrupts 0OH-1FH and 70H-77H are present in the computer no matter what operating
system is installed. If DOS is installed, interrupts 20H-2FH are also present. The BIOS uses in-
terrupts 11H-1FH, the video BIOS uses INT 10H, and the hardware in the system uses interrupts
00H-OFH and 70H-77H.

MACHINE CONTROL AND MISCELLANEQUS INSTRUCTIONS

The last category of real mode instructions found in the microprocessor are the machine control
and miscellaneous group. These instructions provide control of the carry bit, sample the
BUSY/TEST pin, and perform various other functions. Because many of these instructions are
used in hardware control, they need only be explained briefly at this point.

Controlling The Carry Flag Bit

The carry flag (C) propagates the carry or borrow in multiple-word/doubleword addition and
subtraction. It also indicates errors in procedures. There are three instructions that control the
contents of the carry flag: STC (set carry), CLC (clear carry), and CMC (complement carry).

Because the carry flag is seldom used, except with multiple-word addition and subtraction,
it is available for other uses. The most common task for the carry flag is to indicate an error upon
return from a procedure. Suppose that a procedure reads data from a disk memory file. This op-
eration can be successful or an error such as file-not-found can occur. Upon return from this pro-
cedure, if C = 1, an error has occurred; if C = 0, no error occurred. Most of the DOS and BIOS
procedures use the carry flag to indicate error conditions.

WAIT

The WAIT instruction monitors the hardware BUSY pin on the 80286 and 80386 and the TEST
pin on the 8086/8088. The name of this pin was changed in the 80286 microprocessor from
TEST to BUSY. If the WAIT instruction executes while the BUSY pin = 1, nothing happens and
the next instruction executes. If the BUSY pin = 0 when the WAIT instruction executes, the mi-
croprocessor waits for the BUSY pin to return to a logic 1. This pin indicates a busy condition
when at a logic 0 level.

6-5 MACHINE CONTROL AND MISCELLANEOUS INSTRUCTIONS 207

TABLE 6-5 The hexadeci-
mal interrupt assignments for

the personal computer

Number Function
0 Divide error
1 Single-step
2 NMI pin (often parity error checks)
3 Breakpoint
4 Overflows
5 Print screen key and BOUND instruction
6 lllegal instruction
7 Coprocessor emulation
8 Clock tick (18.2 Hz)
= 9 Keyboard
A IRQ2 (cascade in AT system)
- B-F IRQ3-IRQ7
10 Video BIOS
11 Equipment environment
12 Conventional memory size
13 Direct disk services
14 Serial COM port service
15 Miscellaneous
- 16 Keyboard service
17 Parallel port (LPT) service
18 ROM BASIC
19 Reboot
1A Clock service
- 1B Control-break handler
~1C User timer service
-1D Pointer for video parameter table
1E Pointer for disk parameter table
~1F Pointer for graphic character pattern table
20 Terminate program (DOS 1.0)
21 DOS services
22 Program termination handler
23 Control-C handler
24 Critical error handler
¢ 25 Read disk
=26 Write disk
27 Terminate and stay resident (TSR)
28 DOS idle
2F Multiplex handler
31 DPMI (DOS protected mode interface) provided by Windows
33 Mouse driver
67 VCPI (virtual control program interface) provided by HIMEM.SYS
~70-77 IRQ8-IRQ15

The BUSY/TEST pin of the microprocessor is usually connected to the BUSY pin of the

8087 through the 80387 numeric coprocessors. This connection allows the microprocessor to
wait until the coprocessor finishes a task. Because the coprocessor is inside the 80486 through
the Pentium Pro, the BUSY pin is not present in these microprocessors.

HLT

The halt instruction (HLT) stops the execution of software. There are three ways to exit a halt: by
an interrupt, by a hardware reset, or during a DMA operation. This instruction normally appears

208

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

in a program to wait for an interrupt. It often synchronizes external hardware interrupts with the
software system.

NOP

When the microprocessor encounters a no operation instruction (NOP), it takes a short time to
execute. In early years, before software development tools were available, a NOP, which per-
forms absolutely no operation, was often used to pad software with space for future machine lan-
guage instructions. If you are developing machine language programs, which is extremely rare,
it is recommended that you place approximately 10 or so NOPs in your program at 50-byte in-
tervals. This is done in case you need to add instructions at some future point. A NOP may also
find application in time delays to waste short periods of time. Realize that a NOP used for timing
is not very accurate because of the cache and pipelines in modern microprocessors.

LOCK Prefix

The LOCK prefix appends an instruction and causes the LOCK pin to become a logic 0. The
LOCK pin often disables external bus masters or other system components. The LOCK prefix
causes the lock pin to activate for the duration of a locked instruction. If more than one sequen-
tial instruction is locked, the LOCK pin remains a logic 0 for the duration of the sequence of
locked instructions. The LOCK:MOV AL,[SI] instruction is an example of a locked instruction.

ESC

The escape (ESC) instruction passes information to the 8087—Pentium Pro numeric coproces-
sors. Whenever an ESC instruction executes, the microprocessor provides the memory address,
if required, but otherwise performs a NOP. Six bits of the ESC instruction provide the opcode to
the coprocessor and begin executing an instruction.

The ESC opcode never appears in a program as ESC and in itself is considered obsolete as
an opcode. In its place are a set of coprocessor instructions (FLD, FST, FMUL, etc.) that as-
semble as ESC instructions for the coprocessor. More detail is provided in Chapter 8, which de-
tails the 8087—Pentium Pro numeric coprocessors.

BOUND

The BOUND instruction, first made available in the 80186 microprocessor, is a comparison in-
struction that may cause an interrupt (vector type number 5). This instruction compares the con-
tents of any 16- or 32-bit register against the contents of two words or doublewords of memory:
an upper and a lower boundary. If the value in the register compared with memory is not within
the upper and lower boundary, a type 5 interrupt ensues. If it is within the boundary, the next in-
struction in the program executes.

For example, if the BOUND SI,DATA instruction executes, word-sized location DATA con-
tains the lower boundary and word-sized location DATA + 2 bytes contains the upper boundary. If
the number contained in SI is less than memory location DATA or greater than memory location
DATA + 2 bytes, a type 5 interrupt occurs. Note that when this interrupt occurs the return address
points to the BOUND instruction, not the instruction following BOUND. This differs from a normal
interrupt, where the return address points to the next instruction in the program.

ENTER and LEAVE

The ENTER and LEAVE instructions, first made available to the 80186 microprocessor, are
used with stack frames. A stack frame is a mechanism used to pass parameters to a procedure
through the stack memory. The stack frame also holds local memory variables for the procedure.
Stack frames provide dynamic areas of memory for procedures in multi-user environments.

6-5 MACHINE CONTROL AND MISCELLANEOUS INSTRUCTIONS 209

FIGURE 6-9 The stack Memory
frame created by the ENTER I
§.0 instructiqn. Notice that BP 0020 ~—— Old SP location
is stored beginning at the top
of the stack frame. This is fol- 001F | BP (high)
lowed by an 8-byte area 001E BP (low) |=—BP
called a stack frame. .+ 001D
001C
001B
Stack frame —— 001A
0019
0018
0017
L—— 0016 -<—— New SP location
.

The ENTER instruction creates a stack frame by pushing BP onto the stack and then
loading BP with the uppermost address of the stack frame. This allows stack frame variables to
be accessed through the BP register. The ENTER instruction contains two operands; the first
operand specifies the number of bytes to reserve for variables on the stack frame, and the second
specifies the level of the procedure.

Suppose that an ENTER 8,0 instruction executes. This instruction reserves eight bytes of
memory for the stack frame and the zero specifies level 0. Figure 6-9 shows the stack frame set
up by this instruction. Note that this instruction stores BP onto the top of the stack. It then sub-
tracts 8 from the stack pointer, leaving eight bytes of memory space for temporary data storage.
The uppermost location of this 8-byte temporary storage area is addressed by BP. The LEAVE
instruction reverses this process by reloading both SP and BP with their prior values.

Example 6-21 shows how the ENTER instruction creates a stack frame so that two 16-bit
parameters are passed to a system level procedure. Notice how the ENTER and LEAVE instruc-
tions appear in this program, and how the parameters pass through the stack frame to and from
the procedure. This procedure uses two parameters that pass to it and returns two results through
the stack frame.

EXAMPLE 6-21

;A sequence used to call system software that
juses parameters stored in a stack frame.

7

0000 €8 0004 00 ENTER 4,0 ;create 4 byte frame
0004 Al 00C8 R MOV AX,DATAL

0007 89 46 FC MOV [BP-4],AX ;save para 1

000A Al 00CA R MOV AX,DATA2

000D 89 46 FE MOV [BP-2],AX ;save para 2

0010E8 0100 R CALL SYS ;call subroutine
00138B 46 FC MOV AX, [BP-4] ;get result 1

0016A3 00C8 R MOV DATAL, AX ;save result 1
00198B 46 FE MOV AX, [BP-2] ;get result 2

001CA3 00CA R MOV DATA2, AX ;save result 2

001F C9 LEAVE

210

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

;system subroutine that uses the stack frame parameters

SYS

(other software continues here)

0100 PROC NEAR

0100 60 PUSHA

0101 8B 46 FC MOV AX, [BP-4] ;jget para 1

0104 8B 5E FE MOV BX, [BP-2] ;jget para 2
(software that uses the parameters)

0130 89 46 FC MOV [BP-41],AX ;save result 1

0133 89 5E FE MOV [BP-2],BX ;save result 2

0136 61 POPA

0137 C3 RET

0138 SYS ENDP

. There are three types of unconditional jump instructions: short, near, and far. The short jump

allows a branch to within +127 and —128 bytes. The near jump (using a displacement of
+32K) allows a jump to anywhere in the current code segment (intrasegment). The far jump
allows a jump to any location in the memory system (intersegment). The near jump in the
80386 through the Pentium Pro is within £2G bytes because these microprocessors can use
a 32-bit signed displacement.

. Whenever a label appears with a JMP instruction or conditional jump, the label, located in

the label field, must be followed by a colon (LABEL:). The JMP DOGGY instruction jumps
to memory location DOGGY:.

. The displacement that follows a short or near jump is the distance from the next instruction

to the jump location.

. Indirect jumps are available in two forms: (1) jump to the location stored in a register and (2)

jump to the location stored in a memory word (near indirect) or doubleword (far indirect).

. Conditional jumps are all short jumps that test one or more of the flag bits: C, Z, O, P, or S.

If the condition is tiue, a jump occurs; if the condition is false, the next sequential instruction
executes. Note that the 80386 and above also allow a 16-bit signed displacement for the con-
ditional jump instructions.

. A special conditional jump instruction (LOOP) decrements CX and jumps to the label when

CX is not 0. Other forms of loop include LOOPE, LOOPNE, LOOPZ, and LOOPNZ. The
LOORPE instruction jumps if CX is not 0, and if an equal condition exists. In the 80386
through the Pentium Pro, the LOOPD, LOOPED, and LOOPNED instructions also use the
ECX register as a counter.

. The 80386 through the Pentium Pro contain conditional set instructions that either set a byte

to O1H or clear it to OOH. If the condition under test is true, the operand byte is set to a 01H;
if the condition under test is false, the operand byte is cleared to O0H.

. The .IF and .ENDIF statements are useful in assembly language for making decisions. The

instructions cause the assembler to generate conditional jump statements that modify the
flow of the program.

6-6

0

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

SUMMARY 211

The .WHILE and .ENDW statements allow an assembly language program to use the DO-
WHILE construction, and the .REPEAT and .UNTIL statements allow an assembly lan-
guage program to use the REPEAT-UNTIL construct.

Procedures are groups of instructions that perform one task and are used from any point in a
program. The CALL instruction links to a procedure; and the RET instruction returns from
a procedure. In assembly language, the PROC directive defines the name and type of proce-
dure. The ENDP directive declares the end of the procedure.

The CALL instruction is a combination of a PUSH and a JMP instruction. When CALL ex-
ecutes, it pushes the return address on the stack and then jumps to the procedure. A near
CALL places the contents of IP on the stack, and a far CALL places both IP and CS on the
stack.

The RET instruction returns from a procedure by removing the return address from the stack
and placing it into IP (near return) or IP and CS (far return).

Interrupts are either software instructions similar to CALL or hardware signals used to call
procedures. This process interrupts the current program and calls a procedure. After the pro-
cedure, a special IRET instruction returns control to the interrupted software.

Real mode interrupt vectors are four bytes long and contain the address (IP and CS) of the
interrupt service procedure. The microprocessor contains 256 interrupt vectors in the first
1K bytes of memory. The first 32 are defined by Intel; the remaining 224 are user interrupts.
In protected mode operation, the interrupt vector is eight bytes long and the interrupt vector
table may be relocated to any section of the memory system.

Whenever an interrupt is accepted by the microprocessor, the flags IP and CS are pushed on
the stack. Besides pushing the flags, the T and I flag bits are cleared to disable both the trace
function and the INTR pin. The final event that occurs for the interrupt is that the interrupt
vector is fetched from the vector table and a jump to the interrupt service procedure occurs.
Software interrupt instructions (INT) often replace system calls. Software interrupts save
three bytes of memory each time they replace CALL instructions.

A special return instruction (IRET) must be used to return from an interrupt service proce-
dure. The IRET instruction not only removes IP and CS from the stack, it also removes the
flags from the stack.

Interrupt on an overflow (INTO) is a conditional interrupt that calls an interrupt service pro-
cedure if the overflow flag (O) = 1.

The interrupt enable flag (I) controls the INTR pin connection on the microprocessor. If the
STI instruction executes, it sets I to enable the INTR pin. If the CLI instruction executes, it
clears I to disable the INTR pin.

The carry flag bit (C) is cleared, set, and complemented by the CL.C, STC, and CMC instructions.
The WAIT instruction tests the condition of the BUSY or TEST pin on the microprocessor.
If BUSY or TEST = 1, WAIT does not wait; if BUSY or TEST = 0, WAIT continues testing
the BUSY or TEST pin until it becomes a logic 1. Note that the 8086/8088 contain the TEST
pin, while the 80286—80386 contain the BUSY pin. The 80486 through the Pentium Pro do
not contain a BUSY or TEST pin.

The LOCK prefix causes the LOCK pin to become a logic 0 for the duration of the locked
instruction. The ESC instruction passes instruction to the numeric coprocessor.

The BOUND instruction compares the contents of any 16-bit register against the contents of
two words of memory: an upper and a lower boundary. If the value in the register compared
with memory is not within the upper and lower boundary, a type 5 interrupt ensues.

The ENTER and LEAVE instructions are used with stack frames. A stack frame is a mech-
anism used to pass parameters to a procedure through the stack memory. The stack frame
also holds local memory variables for the procedure. The ENTER instruction creates the
stack frame, and the LEAVE instruction removes the stack frame from the stack. The BP
register addresses stack frame data.

212

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

25. Example 622 lists a program that uses some of the instructions presented in this chapter as
well as those presented in prior chapters. This example contains a procedure that displays a
character string on the monitor. As a test of the program, a few sample lines are displayed.
Note that the character string is called a null string because it ends with a null (00H).

;A program that displays a string of characters

EXAMPLE 6-22
;using the procedure STRING.
.MODEL SMALL

0000 .DATA

0000 OD 0OA 0A 00 MES1 DB 13,10,10,0

;select SMALL model

;start of DATA segment

0004 54 68 69 73 20 MES2 DB ‘This is a sample line.’,0

69 73 20 61 20
73 61 6D 70 6C
65 20 6C 69 6E

65 2E 00

0000 .CODE ;start of CODE segment
;A procedure that displays the character string
;addressed by SI in the data segment. The character
;string must end with a null.
;This procedure changes AX, DX, and SI.

0000 STRING PROC NEAR

0000 AC LODSB ;get string character

0001 3C 00 CMP AL,O ijtest for null

0003 74 08 JE STRING1 ;if null

0005 8A DO MOV DL,AL ;move ASCII code to DL

0007 B4 02 MOV 2AH,2 ;select function 02H

0009 CD 21 INT 21H ;access DOS

000B EB F3 JMP STRING ;repeat until null

000D STRING1:

000D C3 RET ;jreturn from procedure

000E STRING ENDP
. STARTUP ;start of program

0025 FC CLD ;select increment

0026 BE 0000 R MOV SI,OFFSET MES1 ;address MES1

0029 E8 FFrD4 CALL STRING ;display MES1

002C BE 0004 R MOV SI,OFFSET MES2 ;address MES2

002F E8 FFCE CALL STRING ;display MES2

: LEXIT ;exit to DOS
END ;end of file
6—7 QUESTIONS AND PROBLEMS
. What is a short JMP?

N =

. Which type of JMP is used when jumping to any location within the current code segment?

3. Whic.a JMP instruction allows the program to continue execution at any memory location in

the system?
4. Which JMP instruction is five bytes long?

W

. What is the range of a near jump in the 80386—Pentium Pro microprocessors?

6. Which type of JMP instruction (short, near, or far) assembles for the following:

(a) if the distance is 0210H bytes

6-7

22.

23.
24,

25.

26.

27.
28.

29.
30.

31.
32.
33.
34.
35.
36.
37.
38.

39.

QUESTIONS AND PROBLEMS 213

(b) if the distance is 0020H bytes
(c) if the distance is 10000H bytes

. What can be said about a label that is followed by a colon?

. The near jump modifies the program address by changing which register or registers?

. The far jump modifies the program address by changing which register or registers?

. Explain what the JMP AX instruction accomplishes. Also identify it as a near or a far jump

insttruction.

. Contrast the operation of a JMP DI with a JMP [DI].

. Contrast the operation of a JMP [DI] with a JMP FAR PTR [DI].

. List the five flag bits tested by the conditional jump instructions.

. Describe how the JA instruction operates.

. When will the JO instruction jump?

. Which conditional jump instructions follow the comparison of signed numbers?

. Which conditional jump instructions follow the comparison of unsigned numbers?
. Which conditional jump instructions test both the Z and C flag bits?

. When does the JCXZ instruction jump?

. Which SET instruction is used to set AL if the flag bits indicate a zero condition?
. The 8086 LOOP instruction decrementsregister ______ and tests it for a O to de-

cide if a jump occurs.

The 80486 LOOPD instruction decrements register ______ and tests it for a 0 to
decide if a jump occurs.

Explain how the LOOPE instruction operates.

Develop a short sequence of instructions that stores a 00H into 150H bytes of memory be-
ginning at extra segment memory location DATA. You must use the LOOP instruction to
help perform this task.

Develop a sequence of instructions that searches through a block of 100H bytes of memory.
This program must count all the unsigned numbers that are above 42H and all that are below
42H. Byte-sized data segment memory location UP must contain the count of numbers above
42H, and data segment location DOWN must contain the count of numbers below 42H.
Show what assembly language instructions are generated by the following sequence:

.IF AL==

ADD AL,2
.ENDIF

What happens if the WHILE 1 instruction is placed in a program?

Develop a short sequence of instructions that uses the REPEAT-UNTIL construct to copy the con-
tents of byte-sized memory BLOCKA into byte-sized memory BLOCKB until a 00H is moved.
What is the purpose of the .BREAK directive?

Using the DO-WHILE construct, develop a sequence of instructions that add the byte-sized
contents of BLOCK A to BLOCKB while the sum is not a 12H.

What is a procedure?

Explain how the near and far CALL instructions function.

How does the near RET instruction function?

The last executable instruction in a procedure must be a

Which directive identifies the start of a procedure?

How is a procedure identified as near or far?

Explain what the RET 6 instruction accomplishes.

Write a near procedure that cubes the contents of the CX register. This procedure may not
affect any register except CX.

Write a procedure that multiplies DI by SI and then divides the result by 100H. Make sure
that the result is left in AX upon returning from the procedure. This procedure may not
change any register except AX.

CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

40.

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

Write a procedure that sums EAX. EBX, ECX, and EDX. If a carry occurs, place a logic 1 in
EDL. If no carry occurs, place a logic 0 in EDI. The sum should be found in EAX after the
execution of your procedure.

What is an interrupt?

Which software instructions call an interrupt service procedure?

How many different interrupt types are available in the microprocessor?

What is the purpose of interrupt vector type number 0?

Illustrate the contents of an interrupt vector and explain the purpose of each part.

How does the IRET instruction differ from the RET instruction?

What is the IRETD instruction?

The INTO instruction only interrupts the program for what condition?

The interrupt vector for an INT 40H instruction is stored at what memory locations?
What instructions control the function of the INTR pin?

Which personal computer interrupt services the parallel LPT port?

Which personal computer interrupt services the keyboard?

What instruction tests the BUSY pin?

When will the BOUND instruction interrupt a program?

An ENTER 16,0 instruction creates a stack frame thatcontains ____________ bytes.
Which register moves to the stack when an ENTER instruction executes?

Which instruction passes opcodes to the numeric coprocessor?

What is a null string?

Explain how the STRING procedure operates in Example 6-22.

Rewrite Example 6-22 so it displays your name.

CHAPTER 7
Programming the Microprocessor

INTRODUCTION

This chapter develops programs and programming techniques using the MASM macro assem-
bler program, the DOS function calls, and the BIOS function calls. Many of the DOS function
calls and BIOS function calls are used in this chapter, but all are explained in complete detail in
Appendix A. Please scan the function calls listed in Appendix A as you read this chapter. The
MASM assembler has already been explained and demonstrated in prior chapters, but there are
still more features to learn at this point.

Some programming techniques explained in this chapter include macro sequences,
keyboard and display manipulation, program modules, library files, using the mouse, and
interrupt hooks. This chapter is meant as an introduction to programming, yet it provides
valuable programming techniques that provide a wealth of background so that programs
can be easily developed for the personal computer using either PCDOS or MSDOS as a
springboard.

CHAPTER OBJECTIVES

Upon completion of this chapter you will be able to:

1. Use the MASM assembler and linker program to create programs that contain more than
one module.

Explain the use of EXTRN and PUBLIC as they apply to modular programming.

Set up a library file that contains commonly used subroutines.

Write and use MACRO and ENDM to develop macro sequences as used with linear
programming.

Show how both sequential and random access files are developed for use in a system.
Develop programs using DOS function calls.

Differentiate a DOS function call from a BIOS function call.

Show how to hook into interrupts using DOS function calls.

Use conditional assembly language statements in programs.

Use the mouse in program examples.

Ealb g

© ORI

215

216

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

MODULAR PROGRAMMING

Many programs are too large to be developed by one person. This means that programs are rou-
tinely developed by teams of programmers. The linker program is provided with MSDOS or
PCDOS so that programming modules can be linked together into a complete program. Linking
is also an internal function of the Programmer’s WorkBench program that is bundled with
MASM version 6.11. This section of the text describes the linker, the linking task, library files,
EXTRN, and PUBLIC as they apply to program modules and modular programming, and intro-
duces Programmer’s WorkBench, which is also used to manage programs generated by teams.

The Assembler and Linker

The assembler program converts a symbolic source module (file) into a hexadecimal object
file. We have seen many examples of symbolic source files, written in assembly language, in prior
chapters. Example 7-1 shows how the assembler dialog that appears as a source module named
NEW.ASM is assembled. Note that this dialog is used with version 6.11 at the DOS command
line. This assembler also uses the Programmer’s WorkBench program for development without
resorting to the DOS command line. Whenever you create a source file, it should have an exten-
sion of ASM. Source files are created using WorkBench, an editor that comes with the assembler,
or by almost any other word processor or editor capable of generating an ASCII file.

EXAMPLE 7-1

C:\MASM611\FILES>ml /Flnew.lst new.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved.

Assembling: new.asm

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.objl: new.obj
Run File [new.exe]: "new.exe”
List File [nul.map): NUL
Libraries [.1lib]:

Definitions File [nul.def]:

C:\MASM611\FILES>

The assembler program (ML) requires the source file name following ML. In the example,
the /Fl switch is used to create a listing file named NEW.LST. This is optional, but recom-
mended so the output of the assembler can be viewed for troubleshooting problems. The source
listing file (.LST) contains the assembled version of the source file and its hexadecimal machine
language equivalent. The cross-reference file (.CRF), which is not generated in this example,
lists all labels and pertinent information required for cross-referencing.

The linker program, which executes as the second part of ML, reads the object files, cre-
ated by the assembler program, and links them into a single execution file. An execution file is
created with the file name extension EXE. Execution files are selected by typing the file name at
the DOS prompt (A:\). An example execution fi'c is FROG.EXE, which is executed by typing
FROG at the DOS command prompt.

If a file is short enough, less than 64K bytes long, it can be converted from an execution file
to a command file (COM). The command file is slightly different from an execution file in that
the program must be originated at location 100H before it can execute. This means that the pro-
gram must be no larger than 64K-100H in length. The ML program generates a command file if
the tiny model is used with a starting address of 100H. Note that Programmer’s WorkBench can

7-1 MODULAR PROGRAMMING \ 217

also be configured to generate a command file. The main advantage of a command file is that it
loads off the disk into the computer much more quickly than an execution file. It also requires
less disk storage space than the equivalent execution file.

Example 7-2 shows the protocol involved with the linker program when it is used to link
the files NEW, WHAT, and DONUT. The linker also links library files (1./BS) so procedures, lo-
cated within LIBS, can be used with the linked execution file. To invoke the linker, type LINK
at the DOS command prompt as illustrated in Example 7-2. Note that before files are linked,
they must first be assembled and they must be error-free.

EXAMPLE 7-2

C:\MASM611\FILES>ml new.asm what.asm donut.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved.

Assembling: new.asm
Assembling: what.asm
Assembling: donut.asm

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.objl: new.obj+
Object Modules [.objl: “what.obj”+
Object Modules [.objl: “donut.obj”
Run File [new.exel: “"new.exe”

List File ([nul.map]: NUL

Libraries [.1lib]:

Definitions File [nul.def]:

C:\MASM611\FILES>

In this example, after LINK is typed, the linker program asks for the “Object Modules,”
which are created by the assembler. In this example, we have three object modules: NEW,
WHAT, and DONUT. If more than one object file exists, the main program file (NEW in this ex-
ample) is typed first, followed by any other supporting modules.

Library files are entered after the file name and after the switch /LINK. In this example, we
did not enter a library file name. To use a library called NUMB.LIB while assembling a program
called NEW.ASM, type ML NEW.ASM /LINK NUMB.LIB

PUBLIC and EXTRN

The PUBLIC and EXTRN directives are very important to modular programming. We use
PUBLIC to declare that labels of code, data, or entire segments are available to other program
modules. We use EXTRN (external) to declare that labels are external to a module. Without
these statements, we could not link modules together to create a program using modular pro-
gramming techniques. ’

The PUBLIC directive is normally placed in the opcode field of an assembly language
statement to define a label as public so that it can be used by other modules. This label can be a
jump address, a data address, or an entire segment. Example 7-3 shows the PUBLIC statement
used to define some labels public to other modules. When segments are made public, they are
combined with other public segments that contain data with the same segment name.

EXAMPLE 7-3

.MODEL SMALL

.DATA
PUBLIC DATAL ;declare DATALl and DATA2 public
PUBLIC DATA2

218

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0000 0064][DATAL DB 100 DUP (?)
00
]
0064 0064 DATA2 DB 100 DUP (?)
00
]
.CODE
.STARTUP .
PUBLIC READ ;declare READ public
READ PROC FAR
0006 B4 06 MOV AH, 6 ;read keyboard
0008 B2 FF MOV DL, OFFH
000A CD 21 INT 21H
000C 74 F8 JE READ ;if no key typed
000E CB RET
READ ENDP
END

The EXTRN statement appears in both data and code segments to define labels as external
to the segment. If data are defined as external, their size must be represented as BYTE, WORD,
or DWORD. If a jump or call address is external, it must be represented as NEAR or FAR. Ex-
ample 7—4 shows how the external statement is used to indicate that several labels are external to
the program listed. Notice in this example that any external address or data are defined with the
letter E in the hexadecimal assembled listing.

EXAMPLE 7-4
.MODEL SMALL
.DATA
EXTRN DATAl:BYTE
EXTRN DATA2:BYTE
EXTRN DATA3:WORD
EXTRN DATA4 :DWORD
.CODE
EXTRN READ:FAR
.STARTUP
0005 BF 0000 E MOV DX,OFFSET DATAl
0008 B9 000A MOV CXx,10
000B START:
000B 9A 0000 ---- E CALL READ
0010 AA STOSB
0011 E2 F8 LOOP START
.EXIT
END
Libraries

Library files are collections of procedures that can be used by many different programs. These
procedures are assembled and compiled into a library file by the LIB program that accompanies
the MASM assembler program. Libraries allow common procedures to be collected into one
place so that they can be used by many different applications. The library file (FILENAME.LIB)
is invoked when a program is linked with the linker program.

Why bother with library files? A library file is a good place to store a collection of re-
lated procedures. When the library file is linked with a program, only the procedures required
by the program are removed from the library file and added to the program. If any amount of
assembly language programming is to be accomplished efficiently, a good set of library files
is essential.

EXAMPLE 7-5
0000 52
0001 B4 06
0003 B2 FF
0005 D 21
0007 74 F8
0009 5A
000A CB
0000 52
0001 B4 06
0003 8A DO
0005 CD 21
0007 5A
0008 CB

7-1 MODULAR PROGRAMMING 219
Creating a Library File. A library file is created with the LIB command typed at the DOS
prompt. A library file is a collection of assembled .OBJ files that each perform one procedure or
task. Example 7-5 shows two separate files (READ_KEY and ECHO) that will be used to
structure a library file. Please notice that the name of the procedure must be declared PUBLIC
in a library file and does not necessarily need to match the file name, although it does in this
example.

;The first library module is called READ_KEY. This
;procedure reads a key from the keyboard and returns with
;its ASCII code in AL.
.MODEL TINY

PUBLIC READ_KEY

READ_KEY PROC FAR

PUSH DX
READ_KEY1:
MOV AH, 6
MOV DH, OFFH
INT 21H
JE READ_KEY1
POP DX
RET
READ_KEY ENDP
END

;The second library module is called ECHO. This
;procedure displays the ASCII character in AL on the
;video screen.
.MODEL TINY

PUBLIC ECHO

ECHO PROC FAR
PUSH DX
MOV AH, 6
MOV DL, AL
INT 21H
POP DX
RET
ECHO ENDP

END

After each file is assembled (note that there are two complete example programs in Ex-
ample 7-5), the LIB program is used to combine them into a library file. The LIB program
prompts for information, as illustrated in Example 7-6, where these files are combined to form
the library IO.

EXAMPLE 7-6
C:\MASM611\FILES\LIB

Microsoft (R)
Copyright (C)

Library Manager Version 3.20.010
Microsoft Corp. 1983-1992. All rights reserved.

Library name: IO

Library file does not exist.
Operations: READ_KEY+ECHO
List file: IO

Create? Y

220

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

The LIB program begins with the copyright message from Microsoft, followed by the
prompt Library name. The library name chosen is IO for the I0.LIB file. Because this is a new
file, the library program asks if we wish to create the library file. The Operations: prompt is
where the library module names are typed. In this case we create a library using two procedure
files (READ_KEY and ECHO). Note that these files were created and assembled as
READ_KEY.ASM and ECHO.ASM from Example 7-5. The list file shows the contents of the
library and is illustrated for this library in Example 7-7. The list file shows the size and names of
the files used to create the library and also the public label (procedure name) that is used in the
library file.

If you must add additional library modules at a later time, type the name of the library file
after invoking LIB. At the Operations: type the new module name preceded with a plus sign to
add a new procedure. If you must delete a library module, use a minus sign before the operation
file name.

EXAMPLE 7-7
Jolel (o I— .ECHO READ_KEY.ooourire .READ_KEY

READ_KEY Offset: 00000010H Code and data size: BH
READ_KEY

ECHO Offset: 00000070H Code and data size: 9H

Once the library file is linked to your program file, only the library procedures actually
used by your program are placed in the execution file. Don’t forget to use the label EXTRN
when specifying library calls from your program module.

Macros

A macro is a group of instructions that perform one task, just as a procedure performs one task.
The difference is that a procedure is accessed via a CALL instruction, while a macro is inserted
in the program at the point of usage as a new sequence of instructions. Creating a macro is very
similar to creating a new opcode that can be used in the program. Macro sequences execute
faster than procedures because there are no CALL and RET instructions to execute. The macros
instructions are placed in your program by the assembler at the point they are invoked.

The MACRO and ENDM directives are used to delineate a macro sequence. The first
statement of a macro is the MACRO instruction, which contains the name of the macro and any
parameters associated with it. An example is MOVE MACRO A,B, which defines the macro as
MOVE. This new pseudo opcode uses two parameters: A and B. The last statement of a macro is
the ENDM instruction, which is placed on a line by itself. Never place a label in front of the

- ENDM statement, or the macro will not assemble.

Example 7-8 shows how a macro is created and used in a program. This macro moves the
word-sized contents of memory location B into word-sized memory location A. After the macro
is defined in the example, it is used twice. The macro is expanded by the assembler in this ex-
ample so that you can see how it assembles to generate the moves. Any hexadecimal machine
language statement followed by a number (a 1 in this example) is a macro expansion statement.
The expansion statements are not typed in the source program; they are generated by the assem-
bler to show that the assembler has inserted them into the program. Notice that the comment in
the macro is preceded with a ;; instead of a ; as is customary.

EXAMPLE 7-8

MOVE MACRO A,B

PUSH AX
MOV AX,B

7-1

0000
0001
0004
0007

0008
0009
000C
000F

MODULAR PROGRAMMING

50
Al
A3
58

50
Al
A3
58

0002 R
0000 R

0006 R
0004 R

T =

e

Local Variables in a Macro.
that appears in the macro, but is not available outside the macro. To define a local variable, we
use the LOCAL directive. Example 7-9 shows how a local variable, used as a jump address, ap-
pears in a macro definition. If this jump address is not defined as local, the assembler will flag it
with errors on the second and subsequent attempts to use the macro.

EXAMPLE 7-9
0000 52

0001

0001 B4 06
0003 B2 FF
0005 CD 21
0007 74 F8
0009 A2 0008 R
000C 5A

000D 52

000E

000E B4 06
0010 B2 FF
0012 CD 21
0014 74 F8
0016 A2 0009 R
0019 5A

R e

[e S g S

READ

READ1:

MOV
POP

ENDM
MOVE

PUSH
M
MOV
POP

MOVE

PUSH
MOV
MOV
POP

A,AX
AX

VAR1, VAR2

AX
AX,VAR2
VAR1, AX
AX

VAR3, VAR4

AX
AX,VAR4
VAR3, AX
AX

MACRO A
LOCAL READ1

PUSH

MOV
MOV
INT
JE
MOV
POP
ENDM

READ

PUSH

220000:

MOV
MOV
INT
JE

MOV
POP

READ

PUSH

2?0001:

MOV
MOV
INT
JE

MOV
POP

DX

AH, 6
DL, OFFH
21H
READ1L
A,AL

DX

VARS
DX

AH, 6
DL, OFFH
21H
220000
VARS, AL
DX

VAR6
DX

AH, 6
DL, OFFH
21H
270001
VAR6E, AL
DX

221

;use the MOVE macro

;juse the MOVE macro

Sometimes macros contain local variables. A local variable is one

; ireads keyboard
;;define READL as local

;read key into VAR5

;read key into VAR6

This example reads a character from the keyboard and stores it into the byte-sized memory
location indicated as a parameter with the macro. Notice how the local label READI is treated in
the expanded macros.

222

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

The LOCAL directive must always immediately follow the MACRO directive without any
intervening spaces or comments. If a comment or space appear between MACRO and LOCAL,
the assembler indicates an error and will not accept the variable as local.

Placing Macro Definitions in Their Own Module. Macro definitions can be placed in the pro-
gram file as shown, or can be placed in their own macro module. A file can be created that con-
tains only macros that are to be included with other program files. We use the INCLUDE
directive to indicate that a program file will include a module that contains external macro def-
initions. Although this is not a library file, for all practical purposes it functions as a library of
Macro sequences.

When macro sequences are placed in a file (often with the extension INC or MAC), they
do not contain PUBLIC statements. If a file called MACRO.MAC contains macro sequences, the
INCLUDE statement is placed in the program file as INCLUDE C:\ASSM\MACRO.MAC. No-
tice that the macro file is on drive C, subdirectory ASSM in this example. The INCLUDE state-
ment includes these macros just as if you had typed them into the file. No EXTRN statement is
needed to access the macro statements that have been included.

Conditional Statements in Macro Sequences

Conditional assembly language statements are available to the assembler for use in the assembly
process and also in macro sequences. The conditional statements for assembly flow control
create instructions that control the flow of the program and are variations of IF-THEN, IF-
THEN-ELSE, DO-WHILE, and REPEAT-UNTIL constructs used in high-level programming
languages, which were presented in the last chapter. The conditional statements for macro se-
quence control—presented here—are also available, but function to create instructions only at
assembly time within macro sequences.

Conditional Assembly Statements

As mentioned, conditional assembly is implemented with the IF-THEN or IF-THEN-ELSE con-
struct found in higher-level languages. Table 7-1 shows the forms used for the IF statement in
the conditional assembly process.

The IF and ENDIF statements allow portions of the program to assemble if some condition
is met. Otherwise, the statements between IF and ENDIF do not assemble.

Example 7-10 shows how the IF, ELSE, and ENDIF statement are used to conditionally as-
semble values for the width and length of paper in a program. Note that TRUE and FALSE are de-
fined as 1 and 0. This is important because these values are not predefined by the assembler. Next,
the width and length of the paper are adjusted by using TRUE and FALSE statements. This can be
expanded to ask an entire series of questions about a program so custom versions can be created.
Example 7-10 (a) is the original source code, and Example 7-10 (b) shows how the program

TABLE 7-1 Conditional

assembly language IF Statement Function
statements
IF If the expression is true
IFB If argument is blank
IFE If the expression is not true
IFDEF If the label has been defined
IFNB If argument is not blank
IFNDEF | f the label has not been defined
IFIDN If argument 1 equals argument 2

IFDIF If argument 1 does not equal argument 2

7-1 MODULAR PROGRAMMING ' 223

assembles for TRUE answers for both the width and length. Example 7-10 (c) shows the assem-
bled output for a false width and a true length.

When Example 7-10 (a) is assembled, TRUE and FALSE are equated to WIDT and
LENGT to modify the way that the assembler forms the program. In Example 7-10 (b), both
WIDT and LENGT are defined as TRUE, which causes the assembler to modify the way the pro-
gram is assembled so that a page is 72 columns wide and the length is continuous. Example 7-10
(c) is another example where the WIDT is FALSE and LENGT is TRUE, causing the assembler
to form the instructions that make the page 80 columns wide and the length continuous. The only
form not shown is where the page length is 66 lines.

Examples of some of the other forms listed in Table 7-1 appear later in the text. When one
of these new conditional statement appears, it is explained and shown with an example.

EXAMPLE 7-10 (a)

;jsource program

TRUE EQU 1 ;define true

FALSE EQU O ;define false

WIDT EQU FALSE ;set to true if 72 columns
;and false if 80 columns

LENGT EQU TRUE ;set to true if continuous

;and false if 66 lines

IF WIDT ;72 columns
WIDE DB 72
ELSE
WIDE DB 80 ;80 columns
ENDIF
IF LENGT ;1f continuous
LONG DB -1
ELSE
LONG DB 66 ;1f 66 lines
ENDIF

EXAMPLE 7-10 (b)
;assembled portion with WIDT = TRUE and LENGT = TRUE

;

IF WIDT ;72 columns
0000 48 WIDE DB 72

ELSE

ENDIF

IF LENGT ;if continuous
0001 FF LONG DB -1

ELSE

ENDIF

EXAMPLE 7-10 (c)

;assembled portion with WIDT = FALSE and LENGT = TRUE
IF WIDT ;72 columns
ELSE
0000 50 WIDE DB 80 ;80 columns
ENDIF
IF LENGT ;1f continuous

0001 FF LONG DB -1
ELSE
ENDIF

224

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Using Conditional Statements in Macros

Macro sequences have their own set of conditional instructions that differ somewhat from the
ones used with the assembler as presented in Chapter 6. For example, macros can use REPEAT
and WHILE, but they do so without the period in front of the keywords REPEAT and WHILE.
The REPEAT has no corresponding UNTIL, and the WHILE statement has no corresponding
ENDW when used in a macro. These statements are available to all versions of the assembler.

The macro statement WHILE and REPEAT commands are not preceded with a period and
use a different set of relational operators. Table 7-2 lists the relational operators used with
WHILE and REPEAT. These operators can also be used with any of the statements listed in
Table 7-1. Note that these are different than the operator specified in Table 6-3 for the WHILE
and .REPEAT statements.

REPEAT Statement in a Macro. The REPEAT statement has a parameter associated with it to re-
peat the macro sequence a fixed number of times. As with any other macro sequence, the repeat
sequence must end with the ENDM statement. The repeat sequence inserts the instruction that
appears between the REPEAT statement and the ENDM statement into the program the number
of times indicated with the REPEAT statement.

Example 7-11 shows a macro called TESTS and its calling program, which sends the 10
ASCII characters from zero through 9 to the video screen. Notice how this macro is formed
using the MACRO statement to name the macro TESTS, and also how the REPEAT statement
appears within macro TESTS with its own ENDM statement. Notice that the macro starts by
placing a 6 into AH and the ASCII code for a 0 in DL. This sets up the DOS INT 21H function
call, so a 0 is displayed on the video screen. Next, the REPEAT statement appears (note that it
does not contain a period as in . REPEAT). This is a different REPEAT statement used only in
macro sequences and available to all versions of MASM.

The repeated statements in this example are INT 21H which displays the ASCII contents
of DL, and INC DL, which modifies the ASCII code displayed. In this case, the REPEAT 10
causes the statements between REPEAT 10 and the first ENDM to be repeated 10 times as illus-
trated. Note that the 1 and 2 to the left of the instructions are listed to show that these statements
are assembler generated and not entered as part of the source program.

EXAMPLE 7-11
TESTS MACRO

MOV AH, 6
MOV DL, 0’
REPEAT 10
INT 21H
INC DL
ENDM
ENDM
0000 MAIN PROC FAR
TESTS ;display 0 through 9
0000 B4 06 1 MOV AH, 6
0002 B2 30 1 MOV DL,'0’
7004 CD 21 2 INT 21H
0006 FE C2 2 INC DL
0008 CD 21 2 INT 21H
000A FE C2 2 INC DL
000C CD 21 2 INT 21H
000E FE C2 2 INC DL
0010 cD 21 2 INT 21H
0012 FE C2 2 INC DL

7-1 MODULAR PROGRAMMING 225

TABLE 7-2 Relational

operators used with WHILE Operator Function
and REPEAT in macro
sequences EQ Equal
NE Not equal
LE Less than or equal
LT Less than
GE Greater than or equal
GT Greater than
NOT Logical inversion
AND Logical AND
OR Logical OR
XOR Logical exclusive-OR
0014 CD 21 2 INT 21H
0016 FE C2 2 INC DL
0018 CD 21 2 INT 21H
001A FE C2 2 INC DL
001C CD 21 2 INT 21H
001E FE C2 2 INC DL
0020 CD 21 2 INT 21H
0022 FE C2 2 INC DL
0024 CD 21 2 INT 21H
0026 FE C2 2 INC DL
0028 CD 21 2 INT 21H
002A FE C2 2 INC DL
.EXIT
0031 MAIN ENDP

WHILE Statement in a Macro. The WHILE statement appears in macro sequences in much the
same way as REPEAT appears. That is, the while loop is terminated with the ENDM statement.
The expression associated with WHILE determines how many times the loop is repeated. Again,
note that the WHILE statement in the macro is different from the .WHILE statement described in
Chapter 6. The WHILE statement is available to all versions of MASM.

Example 7-12 shows how the WHILE statement is used to generate a table of squares
from 2 squared to whatever value fits into an array of byte-sized memory called SQUARE. The
first statement of the sequence defines the label SQUARE for the first byte of data generated.
The WHILE RES LT 255 repeats the calculation (SEED*SEED) while the result is less than or
equal to 255. Notice that the table generated contains the square of the numbers from 2 to 15 or
225 (E1H). If you look closely at Example 7-12, the value of the SEED + 1 and SEED * SEED
shows the number and its square.

EXAMPLE 7-12

;table of byte-sized squares

0000 SQUARE LABEL BYTE ;1define label

= 0001 SEED = 1
= 0001 RES = SEED*SEED ; ;compute square
WHILE RES LT 255
DB RES
SEED = SEED+1
RES = SEED*SEED
ENDM
0000 01 1 DB RES
= 0002 1 SEED = SEED+1
= 0004 1 RES = SEED*SEED

226

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0001 04 1 DB RES
= 0003 1 SEED = SEED+1

= 0009 1 RES = SEED*SEED
0002 09 1 DB RES
= 0004 1 SEED = SEED+1

= 0010 1 RES = SEED*SEED
0003 10 1 DB RES
= 0005 1 SEED = SEED+1

= 0019 1 RES = SEED*SEED
0004 19 1 DB RES
= 0006 1 SEED = SEED+1

= 0024 1 RES = SEED*SEED
0005 24 1 DB RES
= 0007 1 SEED = SEED+1

= 0031 1 RES = SEED*SEED
0006 31 1 DB RES
= 0008 1 SEED = SEED+1

= 0040 1 RES = SEED*SEED
0007 40 1 DB RES
= 0009 1 SEED = SEED+1

= 0051 1 RES = SEED*SEED
0008 51 1 DB RES
= 000A 1 SEED = SEED+1

= 0064 1 RES = SEED*SEED
0009 64 1 DB RES
= 000B 1 SEED = SEED+1

= 0079 1 RES = SEED*SEED
000a 7 1 DB RES
= 000C 1 SEED = SEED+1

= 0020 1 RES = SEED*SEED
000B 90 1 DB RES
= 000D 1 SEED = SEED+1

= 00A9S 1 RES = SEED*SEED
000C A9 1 DB RES
= 000E 1 SEED = SEED+1

= 00C4 1 RES = SEED*SEED
000D C4 1 DB RES
= 000F 1 SEED = SEED+1

= 00E1 1 RES = SEED*SEED

FOR Statement in a Macro. The FOR statement iterates a list of data. If you are familiar with
BASIC, the FOR statement functions like the READ statement and the list of data associated
with it functions like the DATA statement. Example 7-13 shows how the FOR statement is used
to display a series of characters on the video display. Notice that the CHR:VARARG indicates
the variable name CHR that is of variable size (VARARG). The first use of the DISP macro gen-
erates the code required to display BARRY. The second use of DISP generates the code required
to display BREY. The FOR statement counts the variable used after display and repeats the com-
mands between FOR and ENDM for each variable, in this case each ASCII character.

EXAMPLE 7-13

DISP MACRO CHR:VARARG
MOV AH,2
FOR ARG, <CHR>
MOV DL, ARG
INT 21H
ENDM
ENDM

DISP 'B’,’A’,’'R’','R’','Y',' '

0000 B4 02 1 MOV AH,2
0002 B2 42 2 MOV DL, 'B’

7-1 MODULAR PROGRAMMING 227

0004 CD 21 2 INT 21H
0006 B2 41 2 MOV DL, A’
0008 CD 21 2 INT 21H
000A B2 52 2 MOV DL, 'R’
000C cD 21 2 INT 21H
000E B2 52 2 MOV DL, ‘R’
0010 cbD 21 2 INT 21H
0012 B2 59 2 MOV DL, 'Y’
0014 c¢D 21 2 INT 21H
0016 B2 20 2 MOV DL,
0018 CD 21 2 INT 21H
DIsp 'B’,'R’','E’,7Y’
001A B4 02 1 MOV AH,2
001C B2 42 2 MOV DL, 'B’
001E D 21 2 INT 21H
0020 B2 52 2 MOV DL, 'R’
0022 cD 21 2 INT 21H
0024 B2 45 2 MOV DL, 'E’
0026 CD 21 2 INT 21H
0028 B2 59 2 MOV DL, 'Y’
002A CD 21 2 INT 21H

IF, ELSE, and ENDIF Statements in @a Macro. The IF statement is used in a macro to make deci-
sions based on the parameters sent to the macro. As before, note that IF is used in a macro and
JF is used in a program. Only the IF statement is available to all versions of the assembler,
whereas .IF is available only to version 6.X.

In Example 7-14, a macro is developed that uses a number of conditional assembly state-
ments to read a key, display a character, or display a carriage return and line feed combination.
This example illustrates the use of IF, IFB, INB, ENDIF, and ELSE. The macro is called 10. If
10 is used on a line by itself, the assembler generates the code to read a key. If IO ~1 appears as
a statement, the assembler generates the code required to display a carriage return and line feed.
If IO ‘B’ appears as a statement, the assembler generates the code required to display the letter
B. This example is listed in expanded form so that the code generated by the assembler can be
viewed and studied. As before, the lines that contain a number between the hexadecimal code
and the statement in the program are assembler generated and are not included in the original
source program.

EXAMPLE 7-14

.MODEL TINY
0000 .CODE
;the IO macro functions in 3 ways
(1) IO read a key with echo
;(2) 10 -1 display a carriage return & line feed
;(3) IO 'B’ display the letter 'B’
;or 10 AL display contents of AL
I0 MACRO CHAR
IFB <CHAR> ;;1f CHAR is blank
MOV AH,1 ;;read key function
ENDIF
IFNB <CHAR> ;;1f CHAR not blank
MOV AH,2 ;:display character
IF CHAR EQ -1 ;;1f CHAR equals -1
MOV DL, 13 ;;display return

INT 21H

228

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0100
0102
0104
0106
0108

010A
01o0C
010E

0110
0112
0114

0116
0118

011a
011cC
011E
0120
0122

B4 02
B2 0D
CD 21
B2 0A
CD 21

B4 02
B2 42
CDh 21

B4 02
B2 45
CD 21

B4 01
CD 21

B4 02
B2 0D
CD 21
B2 0A
CDh 21

[

uny

[S e

MOV DL, 10 ;idisplay line feed
ELSE ;;1f CHAR not -1
MOV DL, CHAR ;;load CHAR to DL
ENDIF
ENDIF
INT 21H
ENDM
.STARTUP

;This program does a carriage return, line feed then
;displays the letters BE on the video screen. Next it
;waits for a key to be typed. Following the key, a
;carriage return/line feed is displayed.

i

I0 -1 ;return & line feed

MOV AH,2
MOV DL,13
INT 21H
MOV DL, 10
INT 21H

I0 ‘B’ ;display ‘B’

MOV AH,2
Mov DL, ‘B’
INT 21H

I0 'E’ ;display 'E’

MOV AH,2
MOV DL, 'E’
INT 21H

I0 jread key

MOV AH,1
INT 21H

I0 -1 ;return & line feed

MOV AH,2
MOV DL, 13
INT 21H
MOV DL, 10
INT 21H

JEXIT
END

The first part of the macro uses the IFB <CHAR> statement to test CHAR for a blank con-

dition. If CHAR is blank, the assembler generates the MOV AH,1 instruction followed by the
very last instruction in the macro, INT 21H, to read a key with echo. This is used in the program

with the IO statement.
The second part of the macro contains the IFNB <CHAR> statement to test if CHAR is not

blank. If CHAR is not blank, another IF-ELSE-ENDIF sequence appears to test the contents of
CHAR. If CHAR is a -1, the assembler generates the code required to display a carriage return
and line feed combination. If CHAR is not a —1, the ELSE statement places CHAR into DL for

7-2 USING THE KEYBOARD AND VIDEQ DISPLAY 229

display. This is a very powerful macro that can handle most keyboard and single-character dis-
play functions. It also illustrates the power of the conditional assembly statements when used
within a macro.

The Modular Programming Approach

The modular programming approach often involves a team of people assigned different pro-
gramming tasks. This allows the team manager to assign portions of the program to different
team members. Often, the team manager develops the system flowchart or shell and then divides
it into modules for team members.

A team member might be assigned the task of developing a macro definition file. This file
might contain macro definitions that handle the I/O operations for the system. Another team
member might be assigned the task of developing the procedures used for the system. In most
cases, the procedures are organized as a library file that is linked to the program modules. Fi-
nally, several program files or modules might be used for the final system, each developed by
different team members.

This approach requires a high level of communication between team members and good
documentation. Documentation is the key so that modules interface correctly. Communication
among members also plays a key role in this approach.

-2

USING THE KEYBOARD AND VIDEQ DISPLAY

Today there are few programs that don’t use the keyboard and video display. This section of the
text explains how to use the keyboard and video display connected to the IBM PC or compatible
computer running under either MSDOS or PCDOS.

Reading the Keyboard with DOS Functions

The keyboard of the personal computer is read via a DOS function call. A complete listing of the
DOS function calls appears in Appendix A. This section uses INT 21H with various DOS func-
tion calls to read the keyboard. Data read from the keyboard are either in ASCII-coded form or
in extended ASCII-coded form.

The ASCII-coded data appears as outlined in Table 1-7. The extended character set of
Table 1-8 applies to printed or displayed data only and not to keyboard data. Notice that the
ASCII codes in Table 1-7 correspond to most of the keys on the keyboard. Also available
through the keyboard are extended ASCII-coded keyboard data. Table 7-3 lists most of the ex-
tended ASCII codes obtained with various keys and key combinations. Notice that most keys on
the keyboard have alternative key codes. Each function key has four sets of codes selected by the
function key alone, the shift—function key combination, the alternate—function key combination,
and the control-function key combination.

There are three ways to read the keyboard. The first method reads a key and echoes (or dis-
plays) the key on the video screen. The second way simply tests to see if a key is pressed—if it
is, the function reads the key; otherwise, it returns without any key. The third way allows an en-
tire character line to be read from the keyboard.

Reading a Key with an Echo. Example 7-15 shows how a key is read from the keyboard and
echoed (sent) back out to the video display using a procedure called KEY. Although this is the
easiest way to read a key, it is also the most limited because this method always echoes the

230 CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

TABLE 7-3 The keyboard

scanning and extended ASCII Extended ASCII code with....

codes as returned from the

keyboard Key Scan Code Nothing Shift Control Alternate
Esc 01 01
1 02 78
2 03 03 79
3 04 7A
4 05 78
5 06 7C
6 07 7D
7 08 7E
8 09 7F
9 0A 80
0 0B 81
- ocC 82
+ oD 83
Bksp OE OE
Tab OF OF 94 A5
Q 10 10
w 11 11
E 12 12
R 13 13
T 14 14
Y 15 15
U 16 16
| 17 17
(0] 18 18
P 19 19
[iA 1A
] 1B 1B
Enter 1C iC
Enter iC A6
Letrl iD
Rectrl 1D
A 1E 1E
S 1F 1F
D 20 20
F 21 21
G 22 22
H 23 23
J 24 24
K 25 25
L 26 26
; 27 27
' 28 28
29 29
Lshft 2A

7-2 USING THE KEYBOARD AND VIDEO DISPLAY

TABLE 7-3 (continued)

231

Extended ASCII code with....

Key Scan Code Nothing Shift Control Alternate
z 2C 2C
X 2D 2D
C 2E 2E
\Y 2F 2F
B 30 30
N 31 31
M 32 32
, 33 33
. 34 34
/ 35 35
Gray / 35 95 A4
Rshft 36

PrtSc EO 2A E0 37

L alt 38

R alt 38

Space 39

Caps 3A

F1 3B 3B 54 5E 68
F2 3C 3C 55 5F 69
F3 3D 3D 56 60 6A
F4 3E 3E 57 61 €B
F5 3F 3F 58 62 6C
F6 40 40 59 63 6D
F7 41 41 5A 64 6E
F8 42 42 5B 65 6F
F9 43 43 5C 66 70
F10 44 44 5D 67 71
F11 57 85 87 89 8B
F12 58 86 88 8A 8C
Num 45

Scroll 46

Home EO 47 47 47 77 97
Up 48 48 48 8D 98
Pgup EO 49 49 49 84 99
Gray - 4A

Left 4B 4B 4B 73 9B
Center 4C .
Right 4D 4D 4D 74 9D
Gray + 4E

End EO 4F 4F 4F 75 oF
Down EO 50 50 50 91 A0
Pgdn EO 51 51 51 76 A1l
Ins EO0 52 52 52 92 A2
Del EO0 53 53 53 93 A3
Pause E0 10 45

232

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

character to the screen even if it is an unwanted character. The DOS function number 01H also
responds to the control-C key combination and exits to DOS if it is typed.

EXAMPLE 7-15

0000 KEY PROC FAR

0000 B4 01 MOV AH,1 ;function 01H

0002 CD 21 INT 21H ;jread key

0004 0A CO OR AL, AL ;test for 00H, clear carry
0006 75 03 JNZ KEY1

0008 CD 21 INT 21H ;get extended

000A F9 STC ;indicate extended

000B KEY1:

000B CB RET

000C KEY ENDP

To read and echo a character, the AH register is loaded with DOS function number O1H.
This is followed by the INT 21H instruction. Upon return from the INT 21H, the AL register
contains the ASCII character typed; the video display also shows the typed character. If AL =0
after the return, the INT 21H instruction must again be executed to obtain the extended ASCII-
coded character (see Table 7-3). The procedure of Example 7-15 returns with carry set (1) to in-
dicate an extended ASCII character and carry cleared (0) to indicate a normal ASCII character.

Reading a Key without an Echo. The best single character key-reading function is function
number 06H. This function reads a key without an echo to the screen. It also allows extended
ASCII characters and does not respond to the control-C key combination. This function uses AH
for the function number (06H) and DL = OFFH to indicate that the function call (INT 21H) will
read the keyboard without an echo.

EXAMPLE 7-16

000 KEYS PROC FAR
0000 B4 06 MOV AH, 6 ;function 06H
0002 B2 FF MOV DL, OFFH
0004 CD 21 INT 21H ;read key
0006 74 F8 JE KEYS ;1f no key
0008 0A CO OR AL,AL ;test for 00H, clear carry
000A 75 03 JNE KEYS1
000C cCD 21 INT 21H ;get extended
- 000E F9 STC ;indicate extended
000F KEYS1:
000F CB RET
0010 KEYS ENDP

Example 7-16 shows a procedure that uses function number 06H to read the keyboard.
This performs as shown in Example 7-15 except that no character is echoed to the video display.

If you examine the Aprocedure, there is one other difference. Function call number 06H re-
turns from the INT 21H instruction even if no key is typed, while function call 01H waits for a
key to be typed. This is an important difference that should be noted. This feature allows soft-
ware to perform other tasks between checking the keyboard for a character.

Read an Entire Line with an Echo. Sometimes it is advantageous to read an entire line of data
with one function call. Function call number OAH reads an entire line of information—up to 255
characters—from the keyboard. It continues to acquire keyboard data until either the enter key
(ODH) is typed or the character count expires. This function requires that AH = 0AH and DS:DX

7-2 USING THE KEYBOARD AND VIDEO DISPLAY 233

addresses the keyboard buffer (a memory area where the ASCII data are stored). The first byte of
the buffer area must contain the maximum number of keyboard characters read by this function.
If the number typed exceeds this maximum number, the function returns just as if the enter key
were typed. The second byte of the buffer contains the count of the actual number of characters
typed, and the remaining locations in the buffer contain the ASCII keyboard data.

Example 7-17 shows how this function reads two lines of information into two memory
buffers (BUF1 and BUF2). Before the call to the DOS function through the LINE procedure, the
first byte of the buffer is loaded with a 255, so up to 255 characters can be typed. If you assemble
and execute this program, the first and second lines are accepted. The only problem is that the
second line appears on top of the first line. The next section of the text explains how to output
characters to the video display to solve this problem.

EXAMPLE 7-17

;A program that reads two lines of data from the keyboard
;using DOS INT 21H function number OAH.

AR rygegh R

;LINE procedure to read a line.

i

.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 0101 [BUF1 DB 257 DUP (?) ;jdefine BUF1
00
]
0101 0101 [BUF2 DB 257 DUP (?) ;define BUF2
00
]
0000 .CODE ;start CODE segment
. STARTUP ;start program
0017 C6 06 0000 R FF MOV BUF1, 255 ;character count of 255
001C BA 0000 R MOV DX,OFFSET BUF1 ;address BUF1
001F E8 000F CALL LINE ;read a line
0022 C6 06 0101 R FF MOV BUF2,255 ;jcharacter count of 255
0027 BA 0101 R MOV DX,OFFSET BUF2 ;address BUF2
002A EB8 0004 CALL LINE ;read a line
CEXIT ;exit to DOS
;The LINE procedure uses DOS INT 21H function OAH to
;read and echo an entire line from the keyboard.
;***parameters***
;DX must contain the data segment offset address of the
;buffer. The first location in the buffer contains the
;number of characters to be read for the line.
;Upon return the second location in the buffer contains
;the line length.
0031 LINE PROC NEAR
0031 B4 0A MOV AH, 0AH ;select function 0AH
0033 CD 21 INT 21H jaccess DOS
0035 C3 RET ;return from procedure
0036 LINE ENDP

END ;end of file

Writing to the Video Display with DOS Functions

With almost ary program, data must be displayed on the video display. Video data is displayed in
a number of different ways with DOS function calls. We use functions 02H or 0O6H for displaying
one character at a time or function 09H for displaying an entire string of characters. Because func-
tions 02H and O6H are identical, we tend to use function O6H because it is also used to read a key.

234

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Displaying One ASCI! Character. Both DOS functions 02H and 06H are explained together be-
cause they are identical for displaying ASCII data. Example 7-18 shows how this function is
used to display a carriage return (ODH) and a line feed (OAH). Here a macro, called DISP (dis-
play), is used to display the carriage return and line feed. The combination of a carriage return
and a line feed moves the cursor to the next line at the left margin of the video screen. This two-
step process is used to correct the problem that occurred between the lines typed through the key-
board in Example 7-17.

EXAMPLE 7-18

;A program that displays a carriage return and a line
;feed using the DISP macro.

.MODEL TINY ;select TINY model

.CODE ;start CODE segment
DISP MACRO A ;:;display A macro
MOV AH, 06H ;;DOS function 06H
MOV DL,A ;:;place parameter A in DL
INT 214 ;:display parameter A
ENDM
.STARTUP ;start program
DISP ODH ;display carriage return
0100 B4 06 1 MOV AH, 06H
0102 B2 0D 1 MOV DL, ODH
0104 <CD 21 1 INT 21H
DISP 0AH ;display line feed
0106 B4 06 1 MOV AH, 06H
0108 B2 0a 1 MOV DL, 0AH
010A CD 21 1 INT 21H
CEXIT ;jexit to DOS
END ;end of file

Displaying a Character String. A character string is a series of ASCII-coded characters that end
with a $ (24H) when used with DOS function call number 09H. Example 7-19 shows how a
message is displayed at the current cursor position on the video display. Function call number
09H requires that DS:DX address the character string before executing the INT 21H instruction.

EXAMPLE 7-19

.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 OD OA OA 54 MES DB 13,10,10,'This is a test line.S$’
68 69 73 20
69 73 20 61
20 74 65 73
74 20 6C 69
6E 65 2E 24
0000 .CODE ;start CODE segmen*
. STARTUP ;start program
0017 B4 09 MOV 2H,9 ;select function 09H
0019 BA 0000 R MOV DX,OFFSET MES ;address character string
001C CD 21 INT 21H ;jaccess DOS
LEXIT ;exit to DOS

END ;end of file

7-2 USING THE KEYBOARD AND VIDEQ DISPLAY 235

This example program can be entered into the assembler, linked, and executed to produce
“This is a test line” on the video display.

The .EXIT directive embodies the DOS function 4CH. As shown in Appendix A, DOS
function 4CH terminates a program. The .EXIT directive inserts a series of two instructions in
the program, MOV AH,4CH, followed by an INT 21H instruction.

Using BIOS Video Function Calls

In addition to the DOS function call INT 21H, we also have video BIOS (basic I/O system) func-
tion calls at INT 10H. The DOS function calls allow a key to be read and a character to be dis-
played with ease, but the cursor is difficult to position at the desired screen location. The video
BIOS function calls allow more control over the video display than do the DOS function calls.
The video BIOS function calls also require less time to execute than the DOS function calls. The
DOS function calls do not allow cursor placement, while the video BIOS function calls do.

Cursor Position. Before any information is placed on the video screen, the position of the cursor
should be known. This allows the screen to be cleared and started at any desired location. Video
BIOS function number 03H allows the cursor position to be read from the video interface. Video
BIOS function number 02H allows the cursor to be placed at any screen position. Table 7—4
shows the contents of various registers for both functions 02H and 03H.

The page number, in register BH, should be 0 before setting the cursor position. Most
modern software does not normally access the other pages (1-7) of the video display. The page
number is often ignored after a cursor read. The 0 page is available in the CGA (color graphics
adapter), EGA (enhanced graphics adapter), and VGA (variable graphics array) text modes of
operation.

The cursor position assumes that the left-hand page column is column 0O progressing across
a line to column 79. The row number corresponds to the character line number on the screen.
Row 0 is the uppermost line while row 24 is the last line on the screen. This assumes that the text
mode selected for the video adapter is 80 characters per line by 25 lines. Other text modes, such
as 40 x 25 and 96 x 43, are also available.

Example 7-20 shows how the video BIOS function call INT 10H is used to clear the video
screen. This is just one method of clearing the screen. Notice that the first function call positions
the cursor to row 0 and column 0, which is called the home position. Next, we use the DOS
function call to write 2,000 (80 characters per line X 25 lines) blank spaces (20H) on the video
display. Finally, the cursor is again moved back to the home position.

EXAMPLE 7-20

;A program that clears the screen and homes the
;cursor to the upper left-hand corner of the screen.

7

.MODEL TINY ;select TINY model
0000 .CODE ;start CODE segment
HOME MACRO ; ;home cursor macro
MOV AH,2 ;:function 02H
MOV BH, 0 ;ipage 0O
MOV DX, 0 ;;row 0, line 0
INT 10H ; ;home cursor

TABLE 7-4 Video BIOS function INT 10H

AH Description Parameters

02H Sets cursor position DH = row, DL = column, and BH = page number
03H Reads cursor position DH = row, DL = column, and BH = page number

236

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

ENDM
. STARTUP ;start program
HOME ;home cursor
0100 B4 02 1 MOV AH, 2
0102 B7 00 1 MOV BH, 0
0104 BA 0000 1 MOV DX, 0
0107 CD 10 1 INT 10H
0109 B9 07D0O MOV CX,25*80 ;load character count
010C B4 06 MOV AH, 6 ;select function 06H
010E B2 20 MOV DL,’ ' ;select a space
0110 MAINI:
0110 CD 21 INT 21H ;display a space
0112 E2 FC LOOP MAIN1 ;repeat 2000 times
HOME ;home cursor
0114 B4 02 1 MOV AH,2
0116 B7 00 1 MOV BH,O0
0118 BA 0000 1 MOV DX, 0
011B CD 10 1 INT 10H -
LEXIT ;exit to DOS
END ;end of file

If this example is assembled, linked, and executed, a problem surfaces. This program is too
slow to be useful in most cases. To correct this situation, another video BIOS function call is
used. We can use the scroll function (06H) to clear the screen at a much higher speed.

Function 06H is used with a O0H in AL to blank the entire screen. This allows Example
7-20 to be rewritten so that the screen clears at a much higher speed. See Example 7-21 for a
faster clear and home cursor program. Here function call number O8H reads the character attrib-
utes for blanking the screen. Next, they are positioned in the correct registers and DX is loaded
with the screen size, 4FH (79) and 19H (25). If this program is assembled, linked, executed, and
compared with Example 7-20, there is a big difference in the speed at which the screen is
cleared. (Make sure that the lines in the program that are macro expansion ending in a 1 are not
typed into the program.) Please refer to Appendix A for other video BIOS INT 10H function
calls that may prove useful in your applications. Also listed in Appendix A is a complete listing
of all of the INT functions available in most computers.

EXAMPLE 7-21

;A program that clears the screen and homes the cursor.

i

.MODEL TINY ;select TINY model
0000 .CODE ;start code segment

HOME MACRO ; ihome cursor

MOV AH,2

MOV BH,O0

MOV DX,0

INT 10H

ENDM

.STARTUP ;start program
0100 B7 00 MOV BH,O
0102 B4 08 MOV AH,8
0104 CD 10 INT 10H ;read video attribute
0106 8A DF MOV BL,BH ;load page number
0108 8A FC MOV BH,AH
010A B9 0000 MOV CX,0 ;load attributes
010D BA 194F MOV DX, 194FH ;line 25, column 79
0110 B8 0600 MOV AX, 600H ;select scroll function
0113 <D 10 INT 10H ;scroll screen

HOME ;home cursor

0115 B4 02 1 MOV AH,2

7-2 USING THE KEYBOARD AND VIDEQ DISPLAY 237

0117 B7 00 1 MOV BH,O0
0119 BA 0000 1 MOV DX, 0
01iC CDh 10 1 INT 10H
LEXIT ;exit to DOS
END ;end program
Display Macro

One of the more usable macro sequences is the one illustrated in Example 7-22. Although it is
simple and has been presented before, it saves much typing when creating programs that must dis-
play many individual characters. What makes this macro so useful is that a register can be speci-
fied as the argument, an ASCII character in quotes, or the numeric value for an ASCII character.

EXAMPLE 7-22

;A program that displays AB followed by a carriage
;return and line feed combination using the DISP macro.

7

.MODEL TINY ;select TINY model
.CODE ;start CODE segment
DISP MACRO VAR ; idisplay VAR macro
MOV DL, VAR
MOV AH, 6
INT 21H
ENDM
.STARTUP ;start program
DISpP ‘A’ ;display ‘A’
0100 B2 41 1 MOV DL, ‘A’
0102 B4 06 1 MOV AH, 6
0104 ¢cD 21 1 INT 21H
0106 BO 42 MOV AL, "B’ ;load AL with ’B’
DISP AL ;display ‘B’
0008 8A DO 1 MOV DL, AL
000A B4 06 1 MOV AH, 6
000C CD 21 1 INT 21H
DISP 13 ;jdisplay carriage return
000E B2 0D 1 MOV DL, 13
0010 B4 06 1 MOV AH, 6
0012 ¢cD 21 1 INT 21H
DISP 10 ;display line feed
0014 B2 O0A 1 MOV DL,10
0016 B4 06 1 MOV AH, 6
0018 CD 21 1 INT 21H
EXIT ;exit to DOS
END ;end of file
The Mouse

The mouse pointing device is controlled with INT 33H. Refer to Appendix A for a list of the Mi-
crosoft-compatible mouse functions associated with INT 33H. Unlike with DOS INT 21H, the
function number is selected through the AL register and AH is usually set to 00H before the INT
33H is executed. There are a total of 50 mouse functions available, of which only the main func-
tions are described in this section of the text.

Testing for a Mouse

To determine if a mouse driver is installed in the system, test the contents of interrupt vector
33H. If interrupt vector 33H contains a 0000:0000, the mouse driver is not installed in the

238

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

system. In some systems, a vector exists even though no mouse driver is present. In this instance.
the INT 33H vector address points to an IRET instruction (CFH). The interrupt vector address is
retrieved by using the DOS INT 21H function 35H. The address is then tested for 0000:0000; if
it contains another value, the contents of the address pointed to by interrupt vector 33H are tested
for CFH. Refer to Example 7-23 for a procedure that tests for the existence of the mouse driver.
Once it is determined that a possible mouse driver exists, the mouse is reset to make certain
it is connected to the system and functioning. The mouse reset is accomplished by using mouse
function 00OH. The return from function 00H is AX = 0000H if no mouse is present. The CHKM
procedure returns if the mouse exists with carry cleared and if no mouse exists with carry set.

EXAMPLE 7-23

;A procedure that tests for the presence of a mouse driver.
;***Output parameters***

;Carry = 1, if no mouse present

;jCarry = 0, if mouse is present

0000 CHKM PROC NEAR

0000 B8 3533 MOV AX,3533H ;get INT 33H vector
0003 CD 21 INT 21H ;returns vector in ES:BX
0005 8C CO MOV AX,ES

0007 OB C3 OR AX,BX ;test for 0000:0000
0009 F9 STC ;indicate no mouse
000Aa 74 13 Jz CHKM1 ;if no mouse driver
000C 26: 80 3F CF CMP BYTE PTR ES:[BX],0CFH

0010 F9 STC

0011 74 oC JE CHKM1 ;1f no mouse driver
0013 B8 0000 MOV AX,0

0016 CD 33 INT 33H ;reset mouse

0018 83 F8 00 CMP AX,0

001B F9 STC

001C 74 01 JZ CHKM1 ;if no mouse

001E F8 CLC

001F CHKM1 :

001F C3 RET

0020 CHKM ENDP

Which Mouse and Driver?

The mouse function interrupt determines both the type of mouse connected to the system and the
driver version number. Example 7-24 lists a program that displays the mouse type and driver
version number after a test is made to determine if the mouse is present using the procedure of
Example 7-23. Here mouse INT 33H, function 24H locates the mouse driver version number
and mouse driver type. The return from function 24H leaves the mouse driver number in BX
(BH = major and BL = minor) and the mouse type in CH. If the mouse driver version is 8.00,
then BH = 08H and BL = 00H. The mouse types that are returned in register CH are currently
bus = 1, serial = 2, InPort = 3, PS/2 = 4, and Hewlett-Packard = 5. As time passes, this list of
mouse types may grow.

EXAMPLE 7-24

;A program that displays the mouse driver version
;number and the type of mouse installed.
.MODEL SMALL
0000 .DATA

7-2 USING THE KEYBOARD AND VIDEO DISPLAY 239

0000 OD OA 4E 6F 20 4D MES1 DB 13,10, '"No MOUSE/MOUSE DRIVER found.$’
4F 55 53 45 2F 4D
4F 55 53 45 20 44
52 49 56 45 52 20
66 6F 75 6E 64 2E

001F 0D 0A 4D 6F 75 73 MELL DB 13,10, 'Mouse driver version '’
65 20 64 72 69 76
65 72 20 76 65 72
73 69 6F 6B 20

0036 20 20 20 20 20 20 M1 DB 4 ',13,10,'s"
20 0D OA 24
0040 004D R 0051 R TYPES DW T1,T2,T3,T4,T5
0058 R 005F R
0064 R
004A 42 75 73 24 T1 DB 'Bus$’
004E 53 65 72 69 61 6C T2 DB ‘Serials$’
24
0055 49 6E 50 6F 72 74 T3 DB 'InPort$’
24
005C 50 53 2F 32 24 T4 DB 'PS/2$"
0061 48 50 24 T5 DB 'HPS’
0064 20 6D 6F 75 73 65 MES3 DB ’ mouse installed.’,13,10,'$’

20 69 6E 73 74 61
6C 6C 65 64 2E 0D

0a 24

0000 .CODE

.STARTUP
0017 E8 0041 CALL CHKM ;test for mouse
001a 73 05 JNC MAIN1 ;1f mouse present
001C BA 0000 R MOV DX,OFFSET MES1
001F EB 32 JMP MAIN2 ;1f no mouse
0021 MAINL:
0021 B8 0024 MOV AX,24H
0024 CD 33 INT 33H ;get driver version
0026 BF 0039 R MOV DI,OFFSET M1
0029 8A C7 MOV AL, BH ;save major version
002B E8 004D CALL DISP
002E C6 05 2E MOV BYTE PTR [DI],’.’ ;save period
0031 47 INC DI
0032 8A C3 MOV AL,BL ;save minor version
0034 E8 0044 CALL DISP
0037 BA 0022 R MOV DX,OFFSET MES2 ;display version
003A B4 09 MOV AH,9
003C D 21 INT 21H
003E BE 0043 R MOV SI,OFFSET TYPES ;index type
0041 B4 00 MOV AH,0
0043 8A CS MOV AL,CH
0045 48 DEC AX
0046 03 FO ADD ST,AX
0048 03 FO ADD SI,AX
004A 8B 14 MOV DX, [SI] ;display type
004C B4 09 MOV AH, 9
004E CD 21 INT 21H
0050 BA 0067 R MOV DX,OFFSET MES3
0053 MAIN2:
0053 B4 09 MOV AH,9
0055 CD 21 INT 21H

LEXIT

;A procedure that tests for the presence of a mouse.
;***Output parameters***

;Carry = 1, if no mouse present

;Carry = 0, if mouse is present

005B CHKM PROC NEAR

240

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

005B B8 3533 MOV AX,3533H ;get INT 33H vector
005E CD 21 INT 21H ;jvector in ES:BX
0060 8C CO MOV AX,ES

0062 OR C3 OR AX, BX ;test for 0000:0000
0064 F9 STC

0065 74 13 JZ CHKM1 ;1f no mouse driver
0067 26: 80 3F CF CMP BYTE PTR ES:[BX],0CFH

006B F9 STC

006C 74 0OC JE CHKM1 ;1f no mouse driver
006E B8 0000 MOV 2AX,0

0071 CD 33 INT 33H ;reset mouse

0073 83 F8 00 CMP AX,0

0076 F9 STC

0077 74 01 Jz CHKM1 ;if no mouse

0079 F8 CLC

007A CHKM1:

007A C3 RET

007B CHKM ENDP

;
;save the ASCII coded version number
;***input parameters***

;AL = version

;DS:DI = address where stored
;***output parameters***

;ASCII version number stored at DS:DI

7

007B DISP PROC NEAR
007B B4 00 MOV AH,0
007D D4 0A AAM jconvert to BCD
007F 05 3030 ADD AX,3030H
0082 80 FC 30 CMP AH, 30H ;save ASCII version
0085 74 03 JE DISP1 ;suppress zero
0087 88 25 MOV [DI],AH
0089 47 INC DI
008A DISP1:
008a 88 05 MOV [DI],AL
0osc 47 INC DI
008D C3 RET
008E DISP ENDP
END
Using the Mouse

The mouse functions in either text mode or graphics mode. This section illustrates how to enable
the mouse for use with a text mode program. The mouse also functions in graphics mode, but in-
stead of being displayed as a block, the cursor or mouse pointer is displayed as an arrow. As with
the prior examples, the first step is to check for the presence of a mouse driver. Example 7-25
uses the CHKM procedure to test for the presence of the mouse. If no mouse is present, a return
from TM_ON occurs with the carry flag set. If the mouse is present, the cursor is displayed and
a return the carry flag cleared is made.

EXAMPLE 7-25

;The TM_ON procedure tests for the presence of a mouse
;and enables mouse pointer.
;uses the CHKM (check for mouse) procedure

H
;***output parameters***

;Carry = 0, if mouse is present pointer enabled
;Carry = 1, if no mouse present

i

7-2 USING THE KEYBOARD AND VIDEO DISPLAY

0000

0000
0003
0005
0008
000A
000B
000B

000C

E8
72
B8
CD
F8

c3

FFDD

0001
33

TM_ON

PROC NEAR

CALL CHKM
ac TM_ON1
MOV AX,1
INT 33H
CLC

TM_ON1:

TM_ON

RET

ENDP

241

;test for mouse
;1f no mouse
;show mouse pointer

; show mouse present

The procedure of Example 7-25 only enables the mouse and displays the mouse cursor. To

use the mouse, a program must be written that tracks the mouse and its position. Such a program
appears in Example 7-26.

EXAMPLE 7-26

0000
0000

000D
0013

001F

0026
0028
0000

0017
001A
001C
001C
001F
0021
0024

0026
002A
002C
0030
0032
0032
0036
003A
003D
003F
0042
0045
0048

004B
004E

0050
0052
0055

0057
005A

B4
BA
CD

B8
CD

OE 0026 R

06

16 0028 R

EA

0E 0026 R
16 0028 R

000D
ClL

0051
001F
0028
0048

0002
33

09
0000
21

0001
33

R

;a program that displays the mouse pointer and its

;X and Y posi

i

tion.

.MODEL SMALL
.DATA

MES DB

DB

MY DB

X DW
Y DW

.CODE

13,’'X Position= ‘
' '

'Y Position= ‘'

’ $l

? ;X position
;Y position

.STARTUP

CALL

Jc
MAINI:

MOV

INT

CMP

JE

CMP

CMP
JE
MAIN2:

MOV
MOV
MOV
MOV
CALL
MOV
MOV
CALL

MOV
INT

MOV
MOV
INT

MOV
INT

TM_ON ;enable mouse
MAIN4 ;if no mouse

AX,3 ;get mouse status
33H

BX, 1

MAIN3 ;if left button

CX,X

MAIN2 ;1f X changed

DX,Y

MAIN1 ;if Y did not change

X,CX ;save new position
Y, DX

DI,OFFSET MX

AX,CX

PLACE ;store ASCIT X
DI,OFFSET MY

AX,Y

PLACE ;store ASCII Y

AX, 2
33H ;hide mouse pointer

AH, 9
DX, OFFSET MES
21H ;display position

axX,1
33H ;show mouse pointer

242

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

005C
005E
005E
0061

0063

0067

0067
006A

006C
006E
0070
0071
0073
0077
0078
007a
007D
007F
0082
0083
0085
0086
0086

0087

0087

0087
008A
008C
008F
0091
0092
0092

0093

0093

0093
0096
0099

EB BE

B8 0000
CD 33

B8 3533
CD 21

8C CO
0B C3

74 13
26: 80 3F CF

74 0C

"B8 0000

83 F8 00

74 01

E8 FFDD

B8 0001
CD 33

B9 0000
BB 000A

JMP MAIN1 ;do again
MAIN3:
MOV AX,0 ;reset mouse
INT 33H
MAIN4:
LEXIT

;A procedure that tests for the presence of a mouse
;*¥**Qutput parameters***

;Carry 1, if no mouse present

;jCarry 0, if mouse is present

CHKM PROC NEAR

MOV AX,3533H ;get INT 33H vector
INT 21H ;vector in ES:BX
MOV AX,ES
OR AX,BX ;test for 0000:0000
STC
JZ CHKM1 ;if no mouse driver
CMP BYTE PTR ES: [BX], OCFH
STC
JE CHKM1 ;if no mouse driver
MOV AX,0
INT 33H ;reset mouse
CMP AX,0
STC
Jz CHKM1 ;1f no mouse
CLC

CHKM1:
RET

CHKM ENDP

;The TM_ON procedure tests for the presence of a
;mouse and enables mouse pointer.
;uses the CHKM (check for mouse) procedure

;
;***output parameters***

;Carry = 0, if mouse is present pointer enabled
;Carry = 1, if no mouse present

TM_ON PROC NEAR

CALL CHKM ;test for mouse
Jc TM_ON1
MOV AX,1 ;show mouse pointer
INT 33H
CLC
TM_ON1:
RET

TM_ON ENDP

;The PLACE procedure converts the contents of AX
;into a decimal ASCII-coded number stored at the
;memory location addressed by DS:DI.

;***input parameters***

;AX = number to be converted to decimal ASCII code
;DS:DI = address where number is stored

PLACE PROC NEAR
MOV CX,0 ;jclear count

MOV BX, 10 ;set divisor
PLACEl:

7-3 DATA CONVERSIONS - 243

0099 Ba 0000 MOV DX,0 ;jclear DX
009C F7 F3 DIV BX ;divide by 10
009E 52 PUSH DX
009F 41 INC CX
00A0 83 F8 00 CMP AX,0
00A3 75 F4 JNE PLACE1 ;1f quotient != 0
00AS PLACE2:
00AS5 BB 0005 MOV BX,5
00A8 2B D9 SUB BX,CX
00AA PLACE3:
00AA 5A POP DX
00AB 80 C2 30 ADD DL, 30H ;convert to ASCII
00AE 88 15 MOV [DI],DL ;store digit
00BO 47 INC DI
00Bl1 E2 F7 LOOP PLACE3
00B3 83 FB 00 CMP BX,O0
00B6 74 08 JE PLACES
00B8 8B CB MOV CX,BX
00BA PLACE4:
00BA C6 05 20 MOV BYTE PTR [DI],20H
00BD 47 INC DI
00BE E2 FA LOOP PLACE4
00CO0 PLACES:
00Cco C3 RET
00C1 PLACE ENDP
END

The program in Example 7-26 displays the mouse cursor by placing a 0001H into AX, fol-
lowed by the INT 33H instruction. Next, the status of the mouse is read with function AX =
0003H. The status function returns with the status of the mouse buttons in BX, the X coordinate
of the mouse pointer in CX, and the Y coordinate in DX. (Refer to Appendix A for more com-
plete information on the status for the mouse.) In this example program terminates if the left
mouse button is pressed; otherwise, the coordinates are compared with the prior values saved in
X and Y. If a change has occurred in these coordinates, the new coordinates are calculated and
displayed. Notice that before the video display is accessed, the mouse pointer is hidden using
INT 33H with AX = 0002H. This is very important. If you don’t hide the mouse pointer, the dis-
play will become unstable and the computer may even re-boot. In most cases, a copy of the
mouse pointer remains on the screen if data are displayed without turning off the mouse pointer.

7-3

DATA CONVERSIONS

In computer systems, data is seldom in the correct form. One main task of the system is to con-
vert data from one form to another. This section of the chapter describes conversions between bi-
nary and ASCII. Binary data are removed from a register or memory and converted to ASCII for
the video display. In many cases, ASCII data are converted to binary as they are typed on the
keyboard. We also explain converting between ASCII and hexadecimal data.

Converting from Binary to ASCI!

Conversion from binary to ASCII is accomplished in two ways: (1) by the AAM instruction if
the number is less than 100 or (2) by a series of decimal divisions (divide by 10). Both tech-
niques are presented in this section.

The AAM instruction converts the value in AX into a two-digit unpacked BCD number in
AX. If the number in AX is 0062H (98 decimal) before AAM executes, AX contains a 0908H
after AAM executes. This is not ASCII code, but it is converted to ASCII code by adding a

244

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

3030H to AX. Example 7-27 illustrates a program that uses the procedure DISP that processes
the binary value in AL (0-99) and displays it on the video screen as decimal. The DISP proce-
dure blanks a leading zero, which occurs for the numbers 0-9, with an ASCII space code. This
example program displays the number 74 (test data) on the video screen.

EXAMPLE 7-27

;A program that uses the DISP procedure to display 74
;decimal on the video display.

i

.MODEL TINY ;select TINY mode

0000 .CODE ;start code segment
.STARTUP ;start program

0100 BO 4A MOV AL, 4AH ;load test data to AL

0102 E8 0004 CALL DISP ;display AL in decimal
LEXIT ;exit to DOS

;The DISP procedure displays AL (0 to 99) as a decimal
;number. AX is destroyed by this procedure.

0109 DISP PROC NEAR

0109 52 PUSH DX ;save DX
010A B4 00 MOV AH,0 ;clear AH
010C D4 0a AAM ;convert to BCD
010E 80 C4 20 ADD AH,20H
0111 80 FC 20 CMP AH,20H ;test for leading zero
0114 74 03 JE DISPl ;if leading zero
0116 80 C4 10 ADD AH,10H jconvert to ASCII
0119 DISP1:
0119 8A D4 MOV DL, AH ;display first digit
011B B4 06 MOV AH, 6
011D 50 PUSH AX
011E CD 21 INT 21H
0120 58 POP AX
0121 8A DO MOV DL, AL
0123 80 C2 30 ADD DL,30H ;convert second digit to ASCII
0126 CD 21 INT 21H ;display second digit
0128 5A POP DX ;jrestore DX
0129 C3 ’ RET
012a DISP ENDP
END ;end of file

The reason that AAM converts any number between 0 and 99 to a two-digit unpacked
BCD number is because it divides AX by 10. The result is left in AX, so AH contains the quo-
tient and AL the remainder. This same scheme of dividing by 10 can be expanded to convert any
whole number of any number system from binary to an ASCII coded-character string that can be
displayed on the video screen. For example, if AX is divided by 8 instead of 10, the number is
displayed in octal.

The algorithm for converting from binary to ASCII code is:

1. Divide by the 10 and save the remainder on the stack as a significant BCD digit.
2. Repeat step 1 until the quotient is a 0.
3. Retrieve each remainder and add a 30H to convert to ASCII before displaying or printing.

Example 7-28 shows how the unsigned 16-bit contents of AX are converted to ASCII and
displayed on the video screen. Here we divide AX by 10 and save the remainder on the stack
after each division for later conversion to ASCII. After all the digits have been converted, the re-
sult is displayed on the video screen by removing the remainders from the stack and converting
them to ASCII code. This procedure (DISPX) also blanks any leading zeros that occur.

7-3 DATA CONVERSIONS 245

EXAMPLE 7-28

;A program that uses DISPX to display AX in decimal.

7

.MODEL TINY ;select TINY model

0000 .CODE ;start CODE segment
.STARTUP ;start program

0100 B8 04A3 MOV AX,4A3H ;load AX with test data

0103 E8 0004 CALL DISPX ;display AX in decimal
LEXIT jexit to DOS

;The DISPX procedure displays AX in decimal.
;AX is destroyed.

010A DISPX PROC NEAR

010A 52 PUSH DX ;save DX, CX, and BX
010B 51 PUSH CX
010Cc 53 PUSH BX
010D B9 0000 MOV CX,0 jclear digit counter
0110 BB 000A MOV BX, 10 ;set for decimal
0113 DISPX1:
0113 BA 0000 MOV DX,0 ;jclear DX
0116 F7 F3 DIV BX ;divide DX:AX by 10
0118 52 PUSH DX jsave remainder
0119 41 INC CX jcount remainder
011A OB CO OR AX,AX ;test for quotient of zero
011C 75 FS JNZ DISPX1 ;1f guotient is not zero
011E DISPX2:
011E 5A POP DX ;jget remainder
011F B4 06 MOV AH, 6 ;select function 06H
0121 80 C2 30 ADD DL, 30H jconvert to ASCII
0124 CD 21 INT 21H ;display digit
0126 E2 F6 LOOP DISPX2 ;repeat for all digits
0128 5B POP BX ;jrestore BX, CX, and DX
0129 59 POP CX
0123 5a POP DX
012B C3 RET
012C DISPX ENDP

END ;end of file

Converting from ASCII to Binary

Conversions from ASCII to binary usually start with keyboard entry. If a single key is typed, the
cqnvE‘rsion occurs when a 30H is subtracted from the number. If more than one key is typed,
conversion from ASCII to binary still requires 30H to be subtracted, but there is one additional
step. After subtracting 30H, the number is added to the result after the prior result is first multi-
plied by 10.

_The algorithm for converting from ASCII to binary is:

1. Begin with a binary result of 0.

2. Subtract 30H from the character typed on the keyboard to convert it to BCD.
3. Multiply the result by 10 and add the new BCD digit.

4. Repeat steps 2 and 3 until the character typed is not an ASCII-coded number.

Example 7-29 illustrates a procedure (READN) used in a program that implements this al-
gorithm. Here the binary number returns in the AX register as a 16-bit result, which is then
stored in memory location TEMP. If a larger result is required, the procedure must be reworked
for 32-bit addition. Each time this procedure is called, it reads a number from the keyboard until
any key other than O through 9 is typed.

246

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

EXAMPLE 7-29

;A program that reads one decimal number from the
;keyboard and stores the binary value at TEMP.

7

.MODEL SMALL ;jselect TINY model
0000 .DATA ;jstart DATA segment
0000 0000 TEMP DW ? ;define TEMP
0000 .CODE ;start CODE segment
.STARTUP ;start program
0017 E8 0007 CALL READN ;read a number
0012 A3 0000 R MOV TEMP, AX ;save it in TEMP
JEXIT ;exit to DOS

;The READN procedure reads a decimal number from the
;keyboard and returns its binary value in AX.

0021 READN PROC NEAR

0021 53 PUSH BX ;save BX and CX
0022 51 PUSH CX
0023 B9 000A MOV CX,10 ;load 10 for decimal
0026 BB 0000 MOV BX,0 ;clear result
0029 READN1 :
0029 B4 01 MOV AH,1 ;read key with echo
002B CD 21 INT 21H
002D 3C 30 CMP AL, ‘0’
002F 72 14 JB READN2 ;1f below ‘0’
0031 3C 39 CMP AL,'9’
0033 77 10 JA READN2 ;if above 97
0035 2C 30 SUB AL, ‘0’ jconvert to ASCII
0037 50 PUSH AX ;save digit
0038 8B C3 MOV AX,BX ;multiply result by 10
003A F7 El MUL CX
003C 8B D8 MOV BX,AX
003E 58 POP AX
003F B4 00 MOV AH,O0
0041 03 D8 ADD BX,AX ;add digit value to result
0043 EB E4 JMP READN1 ;repeat
0045 READNZ2:
0045 8B C3 MOV AX,BX ;get binary result into AX
0047 59 POP CX ;restore CX and BX
0048 5B POP BX
0049 C3 RET
004A READN ENDP
END ;end of file

Displaying and Reading Hexadecimal Data

Hexadecimal data are easier to read from the keyboard and display than decimal data. This type
of data are not used at the applications level, but at the system level. System level data is often
hexadecimal and must either be displayed in hexadecimal form or read from the keyboard as
hexadecimal data.

Reading Hexadecimal Dafa. Hexadecimal data appear s 0 to 9 and A to F. The ASCII codes ob-
tained from the keyboard for hexadecimal data are 30H to 39H for the numbers 0 through 9 and
41H to 46H (A-F) or 61H to 66H (a—f) for the letters. To be useful, a procedure that reads hexa-
decimal data must be able to accept both lowercase and uppercase letters.

Example 7-30 shows two procedures: one (CONV) converts the contents of the data in
AL from ASCII code to a single hexadecimal digit, while the other (READH) reads a 4-digit

7-3 DATA CONVERSIONS 247

hexadecimal number from the keyboard and returns with it in register AX. This procedure can be
modified to read any size hexadecimal number from the keyboard.

EXAMPLE 7-30

;A program that reads a 4-digit hexadecimal number from
;the keyboard and stores the result in word-sized
; memory location TEMP.

7

.MODEL SMALL ;select SMALL model
0000 .DATA ;jstart DATA segment
0000 0000 TEMP DW ? ;define TEMP
0000 .CODE ;start CODE segment
.STARTUP ;start program
0017 E8 0007 CALL READH ;read hexadecimal number
001A A3 0000 R MOV TEMP, AX ;save 1t at TEMP
LEXIT ;exit to DOS

;The READH procedure that reads a 4-digit hexadecimal
;number from the keyboard and returns it in AX.
;This procedure does next check for errors and uses CONV.

0021 READH PROC NEAR

0021 51 PUSH CX ;save BX and CX

0022 53 PUSH BX

0023 B9 0004 MOV CX,4 ;load CX and SI with 4
0026 8B F1 MOV SI,CX

0028 BB 0000 MOV BX,0 ;jclear result

002B READH1:

002B BZ 01 MOV AH,1 ;read a key with echo
002D CD 21 INT 21H

002F E8 000A CALL CONV ;convert to binary
0032 D3 E3 SHL BX,CL

0034 02 D8 ADD BL,AL ;form result in BX
0036 4E DEC SI

0037 75 F2 JNZ READH1 ;repeat 4 times

0039 8B C3 MOV AX,BX ;move result to AX
003B ©5B POP BX ;restore BX and CX
003C 59 POP CX

003D C3 RET

003E READH ENDP

;The CONV procedure converts AL into hexadecimal.

003E CONV PROC NEAR

003E 3C 39 CMP AL, '9’
0040 76 08 JBE CONV2 ;if 0 through 9
0042 3C 61 CMP AL, 'a’
0044 72 02 JB CONV1 ;if uppercase A through F
0046 2C 20 SUB AL, 20H jconvert to uppercase
0048 CONV1:
0048 2C 07 SUB AL,7
004A CONV?2:
004A 2C 30 SUB AL, 30H
004c cC3 RET
004D CONV ENDP
END ;end of file

Displaying Hexadecimal Data. To display hexadecimal data, a number must be divided into
4-bit segments that are converted into hexadecimal digits. Conversion is accomplished by adding
a 30H to the numbers O to 9 and a 37H to the letters A to F.

A procedure (DSIPH) that displays the contents of the AX register on the video display ap-
pears in the program of Example 7-31. Here the number is rotated left so that the leftmost digit

248

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

is displayed first. Because AX contains a 4-digit hexadecimal number, the procedure displays
four hexadecimal digits.

EXAMPLE 7-31

;A program that displays the hexadecimal value in AX.
;This program uses DISPH to display a 4-digit value.

;

.MODEL TINY ;select TINY model
0000 .CODE ;start CODE segment
. STARTUP ;start program
0100 B8 0ABC MOV AX, OABCH ;load AX with test data
0103 E8 0004 CALL DISPH ;display AX in hexadecimal
.EXIT ;exit to DOS

;The DISPH procedure displays AX as a 4-digit hex number.

010A DISPH PROC NEAR

010A 53 PUSH BX ;save BX and CX
010B 51 PUSH CX
010C Bl 04 MOV CL,4 ;load rotate count
010E B5 04 MOV CH,4 ;load digit count
0110 DISPH1: -
0110 D3 CO ROL AX,CL ;position digit
0112 50 PUSH AX
0113 24 OF AND AL, OFH ;convert it to ASCII
0115 04 30 ADD AL, 30H
0117 3C 39 CMP AL,’9’
0119 76 02 JBE DISPH2
011B 04 07 ADD AL,7
011D DISPH2:
011D B4 02 MOV AH,2 ;display hexadecimal digit
011F 8A DO MOV DL,AL
0121 CD 21 INT 21H
0123 58 POP AX
0124 FE CD DEC CH
0126 75 E8 JNZ DISPH1 ;repeat for 4 digits
0128 59 POP CX ;restore registers
0129 5B POP BX
012A C3 RET
012B DISPH ENDP

END ;end of file

Using Lookup Tables for Data Conversions

Lookup tables are often used to convert from one data form to another. A lookup table is formed
in the memory as a list of data that is referenced by a procedure to perform conversions. In the
case of many lookup tables, the XLAT instruction can often be used to look up data in a table
provided that the table contains 8-bit wide data and its length is less than or equal to 256 bytes.

Converting from BCD to 7-segment Code. One simple application that uses a lookup table is
BCD to 7-segment code conversion. Example 7-32 illustrates a lookup table that contains the
7-segment codes for the numbers 0 to 9. These codes are used with the 7-segment display pic-
tured in Figure 7-1. This 7-segment display uses active high (logic 1) inputs to light a segment.
The code is arranged so that the segment is in bit position 0 and the g segment is in bit position 6.
Bit position 7 is zero in this example, but can be used for displaying a dccimal point.

EXAMPLE 7-32
0000 SEG7 PROC FAR

0000 53 PUSH BX
0001 BB 0008 R MOV BX,OFFSET TABLE

7-3 DATA CONVERSIONS 249

FIGURE 7-1 The N S
7-segment display a
f b
Control byte
nl S—— lo[g]f]e]d]c]b]al
g
e c
: ——
0004 2E: D7 XLAT CS:TABLE jsee text
0006 5B POP BX
0007 CB RET
0008 3F TABLE DB 3FH ;0
0009 06 DB 6 i1
0002 5B DB 5BH ;2
000B 4F DB 4FH i3
000C 66 DB 66H i4
000D 6D DB 6DH :5
000E 7D DB 7DH ;6
000F 07 DB 7 :7
0010 7F DB 7FH i8
0011 6F DB 6FH ;9
0012 SEG7 ENDP

The procedure that performs the conversion contains only two instructions and assumes
that AL contains the BCD digit to be converted to 7-segment code. One of the instructions ad-
dresses the lookup table by loading its address into BX, and the other performs the conversion
and returns the 7-segment code in AL.

Because the lookup table is located in the code segment, and the XLAT instruction ac-
cesses the data segment by default, the XLAT instruction includes a segment override. Notice
that a dummy operand (TABLE) is added to the XLAT instruction so the (CS:) code segment
override prefix can be added to the instruction. Normally, XLAT does not contain an operand
unless its default segment must be overridden. The LODS and MOVS instructions are also over-
ridden in the same manner as XLAT by using a dummy operand.

Using a Lookup Table to Access ASCII Data. Some programming techniques require that nu-
meric codes be converted to ASCII character strings. For example, suppose that you need to dis-
play the days of the week for a calendar program. Because the number of ASCII characters in
each day is different, some type of lookup table must be used to reference the ASCII-coded days
of the week.

The program in Example 7-33 shows a table that references ASCII-coded character strings
located in the code segment. Each character string contains an ASCII-coded day of the week.
The table references each day of the week. The procedure that accesses the day of the week uses
the AL register and the numbers 0 to 6 to refer to Sunday through Saturday. If AL contains a 2
when this procedure is called, the word Tuesday is displayed on the video screen.

EXAMPLE 7-33

;A program that displays the current day of the
;jweek by using the system clock/calendar.

.MODEL SMALL ;select SMALL model

250

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0000 .DATA ;start DATA segment
0000 O0OOE R 0015 R DTAB DW SUN, MON, TUE, WED, THU, FRI, SAT

001C R 0024 R

002E R 0037 R

CO3E R
000E 53 75 6E 64 61 79 SUN DB 'Sunday$”’
24
0015 4D 6F 6E 64 61 79 MON DB 'Monday$’
24
001C 54 75 65 73 64 61 TUE DB 'Tuesday$’
79 24
0024 57 65 64 6E 65 73 WED DB 'Wednesday$’
64 61 79 24
002E 54 68 75 72 73 64 THU DB 'Thursday$’
61 79 24
0037 46 72 69 64 61 79 FRI DB ‘Friday$’
24
003E 53 61 74 75 72 64 SAT DB ’Saturday$’
61 79 24
0000 .CODE ;start CODE segment
. STARTUP ;start program
0017 B4 2A MOV AH, 22H ;get day of week
0019 <CD 21 INT 21H ;access DOS
001B E8 0004 CALL DAYS ;display day of week
.EXIT ;exit to DOS
0022 DAYS PROC NEAR
0022 52 PUSH DX ;save DX and SI
0023 56 PUSH SI
0024 BE 0000 R MOV SI,OFFSET DTAB ;address table
0027 B4 00 MOV AH,0 ;find day of week
0029 03 CO ADD AX,AX
002B 03 FO ADD SI,AX
002D 8B 14 MOV DX, [SI] ;get day of week
002F B4 09 MOV AH, 9 ;display string
0031 cCD 21 INT 21H
0033 5E POP SI ;restore registers
0034 5A POP DX
0035 C3 RET
0036 DAYS ENDP
END ;end of file

This procedure first addresses the table by loading its address into the SI register. Next, the
number in AL is converted into a 16-bit number and doubled because the table contains two
bytes for each entry. This index is then added to SI to address the correct entry in the lookup
table. The address of the ASCII character string is now loaded into DX by the MOV DX,CS:[SI]
instruction.

Before the INT 21H DOS function is called, the DS register is placed on the stack and
loaded with the segment address of CS. This allows DOS function number 09H (display a string)
to be used to display the day of the week. This procedure converts the numbers 0 to 6 to the days
of the week.

An Example Program Using Data Conversions

A program example is required to combine some of the data conversion DOS functions. Suppcse that
you must display the time and date on the video screen. This example program (see Example 7-34)
displays the time as 10:45 p.M. and the date as Tuesday, May 14, 1999. The program is short be-
cause it calls a procedure that displays the time and a second that displays the date.

The time is available from DOS using an INT 21H function call number 2CH. This returns
with the hours in CH and minutes in CL. Also available are seconds in DH and hundredths of

7-3 DATA CONVERSIONS 251

seconds in DL. The date is available using an INT 21H function call number 2AH. This leaves
the day of the week in AL, the year in CX, the day of the month in DH, and the month in DL.

EXAMPLE 7-34

;A program that displays the time and date in the
;form: 10:34 A.M., Tuesday July 4, 1999.

i

.MODEL SMALL ;select SMALL model
.NOLISTMACRO ;jdon’t expand macros
0000 .DATA ;start CODE segment
0000 0026 R 002F R DTAB DW SUN, MON, TUE, WED, THU, FRI, SAT
0038 R 0042 R
004E R 0059 R
0062 R
000E 006D R 0076 R MTAB DW JAN, FEB, MAR, APR, MAY, JUN
0080 R 0087 R
008E R 0093 R
001A 0099 R 009F R DW JUL, AUG, SEP, OCT, NOV, DCE
00A7 R 00B2 R
00BB R 00C5 R
0026 53 75 6E 64 61 79 SUN DB 'Sunday, $'
2C 20 24
002F 4D 6F 6E 64 61 79 MON DB ‘Monday, $'
2C 20 24
0038 54 75 65 73 64 61 TUE DB 'Tuesday, $’
79 2C 20 24
0042 57 65 64 6E 65 73 WED DB 'Wednesday, $'
64 61 79 2C 20 24
004E 54 68 75 72 73 64 THU DB 'Thursday, $’
61 79 2C 20 24
0059 46 72 69 64 61 79 FRI DB ‘Friday, $'
2C 20 24
0062 53 61 74 75 72 64 SAT DB 'Saturday, $'
61 79 2C 20 24
006D 4A 61 6E 75 61 72 JAN DB '‘January $°'
79 20 24
0076 46 65 62 72 75 61 FEB DB 'February $°'
72 79 20 24
0080 4D 61 72 63 68 20 MAR DB ‘March §$'
24
0087 41 70 72 69 6C 20 APR DB 'April $°
24
008E 4D 61 79 20 24 MAY DB ‘May $'
0093 4A 75 6E 65 20 24 JUN DB ‘June $'
0099 4A 75 6C 79 20 24 JUL DB ‘July $°
009F 41 75 67 75 73 74 AUG DB 'August $’
20 24
00A7 53 65 70 74 65 6D SEP DB 'September $’
62 65 72 20 24
00B2 4F 63 74 6F 62 65 OCT DB 'October $-
72 20 24
00BB 4E 6F 76 65 6D 62 NOV DB ‘November $’
65 72 20 24
00C5 44 65 63 65 6D 62 DCE DB ‘December $’
65 72 20 24
0000 .CODE ;start CODE segment
DISP MACRO CHAR
PUSH AX ;;save AX and DX
PUSH DX
MOV DL, CHAR ;;display character
MOV AH,2
INT 21H
POP DX ;;restore AX and DX
POP AX
ENDM

.STARTUP ;start program

252

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0017
001A

0021

0021
0023
0025
0027
002a
002C
002E
0031
0031
0033
0035
0037
0037
0039
003B
003D
003F
0041

004E
004E

0064
0066
0068
006A
006D

0078

00BF

00co

00co

00Co
00c2
0oc4
00C5
00c7
00cC9
oocc
00CE
00D0
00D2
00D4
00D5
00D6
00D8
00DA
00DC
00DE
00E1

E8
E8

C3

0007
00A3

TIMES

FD 0C

ED 0OC

TIMES1:

TIMES2:

Cc4 30

TIMES3:

TIMES

DATES

CALL TIMES
CALL DATES
.EXIT

PROC NEAR

MOV AH, 2CH
INT 21H
MOV BH, 'A’
CMP CH, 12
JB TIMES1
MOV BH, 'P’
SUB CH, 12

OR CH,CH
JNE TIMES2
MOV CH, 12

MOV AL,CH
MOV AH,0

OR AH, AH

;display time
;display date
;exit to DOS

;jget time from DOS
;set 'A’ for AM

;if below 12:00 noon
;set ‘P’ for PM
;adjust to 12 hours
;jtest for 0 hour

;if not 0 hour
;change 0 hour to 12

;jconvert hours

Jz

DISP

ADD
DISP
DISP
MOV
MOV

ADD
PUSH
DISP
POP
DISP
DISP

TIMES3
AH, 0’
AH

AL, 'O
AL

AL, CL
0

’
’

;if no tens of

hours

;jconvert
;jdisplay

;convert

;display
;display

;jconvert

;display

;display
;display

tens
tens

units

units
colon

minutes

tens

units
space

DISP BH
DISP '.’
DISP 'M’
DISP '.'
DISpP ’ '
RET

ENDP
PROC NEAR

MOV AH, 2AH

INT 21H

PUSH DX

MOV AH,0

ADD AX,AX

MOV SI,OFFSET DTAB
ADD SI,AX

MOV DX, [SI]

MOV AH,9

INT 21H

POP DX

PUSH DX

MOV AL, DH

DEC AL

MOV 2H,0

ADD AX,AX

MOV SI,OFFSET MTAB
ADD SI,AX

;display ‘A’ or 'P’
;display .

;display M

;display .

;display space

;get date from DOS

iget day of week
;address day table

;address day of week
;display day of week

;get month

;jaddress month table

7-4 DISK FILES) 253

00OE3 8B 14 MOV DX, [SI] ;address month
00ES B4 09 MOV AH,9 ;display month
00E7 CD 21 INT 21H
00E9 5A POP DX
00EA 8A C2 MOV AL, DL ;get day of month
00EC B4 00 MOV AH, 0
OOEE D4 0A ARl ;jconvert to BCD
00F0 0OA E4 OR AH, AH
00F2 74 0D Jz DATES1 ;1f tens is 0
00r4 80 C4 30 ADD AH,30H ;convert tens
DISP AH ;display tens
0101 DATESL:
0101 04 30 ADD AL,30H - jconvert units
DISP AL ;display units
DISpP ', ;display comma
DIsp * ;display space
0121 81 F9 07DO CMP CX,2000 ;test for year 2000
0125 72 19 JB DATES2 ;if below year 2000
0127 83 E9 64 SUB CX,100 ;scale to 1900 - 1999
DISP 2’ ;display 2
DISP ‘0’ ;display 0
013E EB 14 JMP DATES3
0140 DATES2:
DISP '1° ;jdisplay 1
DISP 9’ ;display 9
0154 DATES3:
0154 81 E9 076C SUB (CX,1900 iscale to 00 - 99
0158 8B C1 MOV AX,CX
015A D4 0A AAM ;convert to BCD
015C 05 3030 ADD AX,3030H jconvert to ASCII
DISP AH ;display tens
DISP AL ;display units
0173 C3 RET
0174 DATES ENDP
END ;end of file

This procedure uses two ASCII lookup tables that convert the day and month to ASCII
character strings. It also uses the AAM instruction to convert from binary to BCD for the time
and date. The displaying of data is handled in two ways: by character string (function 09H) and
by single character (function 06H).

The memory model (SMALL) consists of two segments: .DATA and .CODE. The data
segment contains the character strings used with the procedures that display time and date. The
code segment contains TIMES and DATES procedures and a macro (DISP) that displays an
ASCII character. The main program is very short and consists of two CALL instructions.

DISK FILES

Data are found stored on the disk in the form of files. The disk itself is organized in four main
parts: the boot sector, the file allocation table (FAT), the root directory, and the data storage
areas. The first sector on the disk is the boot sector. The boot sector is used to load the disk op-
erating system (DOS) from the disk into the memory when power is applied to the computer.

The FAT is where the names of files/subdirectories and their locations on the disk are
stored by DOS. All references to any disk file are handled through the FAT. All other subdirec-
tories and files are referenced through the root directory. The disk files are all considered se-
quential access files, meaning that they are accessed a byte at a time from the beginning of the
file toward the end.

254

Sector

Drive hub

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Track 0

Index hole

Inner track

FIGURE 7-2 Structure of the 54" floppy disk

Disk Organization

Figure 7-2 illustrates the organization of sectors and tracks on the surface of the disk. This
organization applies to both floppy and hard disk memory systems. The outer track is always
track O and the inner track is 39 (double-density) or 79 (high-density) on floppy disks. The inner
track on a hard disk is determined by the disk size and could be 10000 or higher for very large
hard disks.

Figure 7-3 shows the organization of data on a disk. The length of the FAT is determined
by the size of the disk. Likewise, the length of the root directory is determined by the number of
files and subdirectories located within it. The boot sector is always a single 512-byte-long sector
located in the outer track at sector 0, the first sector.

The boot sector contains a bootstrap loader program that is read into RAM when the
system is powered. The bootstrap loader then executes and loads the I0.SYS and MSDOS.SYS
programs into RAM. Next, the bootstrap loader passes control to the MSDOS control pro-
gram, allowing the computer to be under the control of the DOS command processor called
COMMAND.COM.

The FAT indicates which sectors are free, which are corrupted (unusable), and which con-
tain data. The FAT table is referenced each time that DOS writes data to the disk so that it can
find a free sector. Each free cluster is indicated by a 0000H in the FAT and each occupied sector
is indiceted by the cluster number. A cluster can be anything from one sector to any number of
sectors long. Many hard disk memory systems use four sectors per cluster, which means that the
smallest file is 512 x 4 or 2,048 bytes long.

Figure 7—4 shows the format of each directory entry in the root or any other directory or
subdirectory. Each entry contains the name, extension, attribute, time, date, location, and length.
The length of the file is stored as a 32-bit number. This means that a file can have a maximum
length of 4G bytes. The location is the starting cluster number.

7-4 DISK FILES 255

FIGURE 7-3 Main data
storage areas on a disk

FIGURE 7-4 Format to any
directory or subdirectory entry

Boot

FAT Root Files and =ther directories

Track O
Sector 0

*Note: year 8 = 1988, year 9 = 1989, year 10 = 1990, etc.

84 21168 4 2 1
Year* E Month Day

L

16 8 4 2 13216 8 4 2 1 X X X X X

Hours Min:utes Unused

17 i 16

A = Archive

0 0|A|D|VISHR D = Subdirectory
V = Volume label
S = System file
H = Hidden file
R = Read-only

Example 7-35 shows how part of the root directory appears in a hexadecimal dump. Try to
identify the date, time, location, and length of each entry. Also identify the attribute for each entry.
The listing shows both hexadecimal and ASCII data, as is customary for most computer dumps.

EXAMPLE 7-35

0000 49
0010 00

0020 4D
0030 00

0040 43
0050 00

0060 42
0070 00

G080 50
0090 00

00AQ0 44
00BO 00

00CO 52

4F
00

53
00

4F
00

41
00

43
00

4AF
00

55

20 20 20 20 20 20 53 59 53 07 00 00 00 00 I0 SYS
00 00 00 00 00 00 93 11 02 00 39 82 00 00
44 4F 53 20 20 20 53 59 53 07 00 00 00 0O MSDOS SYS
00 00 00 00 CO 44 93 12 13 00 92 00 00 00

4D 4D 41 4E 44 20 43 4F 4D 00 00 00 00 00 COMMAND COM
00 00 00 00 00 00 93 11 26 00 B5 92 00 00

52 52 59 20 42 52 45 59 20 28 00 00 00 00 BARRY BREY
00 00 00 00 EO AD 6A 13 00 00 00 00 00 0O

54 4F 4F 4C 53 20 20 20 20 10 00 00 00 00 PCTOOLS
00 00 00 00 80 AE 6A 13 5C 00 00 00 00 0O

53 20 20 20 20 20 20 20 20 10 00 00 00 00 DOS
00 00 00 00 EO BO 6A 13 4E 00 00 00 00 00

4E S5F 46 57 20 20 42 41 54 00 00 00 00 00 FUN_FW BAT

256

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

00DO0 00 00 00 00 00 00 40 BD 6A 13 97 OF 4A 00 00 00

00E0 46 4F 4E 54 57 41 52 45 20 20 20 10 00 00 00 00 FONTWARE
00F0 00 00 00 00 00 00 60 BD 6A 13 6E 00 00 00 00 0O

Files are usually accessed through DOS INT 21H function calls. There are two ways to ac-
cess a file using INT 21H. One way uses a file control block, and the other uses a file handle.
Today, all software accesses files via a file handle, so this text also uses file handles for file ac-
cess. File control blocks are a carryover from an earlier operating system called CPM (control
program micro), which was used with 8-bit computer systems based on the Z80 or 8080 micro-
ProCessor.

Sequential File Access

All DOS files are sequential files. A sequential file is stored and accessed from the beginning of
the file toward the end, with the first byte and all bytes between it and the last accessed to read
the last byte. Fortunately, files are read and written with the DOS INT 21H function calls (refer
to Appendix A), which makes their access and manipulation easy. This section of the text de-
scribes how to create, read, write, delete, and rename a sequential access file.

File Creation. Before a file can be used, it must exist on the disk. A file is created by the INT
21H function call number 3CH. The file name must be stored at a location addressed by DS:DX
before calling the function, and CX must contain the attribute of the file (or subdirectory) created.

A file name is always stored as an ASCII-Z string and may contain the drive and directory
path(s) if needed. Example 7-36 shows several ASCII-Z string file names stored in a data seg-
ment for access by the file utilities. An ASCII-Z string is a character string that ends with a 00H
or null character.

EXAMPLE 7-36

0000 44 4F 47 2E 54 58 FILEl DB 'DOG.TXT’, 0
54 00
0008 43 3A 44 41 54 41 FILE2 DB 'C:DATA.DOC’, 0
2E 44 4F 43 00
0013 43 3A 5C 44 52 45 FILE3 DB 'C:\DREAD\ERROR.FIL’, 0

41 44 5C 45 52 52
4F 52 2E 46 49 4C

Suppose that you have filled a 256 memory buffer area with data that must be stored in a
new file called DATA.NEW on the default disk drive. Before data can be written to this new file,

TABLE 7-5 File attribute definitions

Bit Position Value Attribute ’ Function
0 01H Read-only A read-only file or directory
1 02H Hidden Prevents the file or directory from appearing in
a directory listing
2 04ti System Specifies a system file
3 08H Volume Specifies the name of the disk volume
4 10H Sub-directory Specifies a subdirectory name
5 20H Archive Indicates that a file has changed since the last

backup

7-4 DISK FILES R 257

the file must first be created. Example 7-37 lists a short procedure that creates this new file on
the disk.

EXAMPLE 7-37

;A program that creates file DATA.NEW.
;DO NOT RUN this program because the file is not closed.
i

.MODEL SMALL

0000 .DATA
0000 44 41 54 41 FILEN DB 'DATA.NEW’, 0 ;f£ile name
2E 4E 45 57
00
0000 .CODE
. STARTUP
0017 B4 3C MOV AH, 3CH ;jcreate file function
0019 BS 0000 MOV CX,0 ;normal file attribute
001C BA 0000 R MOV DX,OFFSET FILEN ;address file name
001F CD 21 INT 21H ;access DOS
LEXIT
END

Whenever a file is created, the CX register must contain the attributes or characteristics of
the file. Table 7-5 lists and defines the attribute bit positions. A logic 1 in a bit selects the at-
tribute, while a logic 0 does not.

After returning from the INT 21H, the carry flag indicates whether or not an error occurred
(CF =1) during the creation of the file. Some errors that can occur are path not found, no file handles
available, or media error; they are obtained if needed by INT 21H function call number 59H. If
carry is cleared, no error has occurred and the AX register contains a file handle. The file handle
is a number that is used to refer to the file after it is created or opened. The file handle allows a file
to be accessed without using the ASCII-Z string name of the file, speeding the operation.

Writing to a File. Now that we have created a new file, called FILE.NEW, data can be written to
it. Before writing to a file, the file must have been created or opened. When a file is created or
opened, the file handle returns in the AX register. The file handle is used to refer to the file
whenever data are written. Function number 40H is used to write data to an opened or newly cre-
ated file. In addition to loading a 40H into AH, we must also load BX = the file handle, CX = the
number of bytes to be written, and DS:DX = the address of the area to be written to the disk.

Suppose that we must write all 256 bytes of BUFFER to the file. This is accomplished as
illustrated in Example 7-38 using function 40H. If an error occurs during a write operation, the
carry flag is set. If no error occurs, the carry flag is cleared and the number of bytes written to the
file is returned in the AX register. Errors that occur for writes usually indicate that the disk is full
or that there is some type of media error.

EXAMPLE 7-38

0010 8B D8 MOV BX,AX ;move handle to BX

0012 B4 40 MOV AH, 40H ;load write function

0014 B9 0100 MOV CX, 256 ;load count

0017 BA 0009 R MOV DX,OFFSET BUFFER ;address BUFFER

001A D 21 INT 21H ;write 256 bytes from BUFFER

001C 72 32 Jc ERROR1 ;on write error

258

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Opening, Reading, and Closing a File. To read a file, it must first be opened. When a file is
opened, DOS checks the directory to determine if the file exists and returns the DOS file handle
in register AX. The DOS file handle must be used for reading, writing, and closing a file.

Example 7-39 shows a sequence of instructions that open a file, read 256 bytes from the
file into memory area BUFFER, and then close the file. When a file is opened (AH = 3DH), the
AL register specifies the type of operation allowed for the opened file. If AL = O0H, the file is
opened for a read; if AL = 01H, the file is opened for a write; and if AL = 02H, the file is opened
for a read or a write.

EXAMPLE 7-39
;A program that opens the file TEMP.ASM and reads the
;first 256 bytes into an area of memory called BUF.

7

.MODEL SMALL

0000 .DATA
0000 54 45 4D 50 FILEN DB 'TEMP.ASM', 0 ;file name
2E 41 53 4D
00
0009 0100 [BUF DB 256 DUP (?) ;buffer area
00
.] .
0000 .CODE
. STARTUP
0017 B8 3D02 MOV AX,3D02H ;open file function
001A BA 0000 R MOV DX,OFFSET FILEN ;address file name
001D ¢CD 21 INT 21H ;access DOS
001F 8B D8 MOV BX,AX ;file handle to BX
0021 B4 3F MOV AH, 3FH ;read file function
0023 B9 0100 MOV CX, 256 ;read 256 bytes
0026 BA 0009 R MOV DX,OFFSET BUF ;store data at BUF
0029 ¢CD 21 INT 21H ;access DOS
002B B4 3E MOV AH, 3EH ;close file function
002D CD 21 INT 21H ;access DOS \
.EXIT
END

Function number 3FH causes a file to be read. As with the write function, BX contains the
file handle, CX contains the number of bytes to be read, and DS:DX contains the location of a
memory area where the data are stored. As with all disk functions, the carry flag indicates an
error with a logic 1. If a logic 0 is indicated, the AX register indicates the number of bytes read
from the file.

" Closing a file is very important. If a file is left open, some serious problems can occur that
can actually destroy the disk and all of its data. If a file is written and not closed, the FAT can be-
come corrupted, making it difficult or impossible to retrieve data from the disk. Always be cer-
tain to close a file after it is read or written.

The File Pointer. When a file is opened, written, or read, the file pointer addresses the current
location in the sequential file. When a file is opened, the file pointer always addresses the first
byte of the file. If a file is 1,024 bytes long, and a read function reads 1,023 bytes, the file pointer
addresses the last byte of the file, but not the end of the file.

The file pointer is a 32-bit number that addresses any byte in a file. Once a file is opened,
the file pointer can be changed with the move file pointer function number 42H. A file pointer can
be moved from the start of the file (AL = 00H), from the current location (AL = 01H), or from the
end of the file (AL = 02H). In practice, all three directions of the move are used to access different
parts of the file. The distance moved by the file pointer is specified by registers CX and DX. The
DX register holds the least-significant part of the distance, and CX the most significant part. Reg-
ister BX must contain the file handle before using function 42H to move the file pointer.

EXAMPLE 7-41
0000

0000 0000
0002 0000
0004

7-4 DISK FILES 259

Suppose that a file exists on the disk and that you must append the file with 256 bytes of
new information. When the file is opened, the file pointer addresses the first byte of the file. If
you attempt to write without moving the file pointer to the end of the file, the new data will over-
write the first 256 bytes of the file. Example 7-40 shows a procedure that opens a file, moves the
file pointer to the end of the file, writes 256 bytes of data, and then closes the file. This appends
the file with 256 new bytes of data.

EXAMPLE 7-40
;A program that opens FILE.NEW and appends it with 256
;bytes of data from BUF.
.MODEL SMALL
0000 .DATA
0000 46 49 4C 45 FILEN DB 'FILE.NEW',0 ;file name
2E 4E 45 57
00
0009 0100 [BUF DB 256 DUP (?) ;buffer
00
]
0000 .CODE
.STARTUP
0017 B8 3D02 MOV AX,3D02H ;jopen FILE.NEW
001A BA 0000 R MOV DX,OFFSET FILEN
001D CD 21 INT 21H
001F 8B D8 MOV BX, AX
0021 B8 4202 MOV AX,4202H ;move file pointer to end
0024 Ba 2000 MOV DX,0
0027 B9 0000 MOV CX,0
002a ¢CD 21 INT 21H
002C B4 40 MOV AH, 40H ;write BUF to end of file
002E B9 0100 MOV CX, 256
0031 BA 0009 R MOV DX,OFFSET BUF
0034 CD 21 INT 21H
0036 B4 3E MOV AH, 3EH ;close file
0038 CD 21 INT 21H
.EXIT
END

One of the more difficult file maneuvers is inserting new data into the middle of the file.
Figure 7-5 shows how this is accomplished by creating a second file. Notice that the part of the
file before the insertion point is copied into the new file. This is followed by the new information
before the remainder of the file is appended after the insertion into the new file. Once the new
file is complete, the old file is deleted and the new file is renamed to the old file name.

Example 7-41 shows a program that inserts new data into an old file. This program copies
the DATANEW file into the DATA.OLD file at a point after the first 256 bytes of the
DATA.OLD file.

;A program that adds the 256 byte contents of the file
;DATA.NEW to DATA.OLD at a point between the first 256
;bytes of DATA.OLD and the remainder of the file.

.MODEL SMALL

.DATA
HAN1 DW ? ;file handle for DATA.TMP
HAN2 DW ? ;file handle for DATA.OLD

44 41 54 41 FILElL DB 'DATA.TMP', 0
2E 54 4D 50

00

260

000D

0016

001F

0000

0017
0019
001c
001F
0021

0024
0027
002a
002¢c
002E

0031
0033
0036
0039

003B
003D
0041
0044
0047

0049
004cC
004F
0051

0053
0055
0058
005B

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Qld file

— Old file

New file

Insert data

Insert data -—

Old file

Inserting new data within an old file

FILEl

FILE2

BUF

BUF

FILE3

BUF

Insert point
FIGURE 7-5
44 41 54 4 FILE2 DB 'DATA.OLD’, 0
2E 4F 4C 44
00
44 41 54 41 FILE3 DB 'DATA.NEW', 0
2E 4E 45 57
00
0100 [BUF DB 256 DUP (?)
00
]

.CODE

. STARTUP
B4 3C MOV AH, 3CH
B9 0000 MOV CX,0
BA 0004 R MOV DX, OFFSET
CcD 21 INT 21H
A3 0000 R MOV HANI, AX
B8 3D02 MOV AX,3D02H
BA 000D R MOV DX,OQFFSET
Ch 21 INT 21H
8B D8 MOV BX,AX
A3 0002 R MOV HAN2, AX
B4 3F MOV AH,3FH
B9 0100 MOV (X, 256
BA 001F R MOV DX,OFFSET
CD 21 INT 21H
B4 40 MOV AH, 40H
8B 1E 0000 R MOV BX,HAN1
B9 0100 MOV CX,256
BA 001F R MOV DX, OFFSET
CD 21 INT 21H
B8 3D02 MOV AX, 3DO2H
BA 0016 R MOV DX,CFFSET
CcD 21 INT 21H
8B D8 MOV BX,AX
B4 3F MOV AH, 3FH
B9 0100 MOV CX, 256
BA 001lF R MOV DX, OFFSET
CD 21 INT 21H

;data buffer area

;jcreate DATA.TMP

;save handle at HAN1

;open DATA.OLD

;save handle at HAN2

;read 256 bytes of DATA.OLD into BUF

;write BUF to DATA.TMP
;get handle

;open DATA.NEW

;read 256 bytes from DATA.NEW to BUF

005D
005F

0061
0063
B
JO6A
06D
U06F

Ao

006F
0071
0075
0078
007B
007D
007F
0081
0083
0087
u08A
008D
008F
0091
0091
0093

0095
0097
009A

009C
009E
00A2

00a4
00A6

00A8
00AA
00AD
00BO

B4
BA
CD

B4
8B
CD

8C
8E

B4
BA

CD

7-4 DISK FILES

261
3E MOV AH, 3EH ;close DATA.NEW
21 INT 21H
40 MOV AH, 40H ;write BUF to DATA.TMP
1E 0000 R MOV BX,HAN1 ;get handle
0100 MOV CX,256
001F R MOV DX,OFFSET BUF
21 INT 21H
MAIN1:
3F MOV AH, 3FH ;read 256 bytes from DATA.OLD to BUF
1E 0002 R MOV BX, HAN2
0100 MOV CX, 256
001F R MOV DX,OFFSET BUF
21 INT 21H
Cco OR AX,AX ;test for zero byte read
10 JZ MAIN2 ;1f file empty
40 MOV AH, 40H ;write BUF to DATA.TMP
1E 0000 R MOV BX,HAN1
0100 MOV CX,256
001F R MOV DX,OFFSET BUF
21 INT 21H
DE JMP MAIN1
MAIN2:
3E MOV AH, 3EH ;close DATA.OLD
21 INT 21H
41 MOV AH,41H ;delete DATA.OLD
000D R MOV DX,OFFSET FILE2
21 INT 21H
3E MOV AH, 3EH ;close DATA.TMP
1E 0000 R MOV BX,HAN1
21 INT 21H
D8 MOV AX,DS
co MOV ES,AX ;joverlap DS and ES
56 MOV AH, 56H ;rename DATA.TMP to DATA.OLD
0004 R MOV DX,OFFSET FILEl ;old name
000D R MOV DI,OFFSET FILE2 ;new name
21 INT 21H
.EXIT
END

This program uses two new INT 21H function calls. The delete and rename function calls
are used to delete the old file before the temporary file is renamed to the old file name. Note that
the rename function uses both the DS and ES segment registers to address the two file names.

Random Access Files

Random access files are developed through software using sequential access files. A random ac-
cess file is addressed by a record number rather than by going through the file searching for data.
The move pointer function call becomes very important when random access files are created.
Random access files are much easier to use for large volumes of data.

Creating a Random Access File. Planning ahead is paramount to creating a random access file
system. Suppose that a random access file is required for storing the names of customers. Each
customer record requires 16 bytes for the last name, 16 bytes for the first name, and 1 byte for the
middle initial. Each customer record contains two street address lines of 32 bytes each, a city line
of 16 bytes, 2 bytes for the state code, and 9 bytes for the ZIP Code. The basic customer infor-
mation requires 105 bytes. Additional information expands the record to 256 bytes in length. Be-
cause the business is growing, provisions are made for 5,000 customers. This means that the total
random access file is 1,280,000 bytes long.

262 CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

Example 7-42 illustrates a short program that creates a file called CUST.FIL and inserts
5,000 blank records of 256 bytes each. A blank record contains O0H in each byte. This appears to
be a large file, but it fits on a single high-density 5!/4” or 3'/2” floppy disk drive; in fact, this pro-
gram assumes that the disk is in drive A.

EXAMPLE 7-42
;A program that creates CUST.FIL and then fills 5,000
;records of 256 bytes each with zeros.
.MODEL SMALL
0000 .DATA
0000 43 55 53 54 FILEL DB 'CUST.FIL’,0 ;file name
2E 46 49 4cC
00
0009 0100 [BUF DB 256 DUP (0) ;buffer
00
]
0000 .CODE
.STARTUP .
0017 B4 3C MOV AH,3CH ;create CUST.FIL
0019 B9 0000 MOV CX,0
001C BA 0000 R MOV DX,OFFSET FILEl
001F CD 21 INT 21H
0021 8B D8 MOV BX,AX ;handle to BX
0023 BD 1388 MOV BP, 5000 ;record counter
0026 MAIN1:
0026 B4 40 MOV AH, 40H ;write record
0028 B9 0100 MOV CX,256
002B BA 0009 R MOV DX,OFFSET BUF
002E CD 21 INT 21H
0030 4D DEC BP ;jdecrement record count
0031 75 F3 JNZ MAIN1 ;for 5000 records
0033 B4 3E MOV AH, 3EH ;close file
0035 <CD 21 INT 21H
JEXIT
END

Reading and Writing a Record. Whenever a record must be read, the record number is loaded
into the BP register and the procedure listed in Example 743 is called. This procedure assumes
that FIL contains the handle number and that the CUST.FIL remains open at all times.

Notice how the record number is multiplied by 256 to obtain a count for the move pointer
function. In each case, the file pointer is moved from the start of the file to the desired record be-
fore it is read into memory area BUFFER. Although not shown, writing a record is performed in
the same manner as reading.

EXAMPLE 7-43
;The READ procedure reads one record from CUST.FIL.
;Input parameters are:
;FIL (word) = CUST.FIL handle
;BP = record number
;Output parameters are:
;BUFFER (256 bytes) = customer record
0000 READ PROC FAR
0000 8B 1E 0100 R MOV BX,FIL ;get handle
€004 B8 0100 MOV AX, 256 ;multiply by 256
0007 F7 ES5 MUL BP
0009 8B CA MOV CX,DX

000B 8B DO MOV DX, AX

7-5 EXAMPLE PROGRAMS

263

000D B8 4200 MOV AX,4200H ;move pointer
0010 <CD 21 INT 21H

0012 B4 3F MOV AH, 3FH ;read record
0014 B9 0100 MOV CX,256

0017 BA 0000 R MOV DX,OFFSET BUFFER

001Aa CD 21 INT 21H

001Cc CB RET

001D READ ENDP

Now that many of the basic programming building blocks have been discussed, we present some
example application programs. Although these example programs may seem trivial, they present
some additional programming techniques and illustrate programming styles for the micro-

processor.

Calculator Program

This program demonstrates how data conversion plays an important part in many application
programs. Example 7-44 illustrates a program that accepts two numbers and adds, subtracts,
multiplies, or divides them. To limit the complexity of the program, the numbers are limited to
two-digit numbers. For example, if you type a 12 + 24 followed by =, the program will calculate
the result and display a 36 as an answer. To further simplify the program, the numbers 0-9 must
be entered as two-digit numbers 0-9.

EXAMPLE 7-44
;calculator program
.MODEL TINY
0000 .CODE
DISP MACRO PARA
PUSH AX
MOV AH, 6
MOV DL, PARA
INT 21H
POP AX
ENDM
GET MACRO
.repeat
MOV AH, 6
MOV DL, -1
INT 21H
.UNTIL AL>='0' && AL <= '9’
DISP AL
SUB AL, 0’
ENDM
.STARTUP
€100 E8 001E CALL READN ;get first number
0103 B8A D8 MOV BL, AL
DISp rat ;display +
010D E8 0011 CALL READN ;get second number
0110 02 D8 ADD BL, AL ;form sum
DISP r=t ;display =
011A E8 003F CALL DISPA ;display sum

264

CHAPTER 7
0121
013A B3
013C Fé6
013E 8a
0158 02
015C
015C
015C 8a
015E BB
0161 53
0162 B4
0164 BA
0167 F7
0169 52
0l16E 58
0173 04
017F C3
0180

any errors.

PROGRAMMING THE MICROPROCESSOR

0a

D8

c3

c3
000A

00

0000

30

EXIT

READN PROC NEAR USES BX

READN

DISpA

DISPA

GET

MOV BL, 10
MUL BL
MOV BL,AL
GET

ADD AL, BL
RET

ENDP

PROC NEAR

;get first digit
;multiply by 10

;get second digit
; form number

MOV AL, BL ;get answer
MOV BX,10
PUSH BX
MOV AH, 0
.REPEAT
MOV DX, 0
DIV BX
PUSH DX
.UNTIL AX ==
.WHILE 1
POP AX
BREAK .IF AL == 10
ADD AL, '0’ ;make ASCII
DISP AL
. ENDW
RET
ENDP
END

Note that this program uses many of the techniques presented thus far in this chapter, in-
cluding conditional assembly directives such as .REPEAT, .IF, . BREAK, and .WHILE. Also in-
cluded are procedures and macros. This program does not support a backspace to correct an
erroneous entry. To reduce the length of the program, no attempt has been made to recover from

Numeric Sort Program

At times, numbers must be sorted into numeric order. This is often accomplished with a bubble
sort. Figure 7-6 shows five numbers that are sorted with a bubble sort. Notice that the set of five

FIGURE 7-6 A bubble sort
showing data as they are
sorted. Note: Sorting five
numbers may require four
passes.

= IR
3
R ae o4l

3

6
1

3 Passl
2

2 2 2 2 9

6::31
e
2
9

1
e
6
9

1 1
3 3
6 2
2 2 6
9 9 9

Dl

O AN W -
O AWK -

Pass 2

Pass 3

EXAMPLE 7-45

0000

0000 000Aa [

0000

0014 0D OA 45
72 20 31
75 6D 62
3A 0D 0A

002B 0D 0A 0OA
74 65 64
74 61 3A
24

0000

00lE FC

001lF B9 000A

0022 BF 0000 R

0025 8C D8

7-5 EXAMPLE PROGRAMS - 265

numbers is tested four times with four passes. For each pass, two consecutive numbers are com-
pared and sometimes exchanged. Also notice that during the first pass, there are four compar-
isons, during the second three, etc.

Example 7-45 illustrates a program that accepts 10 numbers from the keyboard
(0-65535). After these 16-bit numbers are acceptec and stored in memory section ARRAY, they
are sorted using the bubble sorting technique. This bubble sort uses a flag to determine if any
numbers were exchanged in a pass. If no numbers were exchanged, the numbers are in order and
the sort terminates.

.MODEL SMALL
.DATA
ARRAY DW 10 DUP (?) jarray

6E 74 65 MES1 DB 13,10, 'Enter 10 numbers:’',13,10,10,'S$’

53 6F 72 MES2 DB 13,10,10,'Sorted Data:’,13,10,10,'$"

.CODE
DISP MACRO PARA

PUSH AX

MOV AH, 6
MOV DL, PARA
INT 21H

POP AX

ENDM
GET MACRO

.REPEAT
MOV AH,6
MOV DL,-1
INT \ 21H
.UNTIL (AL>='0’ && AL <='9') || AL==13 || AL==',
DISP AL
.IF AL==13
DISP 10
.ENDIF
.IF AL>='0’ && AL<='9’
SUB AL,'0’
.ENDIF

ENDM
STRING MACRO WHERE

MOV DX, OFFSET WHERE
MOV AH, 9
INT 21H

ENDM
. STARTUP

STRING MES1

CLD

MOV CX, 10

MOV DI,OFFSET ARRAY
MOV AX,DS

266 CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0027 B8E CO MOV ES, AX
.REPEAT
0029 E8 0026 CALL GETN ;get 10 numbers
.UNTILCXZ
STRING MES2
0035 E8 008B CALL SORT ;sort 10 numbers
0038 B9 0009 MOV CX,9
003B BE 0000 R MOV SI,OFFSET ARRAY
.REPEAT ;display 10 numbers
003E E8 0061 CALL DISPN
DIsSpP ‘',°
.UNTILCXZ
004B E8 0054 CALL DISPN
.EXIT
0052 GETN PROC NEAR
0052 BD 000A MOV BP, 10
0055 BB 0000 MOV BX, 0
.WHILE 1
GET
.BREAK .IF AL==13 || AL==',"’
0094 93 XCHG .AX,BX
0095 F7 E5 MUL BP
0097 93 XCHG AX,BX
0098 B4 00 MOV AH,0
009a 03 D8 ADD BX,AX
. ENDW
009E 8B C3 MOV AX,BX
00A0 AB STOSW
00Al cC3 RET
00A2 GETN ENDP
00Aa2 DISPN PROC NEAR
00A2 BB 000A MOV BX, 10
00A5 53 PUSH BX
00A6 AD LODSW
.REPEAT
00A7 BA 0000 MOV DX, 0
00AA F7 F3 DIV BX
00AC 52 PUSH DX
.UNTIL AX==
.WHILE 1
00B1 58 POP AX
.BREAK .IF AL==10
00B6 04 30 ADD AL, '0’
! DISP AL
. . ENDW
0ocz2 c3 RET
00C3 DISPN ENDP
00C3 'SORT PROC NEAR
00C3 BB 0009 MOV BX, 9
.REPEAT
00C6 8B CB MOV CX,BX
00C8 BE 0000 R MOV SI,0FFSET ARRAY
00CB B2 00 MOV DL, 0
.REPEAT
00CD AD LODSW
00CE 3B 04 CMP AX, [SI]
.IF !CARRY?
00D2 8B 2C MOV BP, [SI])
00D4 89 6C FE MOV [SI-2],BP

00D7 89 04 MOV [SI],AX

00D9 FE C2

00DD 4B

00E6 C3

00E7

EXAMPLE 7-46

0000

0000 0000

0002 0100 [

00
0102 0100 [
00

0202 0D 0A 59
6D 75 73
6E 74 65
20 66 69

021A 6E 61 6D
24

0221 0D 0a 46
20 6E 6F
6F 75 6E
24

0234 0D 0A 46
20 63 6F
70 74 0D

0245 0D 0A 32

7-5 EXAMPLE PROGRAMS 267

INC DL
.ENDIF
.UNTILCXZ
DEC BX
.UNTIL BX==0 || DL==
RET

SORT ENDP
END

Once the numbers are sorted, they are displayed on the video screen in ascending numeric
order. No provision is made for errors as each number is typed. The program terminates after
sorting one set of 10 numbers and must be invoked again to sort 10 new numbers.

Hexadecimal File Dump

An example program that displays a file in hexadecimal format allows us to practice disk
memory access. It also gives us the opportunity to read a parameter (the file name) from the DOS
command line.

Whenever a command (program name) is typed at the DOS command line, any parameters
that follow are placed in a program segment prefix. The program segment prefix (PSP) is listed
in Appendix A, Figure A-6. Notice that the length of the command line and the command line
parameters appear in the PSP along with other information. Upon execution of a program, the
DS segment register addresses the PSP, so an offset address of 80H is used to access the length
(byte-sized) of the command line. After obtaining the length, the command line and its parame-
ters can be accessed.

Example 7-46 lists a program that obtains a file name from the command line and then dis-
plays the file in a hexadecimal listing. This program is useful for debugging faulty programs and
also as practice with disk file access and conversions. The parameter following the command al-
ways starts with a space (20H) at offset address 81H and always ends with a carriage return
(ODH). The length of the parameter is always one greater. For example, if DUMPS FROG is
typed at the command line and DUMPS is the name of the program, the parameter FROG
is stored beginning with a 20H at offset 81H, and the length is 5.

.MODEL SMALL

.DATA

SECT DW ?

BUFFER DB 256 DUP (?)

FILE DB 256 DUP (?)
6F 75 20 MES1 DB 13,10, 'You must enter a file *
74 20 65
72 20 61
6C 65 20

DB ‘name’,13,10, 'S

65 0D 0A
69 6C 65 MES2 DB 13,10, 'File not found’,13,10,’$"
74 20 66
64 0D 0A
69 6C 65 MES3 DB 13,10, 'File corrupt’,13,10,'S$"
72 72 75
0a 24

35 36 20 MES4 DB 13,10, ‘256 byte Section: $§’

268

025A
025D

0000

0017
0018
0019
001Aa
001B
001E
0021
0023
0026
00z8
002B

0038
0038
0029

49
BF

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

79 74 65 20
63 74 69 6F

0A 54 79 70
61 20 73 70
65 20 74 6F
6F 6E 74 69
65 3A 20 24

0102 R

53
6E

65
61
20
6E

MES5
MES6

.CODE

STRING

OPEN

READ

CLOSE

DISP

ASCII

. STARTUP

.EXIT
MAINI:

13,10, 'Type a space to continue:$’

DB 13,10,'$”
DB
MACRO WHERE
MOV AEH, S
MOV DX, OFFSET WHERE
INT 21H
ENDM
MACRO WHERE
MOV AX, 3D02H
MOV CX,0
MOV DX, OFFSET WHERE
INT 21H
MOV BX, AX
MOV SECT, -1
ENDM
MACRO BUF, COUNT
MOV AH, 3FH
MOV CX, COUNT
MOV DX, OFFSET BUF
INT 21H
ENDM
MACRO
MOV AH, 3EH
INT 21H
ENDM
MACRO NUM
MOV AH, 6
MOV DL, NUM
INT 21H
ENDM
MACRO
AND AL, 15
ADD AL, 0"’
.IF AL>'9’

ADD AL,7
.ENDIF
DISP AL
ENDM
PUSH DS
PUSH ES
POP DS
POP ES
MOV SI,82H
MOV CL, [SI-2]
MOV CH, 0
CMP CL,0
JNE MAIN1
MOV £X, DGROUP
MOV DS, AX
STRING MES1
DEC CX
MOV DI,OFFSET FILE

;save handle in BX
;indicate first sector

;swap segments

;address command line
iget length

;if file name present

;display MES1
;jexit to DOS

003C
003E
0040
0042

0057

0064

0064

0072

007F

008B

0095
0097

009B
009B

00A4
00A8

00B2

00B5S
00B7
00BA
00BC

00CA

00CD

00D2
00D3

00D3
00D4

00D7
00D9
00DB
00DD
00DF

00FB

00FB
00FB
00FC
00FE
0100
0102

FF

73

E8

B4
CD

8B

8B
E8

BE

ES8

E8

C3

BS

D1

D1
D1
8B

AC
DO
DO
DO
DO

7-5 EXAMPLE PROGRAMS

JEXIT
MAIN2:

06 0000 R

0B

MAIN3:

000D
01
21
DUMP

c8

2E 0000 R
0028

0002 R
Ccé
0002 R
E8

EO OF
0006

002B

DUMP

DISPA

DISPA
DISPN

c8
c8
c8
c8

269

REP MOVSB ;save file name
MOV [DI],CH ;make it ASCII-Z
MOV AX,ES
MOV DS, AX ; segment DGROUP
OPEN FILE
JNC MAIN2 ;1f file found
STRING MES2 ;display MES2
;exit to DOS
JWHILE 1
INC SECT ;increment sector
READ BUFFER, 256
JNC MAIN3 ;if file read
STRING MES3 ;display MES3
.EXIT ;exit to DOS
VIR AX== ;end of file
CLOSE jclose file
.EXIT ;exit to DOS
.ENDIF
CALL DUMP _~";display sector
STRING MES6
MOV AH, 1 ;wait for key
INT 21H
. ENDW
PROC NEAR
MOV CX,AX ;save count
STRING MES4 ;display sector
MOV BP, SECT
CALL DISPA ;display 16-bit hex
STRING MESS ;display CR & LF
MOV SI,OFFSET BUFFER
.REPEAT
MOV AX,SI
SUB AX,OFFSET BUFFER
MOV BP, AX
AND AX,15
.IF AX==0
STRING MESS
CALL DISPA
.ENDIF
CALL DISPN
.UNTILCXZ
RET
ENDP
PROC NEAR USES CX
MOV CX, 4
.REPEAT
ROL BP, 1
ROL BP,1
ROL BP, 1
ROL BP,1
MOV AX,BP
ASCII
.UNTILCXZ
DISP r
RET
ENDP
PROC NEAR
LODSB
ROR AL, 1
ROR AL, 1
ROR AL, 1
ROR AL, 1

ASCII

270

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0114 8A 44 FF MOV AL, [SI-1]
ASCIT
DISP o

012D C3 RET

012E DISPN ENDP
END

7-6 INTERRUPT HOOKS

Hooks are used to tap into or intercept the interrupt structure of the microprocessor. For example,
we might hook into the keyboard interrupt so that we can detect a special keystroke called a hot-
key. Whenever the hot-key is typed, we can access a terminate and stay resident (TSR) program
that performs a special task. Some examples of hot-key software include pop-up calculators and
pop-up clocks.

Intercepting an Interrupt

In order to intercept an interrupt, we must use a DOS function call that reads the current address
from the interrupt vector. The DOS function call number 35H is used to read the current interrupt
vector, and DOS function call number 25H is used to change the address of the current vector. In
both DOS function calls, AL indicates the vector type number (OOH-FFH) and AH indicates the
DOS function call number.

When the vector is read using function 35H, the offset address is returned in register BX
and the segment address is in register ES. These two registers are saved so that they can be re-
stored when the interrupt hook is removed from memory. When the vector is set, it is set to the
address stored at the memory location addressed by DS:DX.

The process of installing an interrupt handler through a hook is illustrated in the program
of Example 7-47. This program intercepts the divide error interrupt by first reading the current
interrupt vector address and storing it into a double-word memory location for access by the new
interrupt service procedure. Next, the address of the new interrupt service procedure, stored in
DS:DX, is placed into the vector using DOS function call number 25H.

EXAMPLE 7-47
;A sequence of instructions that show the installation
;Oor a new interrupt for vector 0 (divide error).
;Note this is not a complete program.
o .MODEL TINY
0000 .CODE
.STARTUP
0100 EB 05 JMP MAIN ;skip
0102 00000000 ADDR DD ? ;old interrupt vector
0106 NEW PROC FAR ;new interrupt procedure
0106 CF IRET - ;do nothing interrupt
0107 HEW ENDP
0107 MAIN:
0107 8C C8 MOV AX,CS ;address CS with DS

0109 8E D8 MOV DS, AX

7-6 INTERRUPT HOOKS 271

;get vector 0 address

010B B8 3500 MOV AX,3500H
010E CD 21 INT 21H

;save vector address at ADDR

0110 89 1E 0102 R MOV WORD PTR ADDRESS, BX
0114 8C 06 0104 R MOV WORD PTR ADDRESS+2,ES

;install new interrupt vector 0 address

0118 B8 2500 MOV AX,2500H
011B BA 0106 R MOV DX, OFFSET NEW
011E CD 21 INT 21H

;other installation software continues here

Example TSR Alarm

A fairly simple example showing an interrupt hook and TSR causes a beep on the speaker after
one hour or one-half hour. We all seem to get lost in computer processing, and this program
makes it easy to keep track of time because of the audible beep.

The beep is caused by using timer 2 of the timer found inside the PC in order to generate
an audio tone at the speaker. (Refer to Section 10-5 in Chapter 10 for a discussion of the timer,
and see Figure 7-7 for its connection in the computer.) Programming timer 2 with a particular
beep frequency or tone is accomplished by programming timer 2 with 1,193,180 divided by the
desired tone. For example, if we divide 1,193,180 by 800, the speaker generates an 800 Hz audio
tone. Refer to the BEEP procedure (see Example 7-48) for programming the timer and turning
the speaker on and off after a short wait determined by the number of clock ticks. This procedure
uses six clock ticks to produce a beep lasting about /3 of a second. Note that each clock tick oc-
curs about 18.2 times per second (the actual time is closer to 18.206). This is accomplished by
using the user wait timer locations in the first segment of the memory. The user wait timer is up-
dated 18.2 times per second by the computer so that it can be used to time events. The program
that uses the BEEP procedure causes an audio tone of 1000 Hz, 1200 Hz, and 1400 Hz (each
with a !/3-second duration) to repeat four times.

EXAMPLE 7-48

;A program that beeps the speaker with some sample audio

;jtones that each have a duration of 1/3 second.

.MODEL TINY
0000 .CODE
.STARTUP

0100 B8 0000 MOV AX,0
0103 B8E D8 MOV DS, AX ;address segment 0000H
0105 B9 0004 MOV CX,4 ;set count to 4
0108 E4 61 IN AL, 61H ;enable timer and speaker
010a 0C 03 OR AL,3 ;set PBO and PB1
010C E6 61 OUT 61H,AL
010E MAINL:
010E BB 03E8 MOV BX, 1000 ;select 1000 Hz tone
0111 E8 0018 CALL BEEP
0114 BB 04BO MOV BX, 1200 ;select 1200 Hz tone
0117 E8 0012 CALL BEEP
011A BB 0578 MOV BX,1400 ;select 1400 Hz tone
011D E8 000C CALL BEEP
0120 E2 EC LOOP MAIN1 ;repeat 4 times

0122 E4 61 IN AL, 61H ;turn speaker off

272

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

vce
10K
f Timer 0
— g:t"e Out L IRQ Vector 8 (18.2 Hz)
Timer 1
g';:: Out L DRQO (DRAM refresh)
Timer 2
1,193,180 Hz | ck out VCC
PBO | Gate u
1 . 2N2907
PB1 2

Speaker

FIGURE 7-7 The speaker and timer circuit in the personal computer (/O ports 40-43H program

the timer, and I/O port 61H programs PB0 and PB1)

;clear PBO and PB1

;beep speaker 1/3 second

;load AX with 1,193,180

;program timer 2

;wait 1/3 second

;number of clock ticks

;get tick count plus time

0124 34 03 XOR AL,3
0126 E6 61 OUT 61H,AL
.EXIT
;The BEEP procedure programs timer 2 to beep the speaker
;for 1/3 of a second with the frequency BX.
;***input parameters***
;BX = desired audio tone
;***usestw*
;WAITS procedure to wait for 1/3 second
012C BEEP PROC NEAR
012C B8 34DC MOV AX, 34DCH
012F BA 0012 MOV DX, 12H
0132 F7 F3 DIV BX ;find count
0134 E6 42 OUT 42H,AL
0136, 8A C4 MOV AL, AH
0138 E6 42 OUT 42H,AL
013A E8 0001 CALL WAITS
013D C3 RET
013E BEEP ENDP
;the WAITS procedure waits 1/3 of a second
’.***usest**
;memory doubleword location 0000:46CH to time the wait
013E WAITS PROC NEAR
013E BA 0006 MOV DX, 6
0141 BB 0000 MOV BX,0
0144 03 16 046C ADD DX,DS:[46CH]
0148 13 1E 046E ADC BX,DS:[46EH]
014C WAITI:
014C 8B 2E 046C MOV BP,DS: [46CH]

0150 Al 046E MOV AX,DS:[46EH]

;test for elapsed time

7-6 INTERRUPT HOOKS 273

0153 2B EA SUB BP,DX
0155 1B C3 SBB AX,BX
0157 72 F3 Jc WAIT1 ;keep testing
0159 3 RET
015A WAITS ENDP
END

The CHIME program (see Example 7-49) hooks into interrupt vector 8 and beeps the
speaker once each half-hour and twice on the hour. This program is a TSR and remains active
until the computer is turned off. Note how the TSR is installed and how the interrupt vector is
hooked. Also notice that the normal interrupt vector 8 procedure continues to execute even as the
beeper is activated.

EXAMPLE 7-49
;A terminate and stay resident program that hooks into
;interrupt vector 8 to beep the speaker one time per
;half-hour and two times per hour.
;***must be assembled as a .COM file*** for use with
;version 5.10 of MASM
.MODEL TINY
0000 .CODE
.STARTUP
0100 E9 00CE JMP INSTALL ;install interrupt
= 03E8 TONE EQU 1000 ;set tone at 1000 Hz
0103 00 COUNT DB 0 ;elapsed time counter
0104 00000000 ADDS8 DD ? ;0ld vector address
0108 00 PASS DB 0 ;1 or 2 beeps
0109 00 BEEP DB 0 ;beep or silent
010Aa 00 FLAG DB 0 ;busy flag
010B VEC8 PROC FAR ;interrupt procedure
010B 2E: 80 3E 010A R CMP CS:FLAG, 0 ;test busy flag
00
0111 74 05 JE VEC81 ;1f not busy
0113 2E: FF 2E 0104 R JMP CS:ADDS8 ;if busy do normal INT 8
0118 VEC81:
0118 9cC PUSHF ;do normal INT 8
0119 2E: FF 1E 0104 R CALL CS:ADDS8
011E 2E: C6 06 010A R MOV CS:FLAG,1 ;show busy
01
0124 FB STI ;allow other interrupts
0125 2E: 80 3E 0108 R CMP CS:PASS,0
00
012B 75 2C JNE VECS83 ;if beep counter active
012D 50 PUSH AX ;save registers
012E 51 PUSH CX
012F 52 PUSH DX
0130 B4 02 MOV AH,2 ;get time from BIOS
0132 CD 1A INT 1AH
0134 80 FE 00 CMP DH,O0 ;is it 00 seconds
0137 75 68 JNE VEC86 ;not time yet, so return
0139 80 F9 00 CMP CL,0 ;test for hour
013C 74 10 JE VECS82 ;1f hour beep 2 times
013E 80 F9 30 CMP CL,30H ;test for half-hour
0141 75 SE JNE VECS86 ;1f not half-hour
0143 E8 0065 CALL BEEPS ;start speaker beep
0146 2E: C6 06 0108 R MOV CS:PASS,1 ;set number of beeps to 1
01
014C EB 53 JMP VEC86 ;end it
014E VEC82:
01l4E E8 005a CALL BEEPS ;start speaker beep

0151 2E: C6 06 0108 R MOV CS:PASS, 2 ;set number of beeps to 2

274

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0157
0159
0159

015F
0lel
0166
0168
0168

016E
0170
0175
0177

017D

0183
0184
0186
0188
018a
018C
018C

0192

0198
0199
019B
015D
019F
01A1
01a1
01Aa2
01A3
01A3
0124
01A4

01AA

01AB

01AB

01AB
01BO
01B3
01B6
01B8
01BA
01BC

01BE
01Co
01c2
01c4
01ca

01D0

02
EB

2E:

00
74

2E:

EB

2E:

CF

VEC86
CS:COUNT, 0

VEC84
CS:COUNT
VEC88

CS:BEEP, 0

VECS85
CS:PASS
VEC88
CS:COUNT, 9

CS:BEEP, 1

AX

AL, 61H
AL, 3
61H,AL
VEC87

CS:COUNT, 9
CS:BEEP, 0
AX

AL, 61H
AL, 3
61H,AL
VEC87

DX
CX

AX

CS:FLAG, 0

;end it

;test for end of delay

;if time delay has elapsed
;end it

;jtest beep on

;if beep is on

;test for 2 beeps

;1f second beep not needed

;reset count

;beep on for second beep

;enable speaker for beep

;end it
;reset count

;show beep is off

;disable speaker

;jend it

;jrestore registers

;show not busy

;interrupt return

;The BEEPS procedure programs the speaker for the
;frequency stored as TONE using an eqguate at assembly
;time. The duration of the beep is 1/2 second.
;***uses registers AX, CX, and DX***

48 JMP
VEC83:
80 3E 0103 R CMP
07 JE
FE OE 0103 R DEC
3C JMP
VEC84:
80 3E 0109 R CMP
1cC JNE
FE OE 0108 R DEC
2D Jz
: C6 06 0103 R MOV
: C6 06 0109 R MOV
PUSH
61 IN
03 OR
61 ouT
17 JMP
VEC85:
C6 06 0103 R MOV
Cc6 06 0109 R MOV
PUSH
61 IN
03 XOR
61 ouT
02 JMP
VEC86:
POP
POP
VEC87:
POP
VEC88:
C6 06 010A MOV
IRET
VEC8 ENDP
BEEPS PROC
8B OE 03E8 MOV
34DC MOV
0012 MOV
Fl DIV
42 ouT
Cc4 MOV
42 ouT
61 IN
03 OR
61 ouT
: C6 06 0103 R MOV

: C6 06 0109 R MoV

RET

NEAR

CX,CS:TONE
AX,34DCH
DX, 12H

CX

42H,AL
AL,AH
42H,AL

AL, 61H
AL, 3
61H,AL
CS:COUNT, 9

CS:BEEP, 1

ibeep speaker

;set tone
;load AX with 1,193,180

;calculate count
;program timer 2

;speal.eer on

;set count for 1/2 second

;indicate beep is on

7-6 INTERRUPT HOOKS 275

01D1 BEEPS ENDP
01D1 INSTALL: ;install interrupt VECS
01D1 8C C8 MOV AX,CS ;overlap CS and DS
01D3 8E D8 MOV DS, AX
01D5 B8 3508 MOV AX,3508H ;get current vector 8
01D8 CD 21 INT 21H ;and save it
01DA 89 1E 0104 R MOV WORD PTR ADDS8,BX
01DE 8C 06 0106 R MOV WORD PTR ADD8+2,ES
01E2 B8 2508 MOV AX,2508H
01E5 Ba 010B R MOV DX,OFFSET VEC8 ;address interrupt VECS8
0lE8 CD 21 INT 21H ;install vector 8
01EA BA 01D1 R MOV DX,OFFSET INSTALL ;find paragraphs
0OlED B1 04 MOV CL,4
0OlEF D3 EA SHR DX, CL
01F1 42 INC DX
01F2 B8 3100 MOV AX,3100H ;exit to DOS as TSR
01F5 CD 21 INT 21H
END

The CHIME program uses several memory locations as flags to signal the operation of the
interrupt service procedure. The first flag tested by CHIME is the busy flag (FLAG), which in-
dicates that a part of the interrupt service procedure is active. If FLAG = 1 (busy condition), the
procedure jumps to the normal vector 8 interrupt (JMP CS:ADDS8), which ends VEC8’s execu-
tion. If FLAG = 0 (not busy), the interrupt service procedure continues at VEC81. The default
address for all direct memory data is the data segment. In the TSR software used in this example
and others, it is important to use the segment override prefix (CS:) to ensure that the program ad-
dresses data in the code segment, where it appears.

At VECS81, the normal vector 8 interrupt is executed with a forced interrupt call (PUSHF
followed by a CALL CS:ADD8). Upon return from the normal vector 8 interrupt (required to
keep accurate time), the busy flag is set to show a busy condition (FLAG = 1), and other inter-
rupts are enabled with the STI instruction.

The pass flag is now tested to see if the VEC8 procedure is currently beeping the speaker.
If PASS = 0 (not beeping speaker), the time of day is retrieved from BIOS using the INT 1AH
instruction. It is important not to access DOS from within a TSR or interrupt service procedure.
If DOS is accessed at this time, it may be in the process of executing an operation that affects the
interrupt. This would cause the program to crash. The INT 1AH instruction returns the number
of seconds (DH), minutes (CL), and hours (CH) in BCD form. After obtaining the current time,
the number of seconds is tested for zero. If it is not zero seconds, the interrupt procedure ends. If
it is zero seconds, then CL is tested for 00 minute (hour) and 30 minutes. If either case is true, the
speaker is enabled and TONE is programmed in the timer by a call to BEEPS. If neither case is
true, the interrupt ends. Notice that the BEEPS procedure programs timer 2, enables the speaker,
and sets the count to 9.

The time delay counter (COUNT) is decremented each time the interrupt occurs. If the
count reaches zero, the procedure tests BEEP to control the speaker. If the speaker is beeping,
the procedure turns it off and resets the time delay count to 9. If the speaker is not beeping, the
procedure tests PASS to determine if another beep is required on the hour. The time delay is 1/2
second (COUNT = 9) in this program and cannot be less. If a delay of less than /2 second is
chosen, the speaker will beep twice for both the hour and half hour. The reason is that the clock
(INT 1AH) is checked for the zero second. If a time delay of less than /2 second is used, the
half-hour will be picked up twice.

The TSR program is loaded into memory at the DOS command line by typing thc name of
the program; in this case, the program is called CHIME. If DOS version 5.0 or 6.X is in use, you

276

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

can load CHIME into the upper memory or high memory area by typing LOADHIGH CHIME.
Once this program loads into memory, it remains in the background beeping off the time until
the power to the computer is disconnected or until it is rebooted. This is an excellent, and not too
annoying, addition to the system to keep track of time. If desired, a hot-key could be used to en-
able and disable CHIME. The next section of the text describes hot-keys.

Example Hot-Key Program

Hot-keys are keystrokes that invoke programs that are terminate and stay resident. For example,
an ALT + C key could be defined as a hot-key that calls a program that displays the time. Note
that the hot-key is detected inside most applications, but not at the DOS command line, where it
may lock up the system if used. To detect a hot-key, we usually hook into interrupt vector 9,
which is the keyboard interrupt that occurs if any key is typed. This allows us to test the key-
board and detect a hot-key before the normal interrupt processes the keystroke.

A hot-key is installed with a TSR program and interrupt hooks. To illustrate a hot-key pro-
gram that can be useful, a program is developed that counts keystrokes. The keystroke counter
program (see Example 7-50) is useful in a business environment that uses computers for data
entry or other tasks. With this type of program, productivity can be assessed. The keystroke
counter program counts each keystroke and displays the count only when the ALT + K key is
pressed. (It is important to note that businesses sometimes use this program to monitor workers.
It is the duty of any company using this program to notify workers of its use. It may even be the
responsibility of the company to obtain permission from workers before a program such as this
is placed into service.) .

This program can be modified to keep track of keystrokes by the hour or any other time
unit. In this example, the keystroke count (up to 4 billion) accumulates keystrokes for as long
as power is applied to the computer. The program also stores the installation time for security
purposes. This is important because if a machine is reset, the start time for this TSR will be
reset.

This program hooks into interrupt 8 and 9 to count keys. The interrupt 9 hook detects the
hot-key (ALT + K) and counts keystrokes. When the hot-key is detected, the 18.2 Hz interrupt 8
activates the hot-key program that displays the keystroke count and time of installation. This
type of TSR is often called a pop-up program, because it pops up when the hot-key is typed. No-
tice that this program uses INT 16H to test the keyboard. Never use a DOS INT 21H function
call within a TSR or interrupt hook because serious problems can arise. This program also uses
direct manipulation of the video text memory that begins at location B8OOOH. This memory is
organized with two bytes per ASCII character. The first byte contains the ASCII code, and the
following byte contains the background and character color.

EXAMPLE 7-50

;A TSR program that counts keystrokes and reports the
;time of installation and number of accumulated

1 keystrokes when the ALT-K key combination is activated.
;***requires an 80386 or newer microprocessor***

7

.MODEL TINY
.386
0000 .CODE
.STARTUP
0100 E9 0241 JMP INSTALL ;install VEC8 and VECY
0103 00 HFLAG DB 0 ;Hot-key detected
0104 00000000 ADD8 DD ? ;o0ld vector 8 address

0108 00000000 ADDY DD ? ;o0ld vector 9 address

7-6

0locC
0110
0111
0112
0113
0114
0115
0116
0117

01B7

01BE

01CE

01CE
01CF
01p1
01D3
01D8
01DA
01DD
01DE
01EO0
01E3
01E4
01E9
01EE
01F0
01F0
01F1
01F4
01F9
01FD
01lFE
01FE
O1FF
0203
0204
0206
0207
0209
020D
0212
0213
0215
021A
021A
021B
021D
021F
0221
0223
0225
0227
0229
022A

0230
0232

0233

INTERRUPT HOOKS
00000000 COUNT
00 HOUR
00 MIN
00 SFLAG
00 FLAGS
25 KEY
08 HMASK
08 MKEY
00A0 [SCRN

00
]
54 69 6D 65 MES1
20 3D 20
20 20 20 4B MES2
65 79 53 74
72 6F 6B 65
73 20 3D 20
VEC9
FB
661 50
E4 60

2E: 3A 06 0114 R
75 16
B8 0000

8E D8
A0 0417

2E: 22 06 0115 R
2E: 3A 06 0116 R
74 2A

VEC91:
51
B9 0003
66| 2E: Al 010C R
66] 83 CO 01
27
VEC92:
9C
661 Cl1 C8 08
9D
14 00
27
E2 F5
661 Cl1 C8 08
66| 2E: A3 010C R
59
66| 58
2E: FF 2E 0108 R
VEC93:
FA
E4 61
0C 80
E6 61
24 TF
E6 b1
BO 20
E6 20
FB

VECS

DD
DB
DB
DB

DB
DB
DB
DB

DB

DB

PROC

STI
PUSH

CMP
JNE
MOV
PUSH
MOV
MOV
POP
AND
CMP
JE

PUSH
MOV
MOV
ADD
DAA

S

60 DUP (?)

'Time = *

! KeyStrokes =

FAR

EAX

AL, 60H
AL,CS:KEY
VEC91

AX,0

DS

DS, AX
AL,DS: [417H]
DS

AL, CS:HMASK
AL, CS:MKEY
VEC93

CX

CX,3
EAX,CS:COUNT
EAX, 1

PUSHF

ROR
POPF
ADC
DAA
LOOP
ROR
MOV

EAX, 8
AL, O

VEC92

EAX, 8
CS:COUNT, EAX
CX

EAX

CS:ADD9

AL, 61H
AL, 80H
61H,AL
AL, 7FH
61H,AL
AL, 20H
20H, AL

CS:HFLAG, 1

EAX

;Keystroke counter
;start-up time

;start-up flag
;interrupt 8 busy
;scan code for K
;alternate key mask
;alternate key
;screen buffer

;keyboard intercept

;enable interrupts
;save EAX

;get scan code

;jtest for K

;no hot-key

;address segment 0000
;save DS

;get shift/alternate data
;isolate alternate key
;test for alternate key

;if hot-key found

;add one to BCD COUNT

;make result BCD

;propagate carry

;do normal interrupt
;if hot-key pressed
;interrupts off

;clear keyboard and
;throw away hot key

;reset keyboard interrupt

;enable interrupts
;indicate hot-key pressed

277

278 CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

0233 VECS8 PROC FAR ;clock tick interrupt
0233 2E: 80 3E 0113 R CMP CS:FLAGS,0
00
0239 74 05 JZ VEC81 ;if not busy
023B 2E: FF 2E 0104 R JMP CS:ADDS8 ;if busy
0240 VEC81:
0240 2E: 80 3E 0103 R CMP CS:HFLAG,0
00
0246 75 37 JNZ VEC83 ;1f hot-key detected
0248 2E: 80 3E 0112 R QMP CS:SFLAG, 0
00
024E 74 05 Jz VECS82 ;if start-up
0250 2E: FF 2E 0104 R JMP CS:ADDS8 ;if not hot-key or start
0255 VEC82:
0255 9C PUSHF ;do o0ld interrupt 8
0256 2E: FF 1E 0104 R CALL CS:ADDS
025B 2E: C6 06 0113 R MOV CS:FLAGS,1 ;indicate busy
01
0261 FB STI ;enable interrupts
0262 50 PUSH AX
0263 51 PUSH CX
0264 52 PUSH DX
0265 B4 02 MOV AH, 2 ;get start-up time
0267 CD 1A INT 1AH
0269 2E: 88 2E 0110 R MOV CS:HOUR, CH ;save hour
026E 2E: 88 0E 0111 R MOV CS:MIN,CL ;save minute
0273 5A POP DX ;jrestore registers
0274 59 POP CX
0275 58 POP AX
0276 2E: C6 06 0112 R MOV CS:SFLAG, 1 ;indicate started
01
027C E9 00A5 JMP VEC89 ;end it
027F VEC83: ;do hot-key display
027F 9C PUSHF ;do old interrupt 8
0280 2E: FF 1E 0104 R CALL CS:ADDS8
0285 2E: C6 06 0113 R MOV CS:FLAGS, 1 ;indicate busy
01
028B FB STI ;enable interrupts
028C 50 PUSH AX ;save registers
028D 53 PUSH BX
028E B4 OF MOV AH, OFH ;get video mode
0290 CD 10 INT 10H
0292 3C 03 CMP AL,3
0294 76 05 JBE VEC84 ;1f DOS text mode
0296 5B POP BX ;ignore if graphics mode
0297 58 POP AX
0298 E9 0083 JMP VECS88
029B VEC84: ;for text mode
029B 51 PUSH CX
029C 661 52 PUSH EDX
029E 57 PUSH DI
029F 56 PUSH SI
02A0 1E PUSH DS
02A1 06 PUSH ES
02A2 FC CLD
02A3 8C C8 MOV AX,CS ;address this segment
02A5 8E CO MOV ES,AX
02A7 B8 B800 MOV AX,0B800H ;address text memory
02AA 8E D8 MOV DS,AX
02AC B9 0020 MOV CX,160 ;jsave top screen line
02AF BF 0117 R MOV DI,OFFSET SCRN
02B2 BE 0000 MOV SI,O
02B5 F3/ A4 REP MOVSB
02B7 1E PUSH DS ;swap segments
02B8 06 PUSH ES

02B9 1F POP DS

7-6

02BA
02BB
02BE
02C1
02C3
02C6
02C6
02C7
02C8
02CA
02CF
02D4
02D8
02DB
02DD
02E0
02E2
02E3
02E6
02E8
02EB
02EE
02F1
02F1
02F2
02F3
02F5
02FB
02FE
0300
0303
0303
0305
0307
0309
030A
030D
0310
0313
0315
0316
0317
0318
0319
031B
031C
031D
031E
031E

0324
0324

032A

032B

032B

032B

07
BF
BE
B4
B9

AC
AB
E2
2E:

2E:

66 |
B9
B3
E8
BO
AB
B9S
B3
ES8
BE
B9

AC
AB
E2
66 |
B9
B3
E8

INTERRUPT HOOKS

0050
01B7 R

0007
VEC85:

FC
8A 16 0111 R
8A 36 0110 R
Cl E2 10
0002
30
004B
3A

0002
80
0040
01BE R
0010
VEC86:

FC
2E:
0008
30
0028

8B 16 010C

VEC87:
01
16
FA

0117 R
0000
00A0

F3/ A4

07
1F
SE
5F

2E:
00

2E:

00
CF

661

5A

VEC88:
C6 06 0103 R

VEC89:
C6 06 0113 R

VECS8

POP
MOV
MOV
MOV
MOV

ES

DI, 80
SI,OFFSET MES1
AH, OFH

CX,17

LODSB
STOSW

LOOP
MOV
MOV
SHL
MOV
MOV
CALL
MOV

VEC85

DL, CS:MIN
DH, CS:HOUR
EDX, 16
CX,2

BL, 30H
DISP

AL, ":’

STOSW

MOV
MOV
CALL
MOV
MOV

CX,2

BL, 80H

DISP

SI,OFFSET MES2
CX,16

LODSB
STOSW

LOOP
R MOV
MOV
MOV
CALL

MOV
INT
Jz

CLD
MOV
MOV
MOV
REP
POP
POP
POP
POP
POP
POP
POP
POP

MOV

MOV

IRET

ENDP

VECS86
EDX,CS:COUNT
CX,8

BL, 30H

DISP

AH, 1
16H
VEC87

SI,OFFSET SCRN
DI, 0
CX, 160
MOVSB
ES

DS

ST

DI

EDX
CX

BX

AX

CS:HFLAG, 0

CS:FLAGS, 0

279

;start display at center

;load white on black

;display “Time = ”

;display hours

;display colon

;display minutes
;display KeyStrokes =

;get count

;display count

;wait for any key (BIOS)

;restore text

;kill hot_key

;indicate not busy

;The DISP procedure displays the BCD contents of EDX.
;***input parameters***

;CX =
;BL =
;ES =
;DI =

DISP

Cl C2 04

nunmber

of digits

30H for blank leading zeros or 80H for no blanking
segment address of text mode display
offset address of text mode display

PROC

ROL

NEAR

EDX, 4

;display

;position number

280

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

032F 8A C2 MOV AL, DL
0331 24 OF AND AL, OFH
0333 04 30 ADD AL, 30H ;jconvert to ASCII
0335 AB STOSW ;store in text display
0336 3A C3 CMP AL,BL ;test for blanking
0338 74 04 JE DISP1 ;if blanking needed
033A B3 80 MOV BL, 80H ;turn off blanking
033C EB 03 JMP DISP2 ;continue
033E DISP1:
033E 83 EF 02 SUB DI,2 ;blank digit
0341 DISP2:
0341 E2 E8 LOOP DISP
0343 C3 RET
0344 DISP ENDP
0344 INSTALL: ;install VEC8 and VEC9
0344 8C C8 MOV AX,CS ;1load DS
0346 8E D8 MOV DS, AX
0348 B8 3508 MOV AX,3508H ;get current vector 8
034B CD 21 INT 21H ;and save it
034D 89 1E 0104 R MOV WORD PTR ADDS8, BX
0351 8C 06 0106 R MOV WORD PTR ADD8+2,ES
0355 B8 3509 MOV AX,3509H ;jget current vector 9
0358 CD 21 INT 21H ;and save it
035A 89 1E 0108 R MOV WORD PTR ADDY, BX
035E 8C 06 010A R MOV WORD PTR ADD9+2,ES
0362 B8 2508 MOV AX,2508H
0365 BA 0233 R MOV DX,OFFSET VECS8 ;address interrupt procedure
0368 CD 21 INT 21H ;install vector 8
036A B8 2509 MOV AX,2509H
036D BA 01CE R MOV DX, OFFSET VECS ;address interrupt procedure
0370 CD 21 INT 21H ;install vector 9
0372 BA 0344 R MOV DX,OFFSET INSTALL ;find paragraphs
0375 C1 EA 04 SHR DX, 4
0378 42 INC DX
0379 B8 3100 MOV AX,3100H ;set as a TSR
037C CD 21 INT 21H
END

Note that the pop-up portion of this program only functions in the text mode and will count
any unseen keystrokes that DOS generates. It also counts shift, alternate, and other keys as they
are pressed and released. For example, the capital A will be counted as two or three keystrokes.
This means that the keystroke count will be inflated. Even so, this program is useful for counting
keystrokes by a given operator. If the operator reboots the system, the new reboot time is dis-
played and the count is cleared to zero.

The VEC9 interrupt service procedure intercepts all keystrokes. The IN AL,60H instruc-
tion reads the scan code from the keyboard interface within the personal computer. This is then
tested for the K scan code. (See Table 7-3 for the key scan codes). If the K scan code is not
four -, the procedure increments the BCD count stored at location COUNT and returns to the
normal keyboard interrupt handler. If the K scan code is detected, the contents of memory loca-
tion 0000:0417 are tested for the alternate key. If an alternate key is detected, the program sets
the HFLAG to 1, tosses away the hot-key, and returns. Notice how the hot-key is discarded by
strobing I/O port number 61H. The keyboard is cleared by sending a logic 1 in bit position 7 of

7-7 SUMMARY 281

port 61H, followed by sending a logic 0 in bit position 7. The interrupt controller in the computer
must also be cleared by sending a 20H out to I/O port number 20H.

The VECS interrupt service procedure tests the HFLAG for the hot-key and the SFLAG
for system startup. If the SFLAG = 0, the system has just been installed and the time is stored
in HOUR and MIN. If the HFLAG = 1, a hot-key was detected by VEC9. The VETS procedure
responds to the hot-key by storing the contents of the top line of the text display at memory
array SCRN. Once the top is stored, the message “Time = ” is displayed, followed by the in-
stallation time. Next, the message “Keystrokes = ” is displayed, followed by the BCD number
stored in COUNT. Recall that count is incremented each time VEC9 detects that a key is typed
on the keyboard.

SUMMARY

1. The assembler program assembles modules that contain PUBLIC variables and segments
plus EXTRN (external) variables. The linker program links modules and library files to
create a run-time program executed from the DOS command line. The run-time program
usually has the extension EXE.

2. The MACRO and ENDM directives create a new opcode for use in programs. These macros
are similar to procedures except that there is no call or return. In place of them, the assem-
bler inserts the code of the macro sequence into a program each time it is invoked. Macros
can include variables that pass information and data to the macro sequence.

3. The DOS INT 21H function call provides a method of using the keyboard and video display.
Function number 06H, placed into register AH, provides an interface to the keyboard and
display. If DL = OFFH, this function tests the keyboard for a keystroke. If no keystroke is de-
tected, it returns equal. If a keystroke is detected, the standard ASCII character returns in AL.
If an extended ASCII character is typed, it returns with AL = O0H, where the function must
again be called to return with the extended ASCII character in AL. To display a character,
DL is loaded with the character and AH with O6H before the INT 21H is used in a program.

4. Character strings are displayed using function number 09H. The DS:DX register combina-
tion addresses the character string, which must end with a $.

5. The INT 10H instruction accesses video BIOS (basic I/O system) procedures that control the
video display and keyboard. The video BIOS functions are independent of DOS and func-
tion with any operating system.

6. The mouse driver is installed at interrupt vector 33H.

7. Data conversion from binary to BCD is accomplished with the AAM instruction for num-
bers that are less than 100 or by repeated division by 10 for larger numbers. Once converted
to BCD, a 30H is added to convert each digit to ASCII code for the video display.

8. When converting from an ASCII number to BCD, a 30H is subtracted from each digit. To
obtain the binary equivalent, we multiply by 10.

9. Lookup tables are used for code conversion with the XLAT instruction if the code is an 8-bit
code. If the code is wider than 8-bits, then a short procedure that accesses a lookup table pro-
vides the conversion. Lookup tables are also used to hold addresses so that different parts of
a program or different procedures can be selected.

10. Conditional assembly language statements allow portions of a program to be assembled if a
condition is met. These are useful for tailoring software to an application

11. The disk memory system contains tracks that hold information stored in sectors. Many disk
systems store 512 bytes of information per sector. Data on the disk are organized in a boot

282 CHAPTER 7 PROGRAMMING THE MICROPROCESSOR
sector, file allocation table, root directory, and a data storage area. The boot sector loads the
DOS system from the disk into the computer memory system. The FAT indicates which sec-
tors are present and whether they contain data. The root directory contains file names and
subdirectories, through which all disk files are accessed. The data storage area contains all
subdirectories and data files.

12. Files are manipulated with the DOS INT 21H function call. To read a disk file, the file must
be opened, read, and then closed. To write to a disk file, the file must be opened, written, and
then closed. When a file is opened, the file pointer addresses the first byte of the file. To ac-
cess data at other locations, the file pointer is moved before data are read or written.

13. A sequential access file is a file that is accessed sequentially from the beginning to the end.
A random access file is a file that is accessed at any point. Although all disk files are se-
quential, they can be treated as random access files by using software procedures.

14. The program segment prefix (PSP) contains information about a program. One important
part of the PSP is the command line parameters.

15. Interrupt hooks allow application software to gain access to or intercept an interrupt. We
often hook into the timer click interrupt (vector 8) or the keyboard interrupt (vector 9).

16. A terminate and stay resident (TSR) program is a program that remains in the memory and
is often accessed through a hooked interrupt using either the timer click or a hot-key.

17. A hot-key is a key that activates a terminate and stay resident program through the keyboard
interrupt hook.

7-8 QUESTIONS AND PROBLEMS
1. The assembler converts a source filetoa(n) _____ file.
2. What files are generated from the source file TEST.ASM if it is processed by MASM?
3. The linker program links object filesand _____files to create an execution file.
4. What does the PUBLIC directive indicate when placed in a program module?
5. What does the EXTRN directive indicate when placed in a program module?
6. What directives appear with labels defined external?

" 7. Describe how a library file works when it is linked to other object files by the linker pro-
gram.

8. What assembler language directives delineate a macro sequence?
9. What is a macro sequence?

10. How are parameters transferred to a macro sequence?

11. Develop a macro called ADD32 that adds the 32-bit contents of DX~CX to the 32-bit con-
tents of BX-AX.

12. How is the LOCAL directive used within a macro sequence?

13. Develop a macro called ADDLIST PARA1,PARA2 that adds the contents of PARALI to
PARA2. Each of these parameters represents an area of memory. The number of bytes
added is indicated by register CX before the macro is invoked.

14. Develop a macro that sums a list of byte-sized data invoked by the macro ADDM
LIST,LENGTH. The label LIST is the starting address of the data block, and length is the
number of data added. The result must be a 16-bit sum found in AX at the end of the macro
sequence.

15. What is the purpose of the INCLUDE directive?

16. Develop a procedure called RANDOM. This procedure must return an 8-bit random number

in register CL at the end of the subroutine. (One way to generate a random number is to in-
crement CL each time the DOS function 06H tests the keyboard and finds no keystroke. In
this way, a random number is generated.)

7-8

17.

18.

19.

20.

1

1.

22.
23.
24.
25.
26.
27.

28.
29.

30.
31.

32.

33.

34.

3s.
36.
37.
38.
39.
40.
41.
42.

43.

46.
47.

48.

QUESTIONS AND PROBLEMS 283

Develop a macro that uses the REPEAT statement to insert 10 NOP instructions in a pro-
gram.

Develop a macro that uses the IFB/IFNB statements to test the parameter PARA in the
macro DISP MACRO PARA. If PARA is blank, display a carriage return/line feed combi-
nation; if PARA is not blank, display PARA as an ASCII-coded character.

Develop a procedure that displays a character string that ends with a 00H. Your procedure
must use the DS:DX register to address the start of the character string.

Develop a procedure that reads a key and displays the hexadecimal value of an extended
ASCII-coded keyboard character if it is typed. If a normal character is typed, ignore it.

Use BIOS INT 10H to develop a procedure that positions the cursor at line 3, column 6.
What INT instruction is used to access the mouse?

Describe how to test for the existence of the mouse in a computer system.

How is it determined if the mouse is a serial or a bus mouse?

How is it determined if the right mouse button is pressed?

Why must the mouse be disabled when data are displayed in the video display?

‘When a number is converted from binary to BCD,the _______ instruction accom-
plishes the conversion, provided the number is less than 100 decimal.

How is a large number (over 100 decimal) converted from binary to BCD?

A BCD digit is converted to ASCII code by adding a

An ASCII-coded number is converted to BCD by subtracting

Develop a procedure that reads an ASCII number from the keyboard and stores it as a BCD
number into memory array DATA. The number ends when anything other than a number is
typed.

Explain how a three-digit ASCII-coded number is converted to binary.

Develop a procedure that converts all lowercase ASCII-coded letters into uppercase ASCII-
coded letters. Your procedure may not change any other character except the letters a—z.
Develop a lookup table that converts hexadecimal data 00H-OFH into the ASCII coded
characters that represent the hexadecimal digits. Make sure to show the lookup table and any
software required for the conversion.

Develop a program sequence that jumps to memory location ONE if AL =6, TWOif AL=7,
and THREE if AL = 8.

Show how to use the XLAT instruction to access a lookup table called LOOK that is located
in the stack segment.

Develop a short sequence of instructions that place the line MOV AL,6 into a program if the
contents memory location BED are true. You must use the IF statement.

Explain the purpose of a boot sector, FAT, and root directory.

The surface of a disk is divided into tracks that are further subdivided into

What is a bootstrap loader and where is it found?

What is a cluster?

A directory entry contains an attribute byte. What information does this byte indicate about
the entry?

A directory entry contains the length of the disk file or subdirectory stored in

bytes of memory.

. What is the maximum length of a file?
45.

Develop a procedure that opens a file called TEST.LST, reads 512 bytes from the file into
data segment memory area ARRAY, and closes the file.

Develop a procedure that renames file TEST.LST to TEST.LIS.

Write a program that reads any decimal number between 0 and 65,535 and displays the 16-
bit binary version on the video display.

Write a program that displays the binary powers of 2 (in decimal) on the video screen for the
powers 0 through 7. Your display shows 2" = value for each power of 2.

284

CHAPTER 7 PROGRAMMING THE MICROPROCESSOR

49. Using the technique learned in question 16, develop a program that displays random num-
bers between 1 and 47 (or whatever) for your state’s lottery.

50. Develop a program that displays the hexadecimal contents of a block of 256 bytes of
memory. Your software must be able to accept the starting address as a hexadecimal number
between 00000H and FFFOOH.

51. Develop a program that hooks into interrupt vector O to display the following message on a
divide error: “Oops, you have attempted to divide by 0”.

CHAPTER 8
3086/8088 Hardware Specifications

INTRODUCTION

In this chapter, we describe the pin functions of both the 8086 and 8088 microprocessors and
provide details on the following hardware topics: clock generation, bus buffering, bus latching,
timing, wait states, and minimum mode operation versus maximum mode operation. These
simple microprocessors are explained first, because of their simple structure, as an introduction
to the Intel family of microprocessors.

Before it is possible to connect or interface anything to the microprocessor, it is necessary
to understand the pin functions and timing. Thus, the information in this chapter is essential to
a complete understanding of memory and I/O interfacing, which we cover in the later chapters
of the text.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Describe the function of each 8086 and 8088 pin.

2. Understand the microprocessor’s DC characteristics and indicate its fan-out to common
logic families.

Use the clock generator chip (8284A) to provide the clock for the microprocessor.

. Connect buffers and latches to the buses.

Interpret the timing diagrams.

Describe wait states and connect the circuitry required to cause various numbers waits.
Explain the difference between minimum and maximum mode operation.

Nowew

8-1

PIN-OUTS AND THE PIN FUNCTIONS
In this section we explain the function, and in some cases the multiple functions, of each of the

microprocessor’s pins. In addition, we discuss the DC characteristics to provide a basis for un-
derstanding the later sections on buffering and latching.

285

286

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

The Pin-Out

Figure 8-1 illustrates the pin-outs of the 8086 and 8088 microprocessors. As a close comparison
reveals, there is virtually no difference between these two microprocessors—both are packaged
in 40-pin dual in-line packages (DIPs).

As mentioned in Chapter 1, the 8086 is a 16-bit microprocessor with a 16-bit data bus, and
the 8088 is a 16-bit microprocessor with an 8-bit data bus. (As the pin-outs show, the 8086 has
pin connections AD,~AD,,, and the 8088 has pin connections AD~AD,.) Data bus width is
therefore the only major difference between these microprocessors.

There is, however, a minor difference in one of the control signals. The 8086 has an M/I0
pin, and the 8088 has an IO/M pin. The only other hardware difference appears on Pin 34 of both
chips: on the 8088, it is an SSO pin, while on the 8086, it is a BHE/S, pin.

Power Supply Requirements

Both the 8086 and 8088 microprocessors require +5.0 V with a supply voltage tolerance of £10
percent. The 8086 draws a maximum supply current of 360 mA, and the 8088 draws a maximum
of 340 mA. Both microprocessors operate in ambient temperatures of between 32° F and about
180° F. This range is not wide enough to be used outdoors in the winter or even in the summer,
but extended temperature-range versions of the 8086 and 8088 microprocessors are available.
There is also a CMOS version, which requires a very low supply current and also has an ex-
tended temperature range. The 80C88 and 80C86 are CMOS versions that require only 10 mA of
power supply current and function in temperature extremes of —40° F through +225° F.

DC Characteristics

It is impossible to connect anything to the pins of the microprocessor without knowing the input
current requirement for an input pin and the output current drive capability for an output pin.
This knowledge allows the hardware designer to select the proper interface components for use
with the microprocessor without the fear of damaging anything.

FIGURE 8-1 (a) The () i {)
h . MODE | MODE MODE | MODE
pin-out of the 8086 micro-
processor; (b) the pin-out of GND [1 40 vee GND [1 403 vee
the 8088 microprocessor. AD14 [2 39 ADIS A4 02 3907 AD15
AD13 []3 38[] At16/S3 A3 []3 387 A16/S3
AD12 [4 377 A17/84 A2 [4 3717 A17/54
AD11 [5 367 A18/S5 A1 [5 3eg A18/S5
AD10 [6 357 A19/86 A10 O 6 3507 A19/56
ADe []7 34[] BHE/S? A7 347 850 (HIGH)
AD8 [} 8 8086 33[] MN/MX A8 [8 8088 33[] MN/MX
a7 Os Y 20 R AD7 [9 CPU 5 7 RD
ADs [10 31[] RQ/GTO (HOLD) ADs [10 31[] HOLD (RQ/GTO)
AD5 [11 30[0 RQ/GT1 (HLDA) AD5 [11 30{J HLDA (RQGTI)
ADa [12 29[] LOCK (WR) AD4 [12 29[] WR (TOCK)
AD3 [13 28[1 §2 (M/iO) AD3 [13 28] oM (82)
AD2 [14 271 St (DT/R) AD2 [14 27§ DTR (§1)
aD1 [15 261 50 (DEN) AD1 [15 26[] DEN (80)
ADO [16 25 QSO (ALE) ACY O 16 25[] ALE (QS0)
Nt 17 241 Q@st (INTA) NMI [17 24[7 INTA (QS1)
INTR [18 233 TEST INTR [18 23[1 TEST
ck O 19 227 READY CLK [19 22| READY
anp O 20 21{1 RESET anD O 20 21 RESET

(a) (b)

8-1 PIN-OUTS AND THE PIN FUNCTIONS 287

TABLE 8-1 Input charac-]
teristics of the 8086 and 8088 Logic Level Voltage Current
microprocessors

0.8 V maximum +10 pA maximum
1 2.0 V minimum +10 pA maximum

Input Characteristics. The input characteristics of these microprocessors are compatible with all
the standard logic components available today. Table 8—1 depicts the input voltage levels and the
input current requirements for any input pin on either microprocessor. The input current leveis
are very small because the inputs are the gates connections of MOSFETs and represent only
leakage currents.

Output Characteristics. Table 8-2 illustrates the output characteristics of all the output pins of
these microprocessors. The logic 1 voltage level of the 8086/8088 is compatible with that of
most standard logic families, but the logic 0 level is not. Standard logic circuits have a maximum
logic O voltage of 0.4 V, and the 8086/8088 microprocessor have a maximum of 0.45 V. Thus
there is a difference of 0.05 V.

This difference reduces the noise immunity from a standard level of 400 mV (0.8 V -0.45 V)
to 350 mV. (The noise immunity is the difference between the logic 0 output voltage and the
logic O input voltage levels.) This reduced noise immunity may result in problems with long wire
connections or too many loads. It is therefore recommended that no more than 10 loads of any
type or combination be connected to an output pin without buffers. If this loading is exceeded,
noise will begin to take its toll in timing problems.

Table 8-3 lists some of the more common logic families and the recommended fan-out
from the 8086/8088. The best choice of component types for the connection to an 8086/8088
output pin is an LS, 74ALS, or 74HC logic component. Note that even though some of the cur-
rent calculates to more than 10 loads, it is recommended that if a fan-out of more than 10 loads
is required, the system should be buffered.

Pin Connections

AD.-AD, The 8088 address/data bus lines compose the multiplexed address data
bus of the 8088 and contain the rightmost 8-bits of the memory address
or I/O port number whenever ALE is active (logic 1) or data whenever
ALE is active (logic 0). These pins are at their high-impedance state
during a hold acknowledge.

A—Ag The 8088 address bus provides the upper-half memory address bits that
are present throughout a bus cycle. These address connections go to their
high-impedance state during a hold acknowledge.

AD ~AD, The 8086 address/data bus lines compose the upper multiplexed
address/data bus on the 8086. These lines contain address bits A —Ag

TABLE 8-2 Output charac- i
teristics of the 8086 and 8088 Logic Level Voltage Current

microprocessors

0 0.45 V maximum 2.0 mA maximum
1 2.4V minimum —400 pA maximum

288 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

TABLE 8-3 Recommended
fan-out from any 8086/8088
pin connection

A19/ Sc‘Am/ Ss

READY

INTR

TABLE 84 Function of

Family Sink Current Source Current Fan-out
TTL (74) -1.6 mA 40 uA 1
TTL (74LS) -0.4mA 20 pA 5
TTL (74S) —-2.0mA 50 uA 1
TTL (74ALS) -0.1 mA 20 uA 10
TTL (74AS) -0.5mA 25 pA 10
TTL (74F) -0.5mA 25 pA 10
CMOS (74HC) —-10 pA 10 pA 10
CMOS (CD4) -10 pA 10 pA 10
NMOS

—-10u 10 pA 10

status bits S3 and S 4

whenever ALE is a logic 1, and data bus connections D, ;~Dj. These pins
enter a high-impedance state whenever a hold acknowledge occurs.

The address/status bus bits are multiplexed to provide address signals
A, g~A 4 and also status bits S~S,. These pins also attain a high-
impedance state during the hold acknowledge.

Status bit S¢ always remains a logic 0, bit S indicates the
condition of the IF flag bits, and S, and S; show which segment is
accessed during the current bus cycle. Refer to Table 8—4 for the truth
table of S, and S;. These two status bits could be used to address four
separate 1M byte memory banks by decoding them as A, and Ay

Whenever the read signal is a logic 0, the data bus is receptive to data
from the memory or I/O devices connected to the system. This pin floats
to its high-impedance state during a hold acknowledge.

This input is controlled to insert wait states into the timing of the
microprocessor. If the READY pin is placed at a logic 0 level, the
miCroprocessor enters into wait states and remains idle. If the READY
pin is placed at a logic 1 level, it has no effect on the operation of the
microprocessor.

Interrupt request is used to request a hardware interrupt. If INTR is
held high when IF = 1, the 8086/8088 enters an interrupt acknowledge
cycle (INTA becomes active) after the current instruction has completed
execution.

The Test pin is an input that is tested by the WAIT instruction. If TEST
is a logic 0, the WAIT instruction functions as a NOP. If TESTis a logic
1, then the WAIT instruction waits for TEST to become a logic 0. This
pin is most often connected to the 8087 numeric coprocessor.

S, Ss Function

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment
1 1 Data segment

8-1 PIN-OUTS AND THE PIN FUNCTIONS 289

NMI The non-maskable interrupt input is similar to INTR except that the
NMI interrupt does not check to see if the IF flag bit is a logic 1. If NMI
is activated, this interrupt input uses interrupt vector 2.

RESET The reset input causes the microprocessor to reset itself if this pin is held
high for a minimum of four clocking periods. Whenever the 8086 or
8088 is reset, it begins executing instructions at memory location
FFFFOH and disables future interrupts by clearing the TF flag bit.

CLK The clock pin provides the basic timing signal to the microprocessor.
The clock signal must have a duty cycle of 33% (high for one-third of
the clocking period and low for two-thirds) to provide proper internal
timing for the 8086/8088.

Vee This power supply input provides a +5.0 V, £10 % signal to the
MiCroprocessor.
GND The ground connection is the return for the power supply. Note that the

8086/8088 microprocessors have two pins labeled GND—both must be
connected to ground for proper operation.

MN/MX The minimum/maximum mode pin selects either minimum mode or
maximum mode operation for the microprocessor. If minimum mode is
selected, the MN/MX pin must be connected directly to +5.0 V.

BHE/S, The bus high enable pin is used in the 8086 to enable the most-
significant data bus bits (D,;-Dy) during a read or a write operation. The
state of S, is always a logic 1.

Minimum Mode Pins. Minimum mode operation of the 8086/8088 is obtained by connecting
the MN/MX pin directly to +5.0 V. Do not connect this pin to +5.0 V through a pull-up resister
or it will not function correctly.

10/M or M/IO The I0/M (8088) or the M/TO (8086) pin selects memory or I/O. This
pin indicates that the microprocessor address bus contains either a memory
address or an 1/O port address. This pin is at its high-impedance state during
a hold acknowledge.

WR The write line is a strobe that indicates that the 8086/8088 is outputting
data to a memory or I/O device. During the time that the WR is a logic 0,
the data bus contains valid data for memory or I/O. This pin floats to a
high-impedance during a hold acknowledge.

INTA The interrupt acknowledge signal is a response to the INTR input pin.
The INTA pin is normally used to gate the interrupt vector number onto
the data bus in response to an interrupt request.

ALE Address latch enable shows that the 8086/8088address/data bus
contains address information. This address can be a memory address or
an I/O port number. Note that the ALE signal does not float during a
hold acknowledge.

DT/R The data transmit/receive signal shows that the microprocessor data
bus is transmitting (DT/R = 1) or receiving (DT/R = 0) data. This signal
is used to enable external data bus buffers.

DEN Data bus enable activates external data bus buffers.

290

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

TABLE 8-5 Bus cycle

status (8088) using SSO oM DT/R SS0 Function
0 0 0 Interrupt acknowledge
0 0 1 Memory read
0 1 0 Memory write
0 1 1 Halt
1 0 0 Opcode fetch
1 0 1 1/O read
1 1 0 I/O write
1 1 1 Passive

HOLD

HLDA

SO

w

Maximum Mode Pins.

The hold input requests a direct memory access (DMA). If the HOLD
signal is a logic 1, the microprocessor stops executing software and
places its address, data, and control bus at the high-impedance state.

If the HOLD pin is a logic 0, the microprocessor executes software
normally.

Hold acknowledge indicates that the 8086/8088 microprocessors have
entered the hold state.

The SSO status line is equivalent to the S pin in maximum mode opera-
tion of the microprocessor. This signal is combined with IO/R and DT/R
to decode the function of the current bus cycle (refer to Table 8-5).

In order to achieve maximum mode for use with external coprocessors,

connect the MN/MX pin to ground.

S2, 51, and SO

RO/GTI and
RO/GTO

LOCK

QS, and QS

TABLE 8-6 Bus control
functions generated by the
bus controller (8288) using

S3, 81, and SO

The status bits indicate the function of the current bus cycle. These
signals are normally decoded by the 8288 bus controller described later
in this chapter. Table 8—6 shows the function of these three status bits in
the maximum mode.

The request/grant pins request direct memory accesses (DMA) during
maximum mode operation. These lines are both bi-directional and are
used to request and grant a DMA operation.

The lock output is used to lock peripherals off the system. This pin is
activated by using the LOCK: prefix on any instruction.

The queue status bits show the status of the internal instruction queue.
These pins are provided for access by the numeric coprocessor (8087).
Refer to Table 8-7 for the operation of the queue status bits.

Function

%l
%
g
3

0 0 0 Interrupt acknowledge
0 0 1 I/O read

0 1 0 /O write

0 1 1 Halt

1 0 0 Opcode fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive

8-2 CLOCK GENFRATOR (8284A) 291

TABLE 8-7 Queue status

bits Qs, Qs, Function
0 0 Queue is idle
0 1 First byte of opcode
1 0 Queue is empty
1 1 Subsequent byte of opcode

CLOCK GENERATOR (8284A)

This section describes the clock generator (8284A), the RESET signal, and introduces the
READY signal for the 8086/8088 microprocessors. The READY signal and its associated cir-
cuitry are treated in detail in Section 8-5.

The 8284A Clock Generator

The 8284A is an ancillary component to the 8086/8088 microprocessors. Without the clock gen-
erator, many additional circuits are required to generate the clock (CLK) in an 8086/8088-based
system. The 8284 A provides the following basic functions or signals: clock generation, RESET
synchronization, READY synchronization, and a TTL level peripheral clock signal. Figure 8-2
illustrates the pin-out of the 8284A clock generator.

Pin Functions. The 8284A is an 18-pin integrated circuit designed specifically for use with the
8086/8088 microprocessors. The following is a list of each pin and its function:

AENI and The address enable pins are provided to qualify the bus ready signals, RDY1

AEN2 and RDY?2, respectively. Section 8-5 illustrates the use of these two pins,
which are used to cause wait states, along with the RDY 1 and RDY? inputs.
Wait states are generated by the READY pin of the 8086/8088
microprocessors, which is controlled by these two inputs.

RDY1 and The bus ready inputs are provided in conjunction with the AENI and AEN2

RDY2 pins to cause wait states in an 8086/8088-based system.
ASYNC The ready synchronization selection input selects either one or two stages of
' synchronization for the RDY1 and RDY?2 inputs.
READY Ready is an output pin that connects to the 8086/8088 READY input. This
signal is synchronized with the RDY1 and RDY2 inputs.
X1 and X2 The crystal oscillator pins connect to an external crystal used as the timing

source for the clock generator and all its functions.

FIGURE 8-2 The pinout of csvuchDvcc
the 822844A clock generator pork] 2 B
AENI[]3 186 1x2
ROY1[] 4 15 [JASYNC
READY (]S m‘u]EFI
RDY2(] 6 131FIT
AENZ[]7 12[]osc
cLk]s 11|]1RES
GND[] 9 10] RESET

292

FIGURE 8-3 The internal
block diagram of the 8284A

clock generator

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

F/C The frequency/crystal select input chooses the clocking source for the 8284A.
If this pin is held high, an external clock is provided to the EFI input pin; if it
is held low, the internal crystal oscillator provides the timing signal.

EF1 The external frequency input is used when the F/C pin is pulled high. EFL
supplies the timing whenever the F/C pin is high.

CLK The clock output pin provides the CLK input signal to the 8086/8088 micro-
processors and other components in the system. The CLK pin has an output
signal that is one-third of the crystal or EFI input frequency and has a 33 per-
cent duty cycle, which is required by the 8086/8088.

PCLK The peripheral clock signal is one-sixth the crystal or EFI input frequency
and has a 50 percent duty cycle. The PCLK output provides a clock signal to
the peripheral equipment in the system.

0sC The oscillator output is a TTL level signal that is at the same frequency as the
crystal or EFI input. The OSC output provides an EFI input to other 8284A
clock generators in some multiple-processor systems.

RES The reset input is an active-low input to the 8284A. The RES pin is often
connected to an RC network that provides power-on resetting.

RESET The reset output is connected to the 8086/8088 RESET input pin.

CSYNC The clock synchronization pin is used whenever the EFI input provides
synchronization in systems with multiple processors. If the internal crystal
oscillator is used, this pin must be grounded.

GND The ground pin connects to ground.

Vee This power supply pin connects to +5.0 V with a tolerance of +10 percent.

Operation of the 8284A

The 8284A is a relatively easy component to understand. Figure 8-3 illustrates the internal logic
diagram of the 8284A clock generator.

RES lo\ D
l/ Q> RESET
—JicK
X1
XTAL
OSCILLATOR []
X2 L osc
FIC
+3 +2 > PCLK
EFI SYNC SYNC
CSYNC)|]
RDY1
_ —>—~ cLK
AENT
RDY2 _
CKt cKi
AEN2 D Q D Q | READY
FF1 FF2

ASYNC

8-2 CLOCK GENERATOR (8284A) 293

5 MHz
r— X, CLK »| CLK
15 MHz EZZ2
r— Xz 8086
— or
F/C
—g[8284A 8088
+5V CSYNC
RESET > RESET
10K
L _—
RES
= +
T
= v
System
reset

FIGURE 8-4 The clock generator (8284A) and the 8086 and 8088 microprocessor illustrating
the connection for the clock and reset signals. A 15 MHz crystal provides the 5 MHz clock for
the microprocessor.

Operation of the Clock Section. The top half of the logic diagram represents the clock and reset
synchronization section of the 8284A clock generator. As the diagram shows, the crystal oscil-
lator has two inputs: X1 and X2. If a crystal is attached to X1 and X2, the oscillator generates a
square-wave signal at the same frequency as the crystal. The square-wave signal is fed to an
AND gate and also to an inverting buffer that provides the OSC output signal. The OSC signal is
sometimes used as an EFI input to other 8284A circuits in a system.

An inspection of the AND gate reveals that when F/C is a logic 0, the oscillator output is
steered through to the divide-by-3 counter. If F/C is a logic 1, then EFI is steered through to the
counter.

The output of the divide-by-3 counter generates the timing for ready synchronization, a
signal for another counter (divide-by-2), and the CLK signal to the 8086/8088 microprocessors.
The CLK signal is also buffered before it leaves the clock generator. Notice that the output of the
first counter feeds the second. These two cascaded counters provide the divide-by-6 output at
PCLK, the peripheral clock output.

Figure 8—4 shows how an 8284A is connected to the 8086/8088. Notice (1) that F/C and
CSYNC are grounded to select the crystal oscillator and (2) that a 15 MHz crystal provides the
normal 5 MHz clock signal to the 8086/8088 as well as a 2.5 MHz peripheral clock signal.

Operation of the Reset Section. The reset section of the 8284A is very simple. It consists of a
Schmitt trigger buffer and a single D-type flip-flop circuit. The D-type flip-flop ensures that the
timing requirements of the 8086/8088 RESET input are met. This circuit applies the RESET
signal to the microprocessor on the negative edge (1-to-O transition) of each clock. The
8086/8088 microprocessors sample RESET at the positive edge (0-to-1 transition) of the clocks;
therefore, this circuit meets the timing requirements of the 8086/8088.

Refer again to Figure 8—4. Notice that an RC circuit provides a logic 0 to the RES input pin
when power is first applied to the system. After a short time, the RES input becomes a logic 1 be-
cause the capacitor charges toward +5.0 V through the resistor. A push-button switch allows the
microprocessor to be reset by the operator. Correct reset timing requires the RESET input to

294

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

become a logic 1 no later than four clocks after system power is applied and to be held high for
at least 50 ps. The flip-flop makes certain that RESET goes high in four clocks, and the RC time
constant ensures that it stays high for at least 50 ps.

8-3

BUS BUFFERING AND LATCHING

Before the 8086/8088 microprocessors can be used with memory or I/O interfaces, their multi-
plexed buses must be demultiplexed. This section provides the detail required to demultiplex the
buses and illustrates how the buses are buffered for very large systems. (Because the maximum
fan-out is 10, the system must be buffered if it contains more than 10 other components.)

Demultiplexing the Buses

The address/data bus on the 8086/8088 is multiplexed (shared) to reduce the number of pins re-
quired for the 8086/8088 integrated circuit. Unfortunately, this burdens the hardware designer
with the task of extracting or demultiplexing information from these multiplexed pins.

Why not leave the buses multiplexed? Memory and I/O require that the address remains
valid and stable throughout a read or write cycle. If the buses are multiplexed, the address
changes at the memory and I/O, which causes them to read or write data in the wrong locations.

All computer systems have three buses: (1) an address bus that provides the memory and
I/O with the memory address or the I/O port number, (2) a data bus that transfers data between
the microprocessor and the memory and I/O in the system, and (3) a control bus that provides
control signals to the memory and I/O. These buses must be present in order to interface to
memory and I/O.

Demultiplexing the 8088. Figure 8-5 illustrates the 8088 microprocessor and the components
required to demultiplex its buses. In this case, two 74L.S373 transparent latches are used to de-
multiplex the address/data bus connections AD,—AD), and the multiplexed address/status con-
nections A,,/S~A /S,

These transparent latches, which are like wires whenever the address latch enable pin
(ALE) becomes a logic 1, pass the inputs to the outputs. After a short time, ALE returns to its
logic O condition, which causes the latches to remember the inputs at the time of the change to a
logic 0. In this case, A,~A, are stored in the bottom latch and A ~A in the top latch. This
yields a separate address bus with connections A,;—A,. These address connections allow the
8088 to address 1M byte of memory space. The fact that the data bus is separate allows it to be
connected to any 8-bit peripheral device or memory component.

Demultiplexing the 8086. Like the 8088, the 8086 system requires separate address, data, and
control buses. It differs primarily in the number of multiplexed pins. In the 8088, only AD,-AD,,
and A o/Sc-A¢/S; are multiplexed. In the 8086, the multiplexed pins include AD,~AD,,
Al9/sﬁ_Al6/SB’ and BHE/S,. All of these signals must be demultiplex

L Figure 8-6 illustrates a demult_i_p_le&a_q 8086_w_ith all three buses: address (A 4-A, and
BHE), data (D, ~D). and control (M/IO, RD, and WR).

Th.e circuit shown in Figure 8-6 is almost identical to the one pictured in Figure 8-5, ex-
cept that an additional 74L.S373 latch has been added to demultiplex the address/data bus pins
AD ~ADjy and a BHE/S, input has been added to the top 74LS373 to select the high-order
memory bank in the 16-bit memory system of the 8086. Here the memory and I/O system see the
8086 as a devici wi_tll a ZO-wddress bus (A 4~A), a 16-bit data bus (D,~D), and a 3-line
control bus (M/IO, RD, and WR).

8-3 BUS BUFFERING AND LATCHING 295

Algise OE —e Ay
Algsss 373 - A
Alzss N Ay
Ajesa G A
gosg A — Aus
4 Ay
:H = Aj;
12 Al
Ay Ay
Ay ° A, { Address bus
9 Ay
Ag e Ay
Ay
o A()
— e Al
———————e A,
A,
——e A,
——e A,
'—0 Ay
AD, I e D,
AD, Dq
ADq « D;
AD, D,
AD, « D, Data bus
AD, - D,
AD, e D,
All, e D,
10M . 1OM
RD * RD Control bus
MN/MX WR — WR
+5V

FIGURE 8-5 The 8088 microprocessor shown with a demultiplexed address bus. This is the
model used to build many 8088-based systems.

The Buffered System

If more than 10 unit loads are attached to any bus pin, the entire 8086 or 8088 system must be
buffered. The demultiplexed pins are already buffered by the 74LS373 latches, which have been
designed to drive the high-capacitance buses encountered in microcomputer systems. The
buffer’s output currents have been increased so that more TTL unit loads may be driven: a logic
0 output provides up to 32 mA of sink current, and a logic 1 output provides up to 5.2 mA of
source current.

A fully buffered signal will introduce a timing delay to the system. This causes no diffi-
culty unless memory or /O devices are used, which function at near the maximum speed of the
bus. Section 8—4 treats this problem and the time delays involved in more detail.

296 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

1—3?-

BHE/S7 |- ©E BHE
Ajgyse | A
Awss 373 —e A
Ajss —e Ay

183 1G * A
8086
—e A5
— Ay,
- Apa
— Apz
- Ay
—e Ay Address bus
Ag
Ag
e A,
Ag
As
———————————e A,
———————————e A,
e A
——————e A,
4
ALE G G
‘373 OE 01 '373 OE 01
AD|5 ‘L DIS
ADy, 14
AD,, — D3
AD.: DIZ
ADy, —e D,
AD, Do
ADqy * Dy
ﬁg: . gj Data bus
ADg * D,
ADs Ds
AD, D,
AD, D,
AD, D,
AD, . D,
ADq Dy
M/IO « M/IO
RD RD | Control bus
MNMX WR WR
_.l.____
+5V

FIGURE 8-6 The 8086 microprocessor shown with a demultiplexed address bus. This is the
model used to build many 8086-based systems.

The Fully Buffered 8088. Figure 8—7 depicts a fully buffered 8088 microprocessor. Notice that
the remaining eight address pins, A ;—A,, use a 7415244 octal buffer; the eight data bus pins,
D7”D_n’__ use a 74L.S245 octal bi-directional bus buffer; and the control bus signals, I0O/M, RD,
and WR, use a 74L.S244 buffer. A fully buffered 8088 system requires two 74L.S244s, one

8-3 BUS BUFFERING AND LATCHING

10M CE | .i0oM
RD '244 p————— RD
WR L+ WR
Al?/SG OE A
Ajgsss , Apg
Ayzsa 373 Ay
Ajersa ° Ag
8088
A Ags
Ay, Ay
A|3 AI3
A 244 Ap
Ay —e Ay
A - Ao
Agy Ag
Ag OE —o Ayg
i— * A,
= Aq
- As
A,
. A,
- Az
— A,
C * o
ALE G 373 OEf—
AD, 1 A, B, |—= D,
ADq Ag Bs —= Ds
AD; As Bs |—= D;s
AD, Ay 1245 B,F— D,
AD; A B;[—e D,
AD, A, B,— D,
AD, A, B, (—e D,
AD, Ay By [— Dy
DT/R DEN G DIR
L b

FIGURE 8-7 A fully buffered 8088 microprocessor

297

Buffered
control
bus

Buffered
address
bus

Buffered
data
bus

7418245, and two 741.8373s. The direction of the 7415245 is controlled by the DT/R signal,
and is enabled and disabled by the DEN signal.

The Fully Buffered 8086. Figure 8-8 illustrates a fully buffered 8086 microprocessor. Its ad-
dress pins are already buffered by the 74LS373 address latches; its data bus employs two
7418245 octal bi-directional bus buffers; and the control bus signals, I0/M, M/IO, RD, and WR

298 CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

M/IO |— + M/IO | Buffered
RD}F— , —e RD control
WRp— —«WR | bu

OE Dl
BHE/S7 |— -« BHE

Ajysse ~ Ay

Agss F— 373 —e A

Ajsa A

A — — A

8086 16/S3 G OE . A::
L ~ A
- A
— A

~ Ay Buffered

Ao address

— Ay bus
- Ay
A,
Aq
As
A,
— A,
. A,
—
ALE G G
‘373 OE o— ‘373 OE p—_

AD¢ - —= D5

AD,, —= Dy,

AD,; —= Dy

AD, / —= D>

ADy, R Dy,

ADq —= Dy

ADgy —e D,

ADy G DIR [Dx

bl

AD, -—e D,

ADg —e D

ADj | — D,

AD, , —e D,

AD. us [0

AD, l—e D,

AD, —e D,

ADo GDIR [Do

DEN b

DT/R

FIGURE 8-8 A fully buffered 8086 microprocessor

use a 7415244 buffer. A fully buffered 8086 system requires one 7415244, two 74L.S245s,
and three 74LS373s. The 8086 requires one more buffer than the 8088 because of the extra
eight data bus connections, D, ~D,. It also has a BHE signal that is buffered for memory-ban
selection.

8-4 BUS TIMING 299

BUS TIMING

It is essential to understand system bus timing before choosing a memory or I/O device for inter-
facing to the 8086 or 8038 microprocessors. This section provides insight into the operation of
the bus signals and the basic read and write timing of the 8086/8088. It is important to note that
we discuss only the times that affect memory and I/O interfacing in this section.

Basic Bus Operation

The three buses of the 8086 and 8088—address, data, and control—function in exactly the same
manner as those of any other microprocessor. If data are written to the memory (see the simpli-
fied timing for write in Figure 8-9), the microprocessor outputs the memory address on the ad-
dress bus, outputs the data to be written into memory on the data bus, and issues a write (WR) to
memory and I0/M = 0 for the 8088 and M/IO = 1 for the 8086. If data are read from the memory
(see the simplified timing for read in Figure 8§-10), the microprocessor outputs the memory ad-
dress on the address bus, issues a read (RD) memory signal, and accepts the data via the data bus.

. Timing in General

The 8086/8088 microprocessors use the memory and I/O in periods of time called bus cycles.
Each bus cycle equals four system-clocking periods (T states). Some new microprocessors di-
vide the bus cycle into as few as two clocking periods. If the clock is operated at 5 MHz (the
basic operating frequency for these two microprocessors), then one 8086/8088 a bus cycle is
complete in 800 ns. This means that the microprocessor reads or writes data between itself and
memory or,I/O at a maximum rate of 1.25 million times per second. (Because of the internal
queue, the 8086/8088 can execute 2.5 million instructions per second (MIPS) in bursts.) Other
available versions of these microprocessors operate at much higher transfer rates due to higher
clock frequencies.

During the first clocking period in a bus cycle, which is called T1, many things happen.
The address of the memory or I/O location is sent out via the address bus and the address/data
bus connections. (The address/data bus is multiplexed and sometimes contains memory-
addressing information, sometimes data.) Also output during T1 are the control signals ALE,

ONE BUS CYCLE

T 4'[‘ T, |L T, : T,

e _—\._/____/—__/___/__-_
VALID ADDRESS)—

ADDRESS/DATA '—_< ADDRESS Y DATA WRITTEN TO MEMORY 4)——
R \ /

FIGURE 8-9 Simplified 8086/8088 write bus cycle

- T

ADDRESS

300

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

ONE BUS CYCLE

11

T T

T, ! T, | T, I T,

ADDRESS —(VALID ADDRESS)———

ADDRESS/DATA ADDRESS DATA FROM MEMORY)—
o \ /

FIGURE 8-10 Simplified 8086/8088 read bus cycle

DT/R, and I0/M (8088) or M/O (8086). The IO/M or M/IO signal indicates whether the address
bus contains a memory address or an 1/O device (port) number.

During T2, the 8086/8088 microprocessors issue the RD or WR signal, DEN, and, in the
case of a write, the data to be written appears on the data bus. These events cause the memory or
1/O device to begin to perform a read or a write. The DEN signal turns on the data bus buffers, if
they are present in the system, so the memory or I/O can receive data to be written or so the mi-
croprocessor can accept the data read from the memory or I/O for a read operation. If this hap-
pens to be a write bus cycle, then the data are sent out to the memory or I/O through the data bus.

READY is sampled at the end of T2, as illustrated in Figure 8-11. If READY is low at this
time, T3 becomes a wait state (T,). More detail is provided in Section 8-5. This clocking period
is provided to allow the memory time to access data. If the bus cycle happens to be a read bus
cycle, the data bus is sampled at the end of T3.

In T4, all bus signals are deactivated in preparation for the next bus cycle. This is also the
time when the 8086/8088 microprocessors sample the data bus connections for data that are read
from memory or I/O. In addition, at this point, the trailing edge of the WR signal transfers data
to the memory or 1/, which activate and write when theWR signal returns to a logic 1 level.

Read Timing

Figure 8~11 also depicts the read timing for the 8088 microprocessor. The 8086 read timing is
identical except that the 8086 has 16 rather than 8 data bus bits. A close look at this timing dia-
gram should allow you to identify all the main events described for each T state.

The most important item contained in the read timing diagram is the amount of time al-
lowed the memory or I/O to read the data. Memory is chosen by its access time, which is the
fixed amount of time the microprocessor allows it to access data for the read operation. It is
therefore extremely important that the memory you choose comply with the limitations of the
system.

The microprocessor timing diagram does not, however, provide a straightforward memory
access time. Instead, it is necessary to combine several times to arrive at the access time. To find
memory access time in this diagram, we must first locate the point in T3 when data are sampled.
If you examine the timing diagram closely, you will notice a line that extends from the end of T3
down to the data bus. The end of T3 is where the microprocessor samples the data bus.

8-4 BUS TIMING 301

T T2 Ty Tw Te
po———— TCLCL ——={TCHI1CH2 TCL2CLY
Veu

/
CLK (8284 Output) vj‘ S\ i \]F“\ //____
H rencty f———={TCHCL I TCLCH —]
10/M, $S0 i) X

| \|
Ays-Ag A5 - Ag (Float duning INTA)
I
— =— TCLOV
TCLAV~| TCLAX] L TCHDX —=| —
A19/Se-A14/S3 Arg-Ase j($7-S3
TCLLH ~| TUHLL L Liax ‘
| -
ALE | /
] ; A
TCHLL—! b ~ TRIVCL
l— TAVAL Yin T NTARY CRRRS
ROY (8284 Input) \'[\ O N
SEENOTES Vi : : - A S .

= T=TciRix

RYLCL—= ‘ -

:.;f{('~
—| l-TCLA F—mvc'. ——o—TCLDX
AD; ~ AD AD7-ADg DATAIN
7oAt >(! FLOAT FLOAT F
TAZRL—{ |- TCLRH— TRHAV
R —

FTCHCYV

READY (8088 Input) TCHRYX
—

READ CYCLE

(NOTE 1) and TCHCTV TCLRL 0 TRLRH
(WR, INTA = Von) _—
DT/R
TCVCTV —=| TCVCTX —=|
DEN

FIGURE 8-11 Minimum mode 8088 bus timing for a read operation

\wﬁﬁ—

Memory access time starts when the address appears on the memory address bus and
continues until the microprocessor samples the memory data at T3. Approximately three T
states elapse between these times. (Refer to Figure 8-12 for the following times.) The ad-
dress does not appear until T, ,, time (110 ns if the clock is 5 MHz) after the start of T1.
This means that T, ,, time must be subtracted from the three clocking states (600 ns) that
separate the appearance of the address (T1) and the sampling of the data (T3). One other time
must also be subtracted: the data setup time (Tp,,), which occurs before T3. Memory access
time is thus three clocking states minus the sum of T ,y and Ty, - Because Tpy is 30 ns
with a 5 MHz clock, the allowed memory access time is only 460 ns (access time = 600 ns
— 110 ns - 30 ns).

Actually, the memory devices chosen for connection to the 8086/8088 operated at 5 MHz
must be able to access data in less than 460 ns because of the time delay introduced by the ad-
dress decoders and buffers in the system. At least a 30 or 40 ns margin should exist for the oper-
ation of these circuits. Therefore, the memory speed should be no slower than about 420 ns to
operate correctly with the 8086/8088 microprocessors.

302

FIGURE 8-12 8088 AC

characteristics

CHAPTER 8 8086/8088 HARDWARE SPECIFICATIONS

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

A.C. CHARACTERISTICS (8088: T4 = 0°C to 70°C, Vg = 5V =10%)"

(8088-2:Tp = 0°C to 70°C. Vg = 5V =5%)

8088 8088-2
Symbol Parameter Min, Max. Min. Mex. | Units Oon.':nnlom
TCLCL CLK Cycle Period 200 500 125 500 ns
TCLCH CLK Low Time 118 68 ns
TCHCL CLK High Time 69 44 ns
TCHICH2 | CLK Rise Time 10 0 | ns | fORIOY
TCL2CL1 | CLK FallTime 10 10 | ns | oMV
TDVCL Data in Setup Time 30 20 ns
TCLDX Data in Hold Time 10 10 ns
RDY Setup Time
TR1VCL into 8284 (See 35 35 ns
Notes 1, 2)
ROY Hold Time
TCLR1X into 8284 (See 0 0 ns
Notes 1, 2)
TRYHCH | READY Setup 18 68 ns
8088
TCHRYX | READY Hold Time 20 20 ns
o | S | - -
THVCH HOLD Setup Time 35 20 ns
INTR, NMI, TEST
TINVCH Setup Time (See 30 15 ns
Note 2)
TOH | Eept oLk 2 2 | m] o
TIHIL :'é‘)’(‘;:“g;g" 12 12 | ne | from2oV
A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES
8088 8088-2
Symbol Parameter Min, Max. Min. Max Units Teat Conditions
TCLAV Address Valid Delay 10 110 10 60 ns
TCLAX Address Hold Time 10 10 ns
TCLAZ | Address Fioat Delay TCLAX 80 TCLAX 50 ns
TLHLL ALE Width TCLCH-20 TCLCH-10 ns
TCLLH ALE Active Delay 80 50 ns
TCHLL ALE Inactive Delay 85 55 ns
TLLAx | Address HolaTime to TCHCL-10 TCHCL-10 ns
TCLOV Data Valid Delay 10 110 10 60 ns | C = 20-100 pF for
TCHDX | Data Hold Time 10 10 ns ;:' 399,0‘"‘2““
TWHDX | Data Hold Time After WR | TCLCH-30 TCLCH-30 ns loads
TCVCTV | Control Active Delay 1 10 110 10 70 ns
TCHCTV | Control Active Deiay 2 10 110 10 60 ns
TCVCTX | Control inactive Delay 10 110 10 70 ns
TAZAL ::3::33 Fioat to READ 0 0 ne
TCLRL | RD Active Delay 10 165 10 100 ns
TCLRH | RD inactive Delay 10 150 10 80 ns
TRHAV | ho imactive fo Next TCLCL-45 TCLCL-40 ns
TCLHAV | HLDAValid Delay 10 160 10 100 ns
TRLRH | RDWidth 2TCLCL-75 2TCLCL-50 ns
¢ TWLWH | WRWidth 2TCLCL-60 2TCLCL-40 ns
TAVAL Address Valid to ALE Low | TCLCH-60 TCLCH-40 ns
TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V
TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8v

8-4 BUS TIMING 303
n T2 Ts Tw Ts
TCHI1CH2 Tewzend
Ven /___\ .—\
CLK (8284 Output) ¢ K / N\ / N / \
cL
TCLOV~ -—_
TCLAV = | TCLAX—~] - ki l
/
AD; - ADg AD;-ADo DATA OUT
Tevetv ADo [~ TWHOX = —
WRITE CYCLE 556 \[
NOTE 1
TCVCTV—=| l-
TWLWH /
- X
TCVCTX —=| l—
— —TCLAZ
~—TOVCL—>] -——TCLDX
AD; - AD, {
7o /| FLOAT | POINTER FLOAT _
— —TCHCTV e TCHCTV
oTIR
INTA CYCLE TOVETV— L
NOTES 1,3
(RD, WR =Vom) NTR
TCVCTV—=| e TCVCTX—

DEN
SOFTWARE HALT -
DEN,RD,WR.INTA = Vou AD7 - ADo INVALID ADDRESS SOFTWARE HALT
DT/R INDETERMINATE TCLAYV —] —

NOTES: 1. ALL SIGNALS SWITCH BETWEEN Vo AND Vo UNLESS OTHERWISE

SPECIFIED.
. ROY IS SAMPLED NEAR THE END OF T3, T3, Tw TO DETERMINE IF Ty
MACHINES STATES ARE TO BE INSERTED.
TWO INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/IDATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE.
SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
OAJ'BLTEIDM’NG MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE

w N

o

FIGURE 8-13 Minimum mode 8088 write bus timing

The only other timing factor that may affect memory operation is the width of the RD
strobe. On the timing diagram, the read strobe width is given as Ty p1,. The time for this strobe
is 325 ns (5 MHz clock rate), which is wide enough for almost all memory devices manufactured
with an access time of 400 ns or less.

Write Timing

Figure 8—13 illustrates the write timing diagram for the 8088 microprocessor. Again, the 8086 is
so nearly identical that it need not be presented here in a separate timing diagram.

The main differences between read and write timing are minimal. The RD strobe is re-
placed by the WR strobe, the data bus contains information for the memory rather than informa-
tion from the memory, and DT/R remains a logic 1 instead of a logic 0 throughout the bus cycle.

When interfacing some memory devices, timing may be especially critical between the
point at which WR becomes a logic I and the time when the data are removed from the data bus.
This is the case